

Study Thesis

Application of Machine Learning Algorithms for
Operating State Classification and Fault Detection

of a CNC Milling Machine

by Lukas Bommes

Matriculation Number: 4367361

Brunswick University of Technology
Faculty of Mechanical Engineering

Institute of Machine Tools and Production Technology

and

Agency for Science, Technology and Research
Singapore Institute of Manufacturing Technology

Department of Manufacturing Execution and Control

Examiner: Prof. Dr.-Ing. Christoph Herrmann
Supervisors: Dipl.-Ing. Benjamin Neef, Dr. Lee Kee Jin

Submitted on 19thOctober 2017

Abstract

Aim of the following work is the automated detection of different states of a CNC milling machine
based on measurement of the overall current consumption. The machine states hereby refer to
different switching combinations of the internal components of the machine, such as motors,
pumps and axes drives. The second goal is automated detection of machine faults resolved to
the level of individual machine components. To achieve those two objectives a machine program
is developed which enables the machine to be operated in a well-defined manner with isolated
movement of the individual machine axes and isolated activation of additional components. This
program is executed and the overall current consumption of the machine is measured to generate
training and test datasets. This data is then automatically cut into smaller segments, each
representing an individual movement of any of the machine axes. Moreover, these segments are
automatically labeled. Based on the thus processed data different classifiers utilizing classical
signal processing, such as dynamic time warping and cross-correlation methods as well as modern
machine learning algorithms like k-nearest-neighbour, decision tree, random forest, AdaBoost,
support vector machine, stochastic gradient descent and naive bayes, are trained and evaluated.
Aim of these classifiers is offline classifiaction of segments of the current measurement data,
which is equivalent to prediction of switching states of the machine components within the
measurement data. Systematic machine faults on the other hand are detected by comparing
extracted features of newly acquired test data with already present training data by simple
distance computation of according clusters in feature space. Moreover, random faults are
detected by an outlier search based on the local outlier factor. Important conclusions of this
work are that all considered classification algorithms are able to predict the machine states
within the test data with a classification accuracy of up to 97.7 %, which is achieved by the
random forest classifier. Moreover, the proposed algorithms for machine fault detection perform
as expected and are able to detect even minor changes on the milling machine, such as removal
of the tool from the main spindle. The following work is dedicated to people interested in
machine learning and computer science in general. It is especially interesting for those who want
to see how typical machine learning algorithms can be applied to a real-world problem. Apart
from this the work is valuable for everyone who wants to design a cheap and flexible system
for predictive maintenance of machine tools without having to tap the internal machine controller.

Keywords: Machine Learning, Pattern Recognition, Classification, Predictive Health Monitor-
ing, Fault Detection, Anomaly Detection, Cross-Correlation, Dynamic Time Warping, k-Near-
est-Neighbour, Decision Tree, Random Forest, AdaBoost, Support Vector Machine, Stochastic
Gradient Descent, Naive Bayes, Feature Space, Feature Selection, Signal Processing, Machine
Tool, Manufacturing Technology, Python, Scikit-Learn, Matlab

II

Contents

Abstract . II

Contents . III

List of Figures . VI

List of Tables . X

List of Listings . XI

Abbreviations . XIII

1 Introduction . 1

2 Theoretical Concepts . 5
2.1 Knowledge Discovery in Databases . 5
2.2 Machine Learning . 6
2.3 Patterns and Pattern Recognition . 8
2.4 Anomaly Detection . 8

3 Machine Tool Analysis . 10
3.1 Key Features of the Machine . 10
3.2 Functional Modules of the Machine . 10
3.3 Electrical Power Consumers within the Machine 15

4 Data Acquisition . 20
4.1 Overview of the Measurement Data . 20
4.2 Data Acquisition Toolchain . 21
4.3 Definition of Machine States . 26
4.4 Test Cycle Definition . 29
4.5 Test Cycle Results . 31

5 Data Segmentation and Labelling . 40
5.1 Segmentation and Labelling Task Outline . 40
5.2 Manual Segmentation and Labelling . 42
5.3 Automatic Segmentation and Labelling . 47

5.3.1 Segmentation . 48
5.3.2 Labeling of Controllable State Changes 54
5.3.3 Labeling of Non-Controllable State Changes 57
5.3.4 Results of Automatic Segmentation and Labeling 61

III

6 Shape Based Classification . 68
6.1 Foundations of Shape Based Classification . 68

6.1.1 Principle of Shape Based Classification 69
6.1.2 Dynamic Time Warping . 71
6.1.3 Cross-Correlation . 76

6.2 Template Creation via Accurate Shape Averaging 79
6.2.1 Overview Over Existing Shape Averaging Methods 80
6.2.2 Foundations of Shape Averaging . 80
6.2.3 Operational Principle of the ASA Algorithm 82
6.2.4 Description of the Template Creation Algorithm 84
6.2.5 Results of the Template Creation Algorithm 88

6.3 Development of Shape Based Classifiers . 88
6.4 Evaluation of Classification Result . 94
6.5 Conclusion of Shape Based Classification Approach 103

7 Feature Based Classification . 107
7.1 Foundations of Feature Based-Classsification . 107

7.1.1 Dataset Nomenclature . 108
7.1.2 Principle of Feature Based Classification 109
7.1.3 Classification Algorithms . 114

7.1.3.1 k-Nearest-Neighbours . 114
7.1.3.2 Decision Tree . 116
7.1.3.3 Random Forest . 119
7.1.3.4 AdaBoost . 121
7.1.3.5 Support Vector Machine . 123
7.1.3.6 Stocastic Gradient Descent . 127
7.1.3.7 Naive Bayes . 130

7.2 Extraction of Statistical Features . 133
7.3 Development of Feature-Based Classifiers . 137

7.3.1 Standardization of Extracted Features 138
7.3.2 Selection of Relevant Features . 141
7.3.3 Hyperparameter Setup . 148

7.4 Evaluation of Feature-Based Classifiers . 152
7.5 Conclusion of Feature-Based Classification Approach 155

8 Machine Fault Detection . 158
8.1 Local Outlier Factor . 158
8.2 Test Dataset Generation . 160

8.2.1 Synthetic Generation of Modified Test Datasets 161
8.2.2 Experimental Generation of a Modified Test Dataset 162

8.3 Fault Detection Algorithm . 164
8.3.1 Detection of Systematic Faults . 166
8.3.2 Detection of Random Faults . 169

8.4 Experiment Results . 172
8.5 Conclusion of Machine Fault Detection . 177

IV

9 Conclusion . 179

Bibliography . 183

A Appendix . 198
A.1 Full Machine State Definition Table . 198
A.2 Test Cycle Code for Heidenhain iTNC 530 . 203
A.3 Results of Test Cycle Runs 1 and 2 . 208

A.3.1 Test Cycle Run 1 . 208
A.3.2 Test Cycle Run 2 . 210

A.4 Distance Measures of Templates for Automatic Segmentation 212
A.5 Resulting Averaged Templates from Accurate Shape Averaging 215
A.6 Confusion Matrices for Feature-Based Classifiers 221
A.7 Matlab Source Codes . 227

A.7.1 Label Assistant GUI . 227
A.7.2 Measurement Data Plotting Script . 241
A.7.3 Automatic Segmentation and Labeling Algorithm 245
A.7.4 Template Averaging Algorithm . 250
A.7.5 Shape-Based Template Matching Algorithm 253
A.7.6 Parameter Studies for the Template Matching Algorithm 255
A.7.7 Feature Extraction Algorithm . 259
A.7.8 Test Set Modification Script . 263
A.7.9 Processing of the Experimentally Acquired Modified Test Data 268

A.7.9.1 Measurement Data Plotting Script 268
A.7.9.2 Automatic Segmentation and Labeling Script 270
A.7.9.3 Feature Extraction Script . 273

A.8 Python Source Codes . 275
A.8.1 Feature-Based Classification . 275

A.8.1.1 Training and Hyperparameter Optimization 275
A.8.1.2 Classifier Evaluation . 278

A.8.2 Machine Fault Detection Algorithm . 280
A.8.2.1 Main Script . 280
A.8.2.2 Function for Computing Local Outlier Factor 286

V

List of Figures

1.1 Overview of the workflow of the subsequent work. 4

2.1 Overview of the steps composing the KDD process. 6

3.1 Front view of the DMU 100 Monoblock® with and without casing. 12
3.2 Top view of the DMU 100 Monoblock®. 13
3.3 Detailed views of the most important subsystems of the DMU 100 Monoblock®. 14
3.4 Functional modules and main power consumers of the DMU 100 Monoblock®. . 19

4.1 Overview of different measurands within the acquired data 22
4.2 Flowchart of the data acquisition process as first step of the classification problem. 23
4.3 Different monitoring terminals on the EtherCAT-Bus. 24
4.4 Current sensor wiring diagram. 27
4.5 Program structure of the test Cycle. 32
4.6 Subfunctions for machine setup as well as spindle and axis motions within the

above flow chart of the test cycle. 33
4.7 Measured signal of the current flow within the three phases of the DMU main

power line during the complete third test cycle run. 35
4.8 Close-up of the measured current in the second phase (L2) of the DMU main

power line during a single iteration of the test cycle. 35
4.9 Internal connections of the three considered non-controllable componentes to the

three phases of the machine main power line. 36
4.10 Current signals of individual activations of the oil-air and machine lubrication

pump in the third test cycle run. 37
4.11 Measured current consumption of the different machine components during the

third test cycle run. 38
4.12 Different patterns occuring in the current signal on the first phase of the DMU

main power line according to different axes moving either forward or backward. . 39

5.1 Desired outcome of the segmentation and labeling process. 41
5.2 Process steps of the manual timeseries segmentation and labeling with the label

assistant GUI. 43
5.3 Graphical user interface of the data label assistant. 44
5.4 Toolbar icons in the data label assistant. 45
5.5 Control Panel of the label assistant GUI. 46
5.6 Workflow for creating a new segment labeled in the mesaurement dataset and

adding it to the labeling dataset in the label assistant GUI. 47
5.7 Schematic of the full automatic segmentation and labeling algorithm, which is

based on a time domain shape-based similarity measurement approach. 49

VI

5.8 Shape templates used for automatic segmentation of the measurement data. . . 51
5.9 Principle of the automatic calculation of cut positions by means of minimizing a

distance measure. 52
5.10 Distance measure for the main spindle template as function of the shifting lag. . 53
5.11 Distance measure as function of lag for the X-axis forward template. 53
5.12 Removal of double indicated cut positions. 54
5.13 Evaluation of automatic segmentation of measurement data considering only

phase L2 of the current on the main power line. 55
5.14 Functional priciple of converting measurement data of non-controllable compo-

nents into a binary sequence. 58
5.15 Example of nominal cuts (red) and a non-nominal cut (green) within the mea-

surement data. 59
5.16 Schematic showing the lenghtening of the class sequence by copying the nominal

class of the left neighbour of each non-nominal cut. 60
5.17 Evaluation of automatic segmentation of measurement data considering all three

phases of the main power line as well as the three non-controllable components. 63
5.18 Example for detection of closely lying cuts. 64
5.20 Histograms of class distributions within created label sets of the three test cycle

runs. 66

6.1 Example of a larger time series containing multiple instances of the four example
patterns. 70

6.2 Four different kinds of example patterns or templates that need to be classified
within a larger time series by template matching. 70

6.3 Calculation of euclidian distance and DTW distance of two time series. 73
6.4 Calculated distance matrix between two different time series x and y. 74
6.5 Effect of bounding conditions on the warping path. 75
6.6 Example showing the cross-correlation function Rfg(τ) of the two continuous

functions f(t) and g(t). 77
6.7 Difference between arithmetic averaging and shape averaging of two sequences. . 81
6.8 Schematic showing pairwise averaging of two sequences in each iteration. 82
6.9 Accurate shape averaged sequence of two original signals and same sequence after

cubic spline interpolation. 85
6.10 Schematic of the template averaging algorithm. 87
6.11 Resulting averaged template of the accurate shape averaging algorithm for se-

quences of class 0. 89
6.12 Resulting averaged templates of the accurate shape averaging algorithm for

sequences of classes 4 and 5. 90
6.13 Schematic of the template matching classifier algorithm. 92
6.14 Overview of freely selectable parameters and possible parameter values for both

DTW classifier and cross-correlation classifier. 94
6.15 Classification accuray η of the classification based on DTW distance with globally

contrained warping path. 96
6.16 Classification accuracy η of the classification based on cross-correlation of the

templates with the subsequences of the test set. 97

VII

6.17 Classification accuray η of the classification based on DTW distance with globally
contrained warping path. 98

6.18 Classification accuracy η of the classification based on cross-correlation of the
templates with the subsequences of the test set. 99

6.19 Confusion matrix for the optimal DTW classifier. 105
6.20 Confusion matrix for the optimal cross-correlation classifier. 106

7.1 Two dimensional feature space with samples from example dataset and decision
boundary. 111

7.2 Flowchart of the basic process steps for machine learning, model training, evalua-
tion and testing. 111

7.3 Difference between a smooth decision boundary and a rough decision boundary
as result of model overfitting. 112

7.4 Illustration of the prediction phase of a feature-based classifier. 113
7.5 Principle of k-nearest-neighbours classification. 115
7.6 Decision boundary (magenta line) created during training of a 1-nearest-neighbour

classifier. 116
7.7 Principle of sequential feature space splitting during training of a decision tree

classifier. 117
7.8 Resulting decision tree after training on the above example dataset. 118
7.9 Illustration of class prediction of a test sample xt with a decision tree. 119
7.10 Principle of bootstrap aggregating. 120
7.11 Principle of support vector machines on linearly separable classes. 124
7.12 Principle of stochastic gradient descent for minimizing a cost function J(w). . . 128
7.13 Estimation of likelihoods p(c = j|xt) from the probability densitiy functions of

features. 131
7.14 Flowchart of the feature extraction algorithm. 134
7.15 Overall workflow of the feature based classification in Orange3. 139
7.16 Standardization of an unequally scaled dataset. 140
7.17 Normalization subwidget in the preprocessing widget in Orange3. 141
7.18 Classifier performance on both test and training set versus dimensionality p of

the data set clarifies curse of dimensionality. 142
7.19 Highly non-linear decision boundary as result of overfitting to the training data

in a high dimensional feature space. 143
7.20 Illustration of the number of samples close to the center of feature space compared

to samples at the edges of feature space. 144
7.21 Example for feature ranking by a decision tree. 146
7.22 Feature Selection subwidget in the preprocessing widget in Orange3. 147
7.23 Two-dimensional projection of a scatterplot of the training dataset. 149
7.25 Confusion matrix for the k-nearest-neighbours classifier. 157

8.1 Scatterplot of data samples illustrating outlier detection based on local density
estimation. 159

8.2 Different kind of synthetically modified segments in the test cycle measurement
data simulating machine faults. 163

VIII

8.3 Excerpt of the current consumption on phase L2 of the modified machine in
comparison to the non-modified machine. 165

8.4 Excerpt of the current consumption on phase L2 during spindle movement of the
modified machine in comparison to the non-modified machine. 165

8.5 Flowchart of the preprocessing part of the machine fault detection algorithm. . . 167
8.6 Flowcharts of the machine fault detection subroutines. 168
8.7 Principle of systematic machine fault detection by thresholding cluster shift. . . 169
8.8 Principle of random machine fault detection by outlier detection. 171
8.9 Determination of the cluster structure of outliers by finding outliers in the subset

of outliers. 171
8.10 Result of the first experiment for machine fault detection. 173
8.11 Result of the second experiment for machine fault detection. 174
8.12 Result of the fourth experiment for machine fault detection. 175
8.13 Result of the third experiment for machine fault detection. 176

A.1 Measured signal of the current flow within the three phases of the DMU main
power line during the complete first test cycle run. 208

A.2 Measured current consumptions of the different machine components during the
first test cycle run. 209

A.3 Measured signal of the current flow within the three phases of the DMU main
power line during the complete second test cycle run. 210

A.4 Measured current consumptions of the different machine components during the
second test cycle run. 211

A.5 Distance measures of different patterns as function of shifting lag expressed in
data samples of measurement data. 213
Distance measures of different patterns as function of shifting lag expressed in
data samples of measurement data. 214

A.6 Resulting averaged template of the accurate shape averaging algorithm for se-
quences of class 1. 216

A.7 Resulting averaged templates of the accurate shape averaging algorithm for
sequences of classes 2 and 3. 217

A.8 Resulting averaged templates of the accurate shape averaging algorithm for
sequences of classes 6 and 7. 218

A.9 Resulting averaged templates of the accurate shape averaging algorithm for
sequences of classes 8 and 9. 219

A.10 Resulting averaged templates of the accurate shape averaging algorithm for
sequences of classes 10 and 11. 220

A.11 Confusion matrix for the decision tree classifier. 221
A.12 Confusion matrix for the random forest classifier. 222
A.13 Confusion matrix for the AdaBoost classifier. 223
A.14 Confusion matrix for the support vector machine. 224
A.15 Confusion matrix for the stochastic gradient descent classifier. 225
A.16 Confusion matrix for the naive bayes classifier. 226

IX

List of Tables

3.1 Technical Properties of the DMU 100 Monoblock®. 11
3.2 Main power consumers within the DMU 100 Monoblock®. 17
3.3 Rated electrical characteristics of the main power consumers as documented in

the DMU 100 Monoblock® circuit diagram. 18

4.1 Overview of the measuring terminals on the EtherCAT-Bus. 25
4.2 Mapping between connected components and the measuring terminals. 26
4.3 Definition of possible machine states. 28
4.4 Desired positions and travels of the machine axes movements in the test cycle. . 31
4.5 Location of the three conducted test cycle runs within the measurement database. 34

5.1 Example for the segmentation and labeling of the measurement data section in
fig. 5.1. 42

5.2 Scalar values for recalculation of the class labels based on the switching states of
the three non-controllable components. 61

5.3 Statistics of the segmented and labeled dataset. 64

6.1 Extract from the output dataset created by the template matching classifier
algorithm. 91

6.2 Peak accuracies η and optimal width b of Sakoe-Chiba band for DTW and
cross-correlation classifiers for different combinations of parameter values. 100

6.3 Classification accuracy η of both classifiers for unconstrained DTW for different
combinations of parameters. 101

7.1 Example training set derived from a group of 1000 people with 600 males and
400 females. 131

7.2 Extract from the created training datatset. 135
7.3 Overview of extracted features in the time domain. 136
7.4 Overview of extracted features in the frequency domain. 138
7.5 Subset of 10 most relevant features which maximize information gain and are

choosen by the Orange3 feature selection algorithm. 148
7.6 Overview of manually-tuned hyperparameters of classifiers implemented in Orange3.151
7.7 Comparison of typical performance measures for the seven different classifiers. . 155

A.1 Full set of possible machine states. 199

X

List of Listings

4.1 SQL query for retrieval of measurement data from the database on the storage
server. 25

6.1 Pseudocode for a sequential scan search algorithm of query time series Q. 75

7.1 Pseudocode of stochastic gradient descent for minimizing a cost function by
iterative updating of the parameter vector. 129

A.1 Program code of the test cycle for the DMU 100 Monoblock® without activation
of additional components. 203

A.2 Program code of the test cycle for the DMU 100 Monoblock® with activation of
additional components like the Fume Separator Motor, both Coolant Pumps and
the Chip Conveyor Drive Motor. 205

A.3 Matlab source code of the graphical user interface for the assistant software used
for manual measurement data segmentation and labelling. 227

A.4 Matlab source code of the text cursor callback function used in the segmentation
GUI script. 240

A.5 Matlab source code of the plotting script for all measurement data. 241
A.6 Matlab source code of the function used to read out the CSV files containing

measurement data. 243
A.7 Matlab source code of the automatic segmentation and labeling algorithm. . . . 245
A.8 Matlab source code of the template creation via accurate shape averaging. . . . 250
A.9 Matlab source code of the shape-based template matching algorithm. 253
A.10 Matlab source code of the parameter studies for the template matching algorithm.255
A.11 Matlab source code of the feature extraction algorithm. 259
A.12 Matlab source code of the subroutine which conducts feature calculation for each

segment of time series data. 261
A.13 Matlab source code of the test set modification script. 263
A.14 Matlab source code of the plotting script for the modified test measurement data. 268
A.15 Matlab source code of the function used to read out the CSV files containing

modified test measurement data. 268
A.16 Matlab source code of the automatic segmentation and labeling algorithm for the

modified test measurement data. 270
A.17 Matlab source code of the feature extraction algorithm for the modified test

measurement data. 273
A.18 Python source code of the feature-based classifier training and hyperparameter

optimization. 275
A.19 Python source code of the feature based classifier evaluation. 278
A.20 Python source code of the machine fault detection algorithm. 280

XI

A.21 Python source code of the function computing the local outlier factor. 286

XII

Abbreviations

KDD Knowledge Discovery in Databases
ML Machine Learning
PR Pattern Recognition
AD Anomaly Detection
AC Alternating Current
DC Direct Current
D.C. Duty Cycle
N.A. Not Available
NC Numeric Control
CNC Computer Numeric Control
DMU DMU 100 Monoblock®, NC Milling Machine
RMS Root Mean Square
L1, L2, L3 Three phases of the power supply
C Programming Language
SQL Structured Query Language, Database language
SSH Secure Shell, cryptographic network protocol
GUI Software with Graphical User Interface
ASA Accurate Shape Averaging
DTW Dynamic Time Warping
DDTW Derivative Dynamic Time Warping
HDTW Hybrid Dynamic Time Warping
SDTW Scaled Dynamic Time Warping
CDTW Cubic-Spline Dynamic Time Warping
ICDTW Iterative Cubic-Spline Dynamic Time Warping
PSA Prioritized Shape Averaging
AWARD Adaptive Warping Window
DBA Dynamic time warping Barycenter Averaging
HMM Hidden Markov Model
DFT Discrete Fourier Transform
XCOR Cross-Correlation
SpADe Spatial Assembling Distance
KNN k-Nearest-Neighbour, Classifier
DT Decision Tree, Classifier
CART Classification and Regression Tree, Decision Tree Classifier
CHAID Chi-Square Automatic Interaction Detection, Decision Tree Classifier
ID3 Iterative Dichotomiser, Decision Tree Classifier
AdaBoost Adaptive Boosting, Meta-Algorithm for classification
SVM Support Vector Machine, Classifier

XIII

SGD Stochastic Gradient Descent, Optimization Method
FFT Fast Fourier Transform, Integral transformation between time

and frequency domain
AUC Area Under Curve, Performance Measure
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
FPR False Positive Rate
LOF Local Outlier Factor
API Application Programming Interface

XIV

1 Introduction

Computer numerical controlled machine tools, such as milling machines, injection moulding
machines, grinding machines, honing machines, welding machines, lathes and many more, play a
major role in the landscape of today’s manufacturing facilities for a wide range of products like
cars and aircrafts. These machines are highly complex mechatronical structures involving a large
amount of different components, such as drives, gear boxes, electrical controllers, motors and
pumps. Each individual component is prone to error, wear or even complete breakdown leading
to standstill of the entire machine or even worse the entire production line which the machine is
integrated in. This is accompanied by enormous cost and production delay of the product. Even
if the machine does not break down completely a faulty component or worn tool could decrease
energy efficiency of the machine and lower qualitiy of the machined product. Out of this arises
the need for continuous monitoring of the machine health condition. Of course, such monitoring
should occur in-process when the machine is running to prevent unnecessary downtimes for
inspection or repair. The machine operater can then always be informed about the current
health state of the machine and warned whenever the machine enters a critical state and is likely
to break down in the near future. To build according predictive maintenance systems additional
information about the machine, for example the operating states of internal components, is
needed. The first idea arising to gather this information is interfacing the machine controller
and retrieving the necessary information from it. However, current machine controllers very
often offer no easy way to access internal machine data and if they do so, interfaces are usually
proprietary which makes development of highly specialized software for every single type of
machine controller neccessary. Moreover, the data accessible by the internal machine controller
might not be sufficient for proper health condition monitoring of the machine as sometimes more
data is needed which requires application of additional sensors within the machine. Due to the
issues arising from direct access of the machine controller another more flexible solution has to
be found. The solution proposed in this work relies on the main power line of the machine to
gather information about its health condition. Instead of having the need for elaborate hardware
and software changes on the machine controller it is sufficient to connect a current measurement
system to the three main power lines of the machine tool to be able to predict its current health
state as well as detect possible malfunctions. This solution is microinvasive, requires no further
sensors for later health condition monitoring and, what is most important, it is a very cheap
and flexible solution. Under the assumption of having already trained a machine learning model
on a specific machine type this solution is applicable to any type of machine regardless of its
overall purpose or the present machine controller. Such a solution is especially intersting for
small companies owning only a few machines and searching for a cheap and easy way to apply
predicitve health monitoring solution.

Because of the great benefits of an easy-to-apply predicitive health monitoring system, this work
focuses on providing methods which help developing such a monitoring system. The developed

1

1 Introduction

methods comprise different kinds of pattern recognition models for supervised classification of
different operational modes of a machine tool as well as methods for unsupervised detection
of different possible machine faults. The topic of this work is a typical pattern recognition
task as specific patterns within a large amount of measurement data have to be found and
classsified. Pattern recognition itself is a subfield of machine learning which is a topic of computer
science dealing with algorithms that are able to learn from data. Learning means internal model
parameters are adopted to the data to model the underlying structure of the data. Such a model
can then be applied to a new dataset to automatically gain knwoledge from it.

Current research in the field of predicitve health monitoring focuses especially on detecting the
health state of a single component, such as a motor or a bearing. For instance [1–4] introduce
several methods for conditional health monitoring of bearing based on measurement of acoustic
emission. In [5] mechanical vibration is measured to predict bearing damage of a motor. Many
papers such as [6–9] focus on detection of faults in motors as these are the most common
component in manufacturing machines and robots. Detected faults are for instance broken
rotor bars, stator winding faults and motor bearing faults. Apart from machine tools condition
monitoring is conducted in other fields as well. For example [10, 11] develop condition monitoring
systems for wind turbine generators which are prone to similar errors like those occurring in
smaller electrical motors. Apart from predicting whether a component has a specific fault or
not a lot of papers in the field of predicitive maintenance focus on prediction of tool wear.
For instance [12–16] utilize different machine learning methods to predict continuous tool wear
of a cutting machine. Moreover, [17–23] offer only a small collection of papers covering this
topic as well. Searching for papers that focus on larger and more complex systems, such as
the entire machine tool, makes clear that most research of the past years has focused only on
single components which are easier to analyze, whereas nearly no research regarding entire
machine tools has been conducted. Moreover most of the research projects aim on detecting
machine faults rather than operational states of the machine. It should be pointed out that fault
prediction is mostly carried out as a supervised learning task meaning that possible fault states
are exactly known and data containing labeled faults is existent. Predicting machine faults by
unsupervised methods is less often found in literature. Finally, it becomes explicit that the idea
of using the current consumption of the machine as measurement quantity for determining the
operational and health state of a machine is not really wide-spread in the research community.
Instead, many papers focus on different measurement quantities, such as mechanic vibration,
acoustic emission, temperature or surface properties of the workpice, which requires installation
of additional sensors on the oberserved object. The only paper found during literature research
covering a similar topic to the one represented in this work is [24]. Machine learning methods
are utilized there to detect the current operational state of an injection molding machine based
on measurement of the current consumption of the machine. However, the operational modes
considered in this paper do not resolve single components within the machine, but only distiguish
between 7 more general operational modes of the machine. This shows the neccessity of research
focusing on prediction of operational states of indivudal components in a larger system, such as
a machine tool, and on resolving detected machine faults to the component level.

To close this gap in current research this work aims at developing classifier models for prediciting
which components within the considered milling machine of type DMU 100 Monoblock® are
currently activated. Instead of only deciding for one specific kind of algorithm the work aims

2

1 Introduction

at implementing a variety of different algorithms and comparing their performance on the
given classification problem. So, on the one hand classical signal processing methods like
cross-correlation and dynamic time warping are utilized and on the other hand modern machine
learning algorithms like support vector machine, decision tree and many more are applied to
the problem. Desired outcome of this part of the work is to develop at least one algorithm
that is able to detect which of the components contained in the machine are activated at any
given point in time. Apart from this, the second goal of this work is the development of an
algorithm that is able to detect faulty behaviour of the machine which differs from the machine
behaviour during the training phase of the algorithm. Rather than training an algorithm on
different known machine faults the detection shall be done in an unsupervised manner, which
means that no specific faults are known. The algorithm shall only detect deviations from
nominal beviour and inform the machine operator about this fault. For this purpose outlier
detection as a common method for anomaly detection as well as a newly proposed algorithm are
used. This new algorithm determines the machine health condition based on distances between
clusters in feature space. Aim of this work is not to provide a production-ready health condition
monitoring product for the considered milling machine. Instead fundamental research which
provides an insight into detection of operational states of individual components within a more
complex structure only based on information about the overall current consumption is conducted.
Additionally, valuable insights into the detection principle of different kinds of machine faults
are given.

The work is organized as illustrated in fig. 1.1. After this introduction follows a brief overview
of the theoretical concepts of knowledge discovery in databases, machine learning, pattern
recognition and anomaly detection in chapter 2. This chapter focuses only on the most basic
concepts as more detailed information about the theory behind algorithms and methods used
in the work is given in the first section of each chapter. This ensures a clean structure of the
work and enables the reader to read individual chapters without missing out the necessary
fundamentals for understanding a chapter. In chapter 3 follows a detailed analysis of the milling
machine which is the object of research in this work. The internal structure of the machine is
examined and individual components which influence current consumption on the main power
line are analyzed. In chapter 4 measurements on the main current line are conducted providing
the training and test datasets which are needed for the later classsification of machine states.
Those states are also defined in chapter 4 as well as a special machine program which enables
the creation of a measurement signal that optimally isolates the impact of different internal
components of the machine onto the main current consumption. Subsequently, chapter 5 covers
the problem of segmenting the measurement dataset. As the measurement data is one single
time sequence containing all information about the machine behavior this information needs to
be extracted by appropiately segmenting the time sequence into smaller subsequences. Moreover
these segments need to be labeled. For this purpose a Matlab GUI tool which enables the
user to manually segment and label the measurement data is initially developed. Second, a
fully automated approach for this issue which is much faster and more reliable is developed.
After successfully preparing the measurement data chapter 6 and chapter 7 focus on the actual
classification task. Both chapters deliberately have a very similar structure which makes clear
that both chapters cover the same problem only featuring different methods. Chapter 6 classifies
different segments of the measurement data directly in the time domain by comparing each

3

1 Introduction

segment with a previously generated template. In contrast, chapter 7 classifies segments by means
of modern machine learning algorithms such as k-nearest-neighbor, decision tree, random forest,
support vector machine and so on. After developing and evaluating classsifiers for machine state
prediction the problem of machine fault detection is covered in chapter 8. Datasets representing
different machine faults are synthetically generated and acquired on the slightly modified milling
machine and algorihtms are developed to detect these faults.

Machine Tool Analysis

Data Acquisition

Segmentation & Labelling

Training Data Test Data

Classifier

Training

1 0 2 0 3

Evaluation

1 0 3 0 3

Score

0 % 100 %

Classification

Train

Test

x

x

Outliers

Test

Machine Fault Detection

Cluster Shifting Outlier Detection

Figure 1.1: Overview of the workflow of the subsequent work.

4

2 Theoretical Concepts

This chapter gives a brief introduction into the concepts of knowledge discovery in databases,
machine learning, pattern recognition and anomaly detection. Aim of this introduction is to
clarifiy the differences between those disciplines – as they are often confused – and the terms
used analogously and to provide a useful basis for understanding the analysis following in this
work. The topics are only covered briefly as a complete introdution would burst the limits of this
chapter. More detailed foundations to the individual disciplines are presented in the individual
theory sections of the following chapters.

2.1 Knowledge Discovery in Databases

The concept of Knowledge Discovery in Databases (KDD) was first introduced in [25] and
describes a field of computer sciences which is focused on extraction and generation of new
knowledge from large datasets. Such knowledge can be patterns which are new, universal, useful
and comprehensible. Given for instance a dataset containing the electrical energy consumption
of a city over a period of a month, the KDD process can be used to gather knowledge from
that data. It might be found that energy consumption is usually higher during daytime than
during the night and that there are times during the day, usually in the morning and during
lunch time, when the consumption peaks. These insights are the actual knowledge gathered
through the application of the KDD process. Because of the large growth of data stored in online
databases over the last decades KDD is one of the ermerging technologies nowadays and yields
large benefits for multiple different application fields such as business [26, 27], health care [28,
29], manufacturing technology [30–32], fraud detection [33–35], criminal investigation [36, 37],
bio informatics [38, 39] and many more. The term KDD is often used analogously to the term
Data Mining. However KDD comprises additional steps of data acquisition, data selection, data
preprocessing and later interpretation of results while Data Mining only refers to the analysis of
already preprocessed datasets. Figure 2.1 shows the typical steps of a KDD process. This process
starts off with a dataset which might contain a large amount of data. To focus the knowledge
extraction process often only a subset of this dataset is selected. For instance, the dataset could
contain the energy consumption of a city over a period of ten years, however to generate a
report for the recent year only data of this year is needed and is therefore selected to go into
the next process step of preprocessing. Here, the data is cleaned meaning noise is removed
from the data and missing values are handled. The next step comprises the transformation
of the preprocessed data. This involves for instance rescaling of the data, data reduction and
projection into lower dimensions. Data reduction can be done by feature extraction which means
alternative quantities (features) are created, which represent the underlying data while having a
much lower complexity than the data itself. From the set of features a selection can be made to
reduce the amount of data further. After this, the actual knowledge generation or extraction by

5

2 Theoretical Concepts

means of Data Mining takes place. Here, different algorithms, such as decision trees or neural
networks can be applied to the reduced data to find patterns within the data or understand
the underlying structure of the data. The found knowledge is then evaluated and interpreted.
The last step of the KDD process is acting on knowledge, which means further actions are
carried out based on the findings of the prior process steps such as reporting to intersted parties,
documentation or comparison to prior knowledge gathered from the dataset. KDD is an iterative
process and the mentioned process steps can be repeatedly conducted in a loop. For instance, it
can be neccessary to tweak model parameters in the Data Mining step based on results of the
evaluation step. [25, 40]

Data Subset Preprocessed
Data

Transformed
Data

Patterns KnowledgeDataset

Selection Preprocessing Transformation Data Mining Interpretation

Figure 2.1: Overview of steps composing the KDD process. [25]

2.2 Machine Learning

Machine Learning (ML) is another term for the above mentioned Data Mining step in the
KDD process. It was introduced first in [41] and is a subfield of computer sciences dealing with
algorithms that learn from data, meaning they are able to conduct data-driven predictions or
decisions without the need for explicit programming. This is done through building a model
containing a set of parameters which are fit to input or training data. The model is then
evaluated on a different dataset and can be used for making predictions or decisions based on
new data, the so called test data. So the main purpose of machine learning within the KDD
process is discovery of patterns or describing the underlying structure of the training data which
both can be seen as gaining knowledge from the dataset. [25, 42]

For the purpose of discovering new patterns and describing the structure of data multiple
different machine learning methods have been developed, such as classification, regression and
clustering. Classification is a task where the machine learning algorithm has to built a model
which maps input data to a specific category or class within a finite set of possible classes.
Regarding the example above classification could involve categorizing individual consumers in
a city based on their average monthly energy consumptions into the three categories single
household, family household and factory. The model learns to distiguish between these classes
based on training data which consist of labeled examples. In this case the training data could
be a table containing the average monthly energy consumption of a consumer and the type or
class of the corresponding consumer. The model tries to find a correlation between the type of
consumer and its average monthly energy consumption. This model describes the structure of
the training data and is able to predict the unkown type of consumer within a new unlabeled
test dataset based on only presenting a monthly energy consumption to the classification model.

6

2 Theoretical Concepts

Regression describes a task where the machine learning model has to map the input data to a
real valued (continouus) output variable. A regression model fit to an input dataset can be used
to predict the values of the outcome variable for a set of unkown test data. Considering the
energy consumption example regression could be used to map the number of people within a
household to its average monthly energy consumption. So by creating a regression model for this
case the correlation between the feature of number of people in the household and the monthly
energy consumption as continouus outcome variable is estimated. If now a new household
subscribes to the energy provider the provider can predict its monthly energy consumption by
only asking for the number of people living in the household. Clustering is another machine
learning task which primarily aims at discovering the underlying structure of the input data
by means of aggregation. The clustering process groups input data into different categories or
clusters. Important difference to classification is the fact that the input data is not labeled.
So the cluster algorithm does not know which classes exist in the input dataset, but tries to
determine this on its own. Given the energy consumption example a cluster algorithm could
look at the average monthly energy consumption of each household or factory in a city. Without
knowing whether a household is a single household, a family household or a factory the cluster
algorithm will find that there exist three categories in the training data which are characterized
by very similar energy consumptions within each category but very different energy consumption
between the categories. It is now task of the human operator to interpret the meaning of the
found clusters. Apart from the three described methods of machine learning there exist more like
dependency modeling, summarization or change detection which have different goals. However
one can find that the majority of machine learning problems can either be solved by classification,
regression or clustering. [25, 40]

Above another criterion for categoirzing different machine learning methods is implicitly intro-
duced. It can be distiguished between supervised and unsupervised machine learning methods.
Supervised learning refers to all methods involving a labeled training dataset, where desired
outcomes (labels) are assigned to each sample of the training dataset. The machine learning
model learns during training the correlation between the input data and the desired output
label and can then apply a new label to unseen test data in a later prediction step. Examples
for supervised learning are classification and regression. On the opposite to that unsupervised
learning is based on unlabeled training data. So it is not known, which desired outcome belongs
to the samples of the training dataset. Therefore unsupervised machine learning models usually
do not aim at prediciting any outcome for testdata, but rather aim at describing the structure
of the input data as it is done for instance during clustering. These methods are called unsu-
pervised, because there is no way to verify if the machine learning model represents the input
data appropiately. Besides supervised and unsupervised learning there is a third category called
semi-supervised learning. Semi-supervised learning regards to datasets where only a few samples
are labeled while the majority of samples is unlabeled. Usually one would first determine the
class labels of the unlabeled samples based on the labeled samples and then feed the now fully
labaled dataset into any supervised learning algorithm. [40, 43, 44]

As machine learning is the most important component of the KDD process research of the past
decades has focused on developing a large number of different algorithms which implement the
above described functionality for knwoledge extraction from datasets. Common algorithms are
the k-nearest-neighbour algorithm, decision trees, support vector machines and neural networks.

7

2 Theoretical Concepts

Despite haveing the same principle goal they operate differently and are very diverse by means
of computational expense, execution time and how well they are suited to a given dataset. A
more detailed description of different machine learning algorithms is given in the theory section
of chapter 7. [45]

2.3 Patterns and Pattern Recognition

To be able to define the field of Pattern Recognition (PR) it is necceassary to first understand
what a pattern is. A pattern can be defined as abstraction describing a physical object by
means of a set of measurements. These measurements are also called features. Typical patterns
are for example the scan of a fingerprint, a human face within an image, a handwritten letter,
a gene sequence within the human DNA, a recorded spoken word, financial transaction data
representing a normal transaction or a fraud, a word as sequence of characters within an email or
a set of quality metrics of a machined workpiece. Besides that there are many more examples for
patterns, as nearly every object in the phyisical world can be seen as pattern, when appropiate
measures for describing the object are found. [44, 46, 47]

The term pattern recognition is sometimes used in exchange to machine learning [45], however it
is more appropiate to define pattern recognition as an independent research field as it comprises
other methods which are not related to machine learning. The goal of pattern recognition is
either discovery of new patterns or classification of known patterns in an input dataset. This
can be achieved by utilizing machine learning algorithms such as clustering, classification or
regression algorithms. However, and this is the major difference between machine learning and
pattern recognition, detection and classification of patterns can also be achieved by applying more
classical statistical or signal processing algorithms. So pattern recognition does not neccessarily
involve a machine learning component, however machine learning is provides great algorithms
for pattern recognition and can significantly boost performance of a pattern recognition system.
[48]

Possible application for pattern recognition are numerous. They are found for example in
the healthcare industry for computer-aided diagnosis like cancer screening, in face recognition
systems, fingerprint sensors in mobile devices, handwriting recognition, licencse plate recognition,
speech recognition and email spam filtering. [49, 50]

2.4 Anomaly Detection

Anomaly Detection (AD) is a special classification problem that tries to find abnormal behaviour,
so called anomalies or outliers in a dataset or datastream. Such anomalies are patterns in the
dataset which deviate from the patterns on which the classifier model is trained. The goal of
anomaly detection is to find those anomalies with a minimum error rate, meaning all occuring
anomalies should be detected, whereas no nominal patterns should be classified as anomalies.
Examples for anomaly detection are for instance fraud detection, network intrusion detection
[51] or health monitoring of technical systems. Detection of anomalies in any kind of system,

8

2 Theoretical Concepts

whether technical or not, has a high relevance as anomalies potentially carry a risk and could
lead to further damage in the system as well as additional cost due to system breakdown.

For finding anomalies multiple different methods have been proposed. The first one uses a
measure to calculate the similarity of a data sample to the other samples within the dataset.
This is a density based approach for outlier detection. As outliers deviate from the other patterns
in the dataset, they usually lie far away from any of their neighbouring samples within feature
space. So their surrounding has a low density while the surrounding of any nominal data sample
is characterized by a high density. By measuring this density and comparing the measure to a
threshold value the anomaly detection algorithm can distiguished between outliers and nominal
samples. Measures are for instance the distance to the k-nearest-neighbours [52] or the local
outlier factor (LOF) which takes the concept further and calculates a densitiy measure which
takes the average density in the environment of a data sample into account when computing the
density measure for that sample [53]. Other anomaly detection techniques make use of classifier
models such as slightly modified support vector machines which distiguish between nominal
data samples and abnormal samples [54]. All these methods only detect individual outliers that
represent rare events which only occur once. However another class of anomaly creates multiple
abnormal data samples which are similar to each other, but do not refer to any known pattern.
As example for this kind of anomaly one could imagine a temperature sensor which breaks
down. After break down all subsequent measurement values differ by the same amount from
values measured by the fully functional sensor. So when analyzing the dataset one could see two
clusters in the dataset. One containing all datasamples of the operational sensor and one all
samples which were measured by the broken down sensor. By utilizing clustering algorithms
like k-means such clusters can be identified and labeled as anomaleous [55, 56]. Besides these
techniques there exist many more such as statistical outlier detection, correlation based outlier
detection, fuzzy based outlier detection or replicator neural networks. [57, 58]

9

3 Machine Tool Analysis

The following chapter aims to give a brief overview of the DMU 100 Monoblock®, which is
subject of the following studies. To this first the most important performance parameters of
the machine are being described and afterwards a deatailed summary of all contained electrical
power consumers within the machine is given. The main purpose of this chapter is to gain
domain specific knowledge, which is essential for later data analysis and classiciation. This is
an important step, because without comprehensive understanding of the machine’s internal
structure no expedient conduct of the subsequent analysis tasks is possible.

3.1 Key Features of the Machine

The DMU 100 Monoblock® standing in the Institute of Machine Tools and Production Technology
at the TU Braunschweig is a five-axis CNC machining center having a 3D contouring control
of type Heidenhain iTNC 530, an automatic tool changer for up to 32 different tools as well
as miscellaneous additional features like a laser measurement and tool break detection system
by Blum-Novotest, a fume separator, an overhead shower coolant system and a chip conveyor.
Figure 3.1a shows the machine without it’s casing and any external machine components.
Moreover the definition of the machine’s coordinate axes is being shown, whereby the arrow tips
point in positive axis directions. In contrast fig. 3.1b depicts the machine including it’s casing,
the machine controller and additional external components like the chip conveyor or the coolant
tank with integrated coolant pumps. A detailed summary of the machine’s technical performce
parameters can be found in table 3.1. [59]

3.2 Functional Modules of the Machine

The sole knowlegde of the performance parameters shown in table 3.1 is not sufficient for
conducting any of the following analysis tasks. Therfore further examination of the machine’s
internal structure is necessary. Because of the later classification of the machine states being
based on measured electrical quantities of the machine’s main power line, it is essential to know
which individual electrical power consumers are built into the machine and what rated electrical
parameters they have. This includes rated voltage, rated current and rated power consumption.
In order to conduct this analysis systematically, the machine is being divided into individual
functional modules. These modules are the media supply unit, the coolant system, the control
cabinet heat exchanger, the chip conveyor, the cooling unit, the fume separator, the tool changer,
the main spindle and axes drives, the NC dividing attachment as well as any electrical consumers
hooked up to the 24 V-low-voltage supply. The arrangement of those components within the

10

3 Machine Tool Analysis

Table 3.1: Technical Properties of the DMU 100 Monoblock®. [59, 60]

Component Property Unit Value

X-/Y-/Z-Axis Max. Travel mm 1150/710/710
Rapid Traverse / Max. Feed Rate mm/min 30000
Max. Acceleration m/s2 5/5/4
Max. Feed Force (100 % D.C.) kN 10/10/15
Position Sensor Resolution mm 0.001

Main Spindle Max. Power (40 %/100 % D.C.) kW 35/25
Max. Torque (40 %/100 % D.C.) N m 119/85
Tool Fixture Type SK 40

Swivel Head (B-Axis) Max. Travel ° 150 (−120 . . .+ 30)
Rapid Traverse Rate min−1 35
Max. Acceleration °/s2 2300
Min. Swivel Time s 1.5
Max. Holding Torque with Clamping N m 3500
Nomimal Torque N m 1244

Rotary Table (C-Axis) Max. Travel ° infinite
Rapid Traverse / Max. Feed Rate min−1 30
Max. Acceleration °/s2 1200
Max. Torque (40 % D.C.) N m 2600
Diameter mm 800
Dimensions Rigid Table mm 1500× 800
Max. Workpiece Weight kg 800

Tool Changer Tool Fixture Type SK 40
Tool Magazine Type Disc Magazine
Number of Magazine Places – 32
Clamping-to-clamping Time s 10

NC Dividing Attachment Centre Hight mm 160
Rapid Traverse / Max. Feed Rate min−1 80
Max. Holding Torque with Clamping N m 500
Holding Torque N m 120

Others Machine Weight kg 10700
Coolant Tank Volume L 250
Controller Type Heidenhain iTNC 530
Chip Conveyor – X

Mist and Fume Separator – X

BLUM Laser Tool Measurement System – X

11

3 Machine Tool Analysis

+C’

+Z

+B'

+X

+Y

(a) Front view without casing. Axes defini-
tions are shown.

1

2345

(b) Front view with casing. Control Stand (1), Coolant Sys-
tem (2), Chip Conveyor (3), Cabin (4), Tread Plate (5).

Figure 3.1: Front view of the DMU 100 Monoblock® with and without casing. [59]

machine can be seen in fig. 3.2. In addition fig. 3.3 shows deatailed views of the media supply
unit, the coolant system, the chip conveyor as well as the cooling unit.

As can be seen in fig. 3.3a, the media supply unit contains one hydraulic pump and three
lubrication pumps as electrical power consumers. Purpose of the lubrication pumps is the
distribution of lubricant within the machine. For instance the axis guidances and bearings are
being lubricated by the machine lubrication pump in regular intervals. The oil-air lubrication
pump serves the lubrication of air within the machine’s pneumatic system and the blower
air lubrication pump lubricates blower air, which can be alternatively activated for tool and
workpiece cooling instead of liquid coolant. The hydraulic pump being built into the media
supply unit as well serves the purpose of maintaing hydraulic pressure within the machine’s
hydraulic system. Whenever the presssure in the diaphragm accumulator drops below a specific
threshold the hydraulic pump is being switched on in order to increase hydraulic pressure. [59]

The coolant system depicted in fig. 3.3b contains multiple powerful electrical pumps that
transport coolant from the coolant tank into the machine. Coolant pump 1 provides coolant
for the internal cooling of suitable tools with channels for inner coolant supply. This pump
can be activated via the M7-command and stopped by a M9-command. By contrast coolant
pump 2 transports coolant from the coolant tank into the outer coolant cycle. Here coolant
is being sprayed onto the tool and workpiece through nozzles at the swivel head. This pump
can be switched on by the M8-command and similar to the inner coolant pump stopped by a
M9-command. Another pump built into the coolant system ist the coolant spray gun pump
which provides coolant for the manual coolant spray gun. Whenever the coolant spray gun is
being used by the machine operator, the coolant spray gun pump is automatically switched
on. The last pump depicted in fig. 3.3b is the pump for the overhead shower coolant system,
which serves the removal of chips from the tool changer door. This pump is optional and not
contained in the present version of the machine. Instead the overhead shower coolant system is

12

3 Machine Tool Analysis

1

2

3

4

5

6

7

8

Figure 3.2: Top view of the DMU 100 Monoblock®. Coolant System (1), Chip Conveyor (2), Control
Stand (3), Media Supply Unit (4), Cooling Unit (5), Tool Changer (6), Control Cabinet
Heat Exchanger (7), Control Cabinet (8). [61]

being supplied with coolant by both coolant pump 1 and coolant pump 2. [59]

Another important functional module of the machine is the chip conveyor shown in fig. 3.3c,
which has the purpose of removing chips from the work area within the machine and transporting
them into a container. The chip conveyor contains primarily two large electrical power consumers,
first the drive motor for the conveyor belt and second the chip conveyor lifting pump which
pumps coolant from the machine cabin into the coolant tank on the outside of the machine.
The chip conveyor drive motor can be explicitely activated via a M70-coammand and stopped
via a M71-command. However the chip conveyor lifting pump is being activated automatically
whenever the coolant level within the chip conveyor’s floor tub rises above a specific threshold
value. [59]

Figure 3.3 shows the machine’s cooling unit that serves the cooling of the main spindle. The
unit contains a compressor, a cooling fan and a feeding pump for the coolant. A direct control
of the cooling unit is not possible as it has it’s own independent temperature controller. [59]

Further important, but not shown machine components are the fume separator, the control
cabinet heat exchanger, the tool changer, the NC dividing attachment and other low-voltage

13

3 Machine Tool Analysis

1 2

34

(a) Media Supply Unit. Machine Lubrication
Pump (1), Blower Air Lubrication Pump (2), Oil-
Air Lubrication Pump (3), Hydraulic Pump (4).

1

2 3 4

(b) Coolant System. Coolant Pump
1 (for inner cooling) (1), Coolant
Pump 2 (for outer cooling) (2),
Coolant Spray Gun Pump (3), Chip
Rinsing Pump (N.A.) (4).

1

2

(c) Chip Conveyor. Chip Conveyor Drive Motor (1), Chip
Conveyor Lifting Pump (2).

(d) Cooling Unit. Contains Compres-
sor, Cooling Fan and Feed Pump.

Figure 3.3: Detailed views of the most important subsystems of the DMU 100 Monoblock®. [59, 61]

14

3 Machine Tool Analysis

consumers. The fume seperator transports coolant vapour and other gasses that are generated
under certain process conditions and might have negative effects on the machine operator out of
the machine cabin and filters those. The fume separator can be activated by a M324-command
and is being stopped by a M325-command. The control cabinet heat exchanger is being used for
air conditioning of the control cabinet that can be found on the machine’s rear side. Similar to
the cooling unit for the main spindle the control cabinet heat exchanger works self-sufficient and
can not be controlled directly via the machine controller. The tool changer is being activated
whenever the controller asks for exchange of the tool clamped in the main spindle. In this case
the tool changer door within the machine’s cabin is being opened by hydraulic actuators and one
of the two turn table magazines, depending on the location of the tool to be exchanged, extends.
The tool curently clamped in the main spindle is being loosened and taken from the spindle into
the magazine. Subsequently the new tool is being taken from the magazine and clamped in the
main spindle. Another external component that can be built into the machine is the NC dividing
attachment which allows for horizontal clamping and rotational movement of workpieces. This
makes possible combined turning and milling of the same workpiece in one clamping. The NC
dividing attachment is being screwed on the machine’s table and is an optional module that
is not available at the present version of the machine. Beyond the components listed above
any electrical power consumers which are hooked up to the 24 V-low-voltage supply need to be
considered. Examples for such consumers are the machine lights, the LCD panel of the machine
controller as well as the rotating inspection window in the machine’s cabin door. [59]

Finally the main spindle and axes drives have to be taken into account. These are the most
important components refered to the analysis of elelectrical quantities within the machine’s main
power line as they are very powerful and therefore have the most impact on the current signal
on the main power line. The spindle and axes are being controlled by the machine controller
via downstream connected drive regulators and can therefore be moved by explicit machine
controller commands. [59]

3.3 Electrical Power Consumers within the Machine

After the internal structure of the machine and the functionality of any external components is
now clear, the following section gives a more deatailed insight into the electrical characteristics
of the individual components within the machine. Table 3.2 contains any of the electrical
power consumers described in section 3.2 as well as the part ID of the corresponding power
consumer in the circuit diagram in the machines’s documentation and the ID of the circuit
diagram sheet on which the according consumer can be found. Moreover the consumers are
given unambiguous names that are used throughout the whole work. Beyond that the type of
the consumer and if available M-codes for both activation and stopping of the corresponding
component are specified. The last column is important for data collection in chapter 4 and
describes whether a component is explicitely controllable via controller commands (controllable)
or being controlled independently of the machine controller and therefore it’s state is unknown.
To retrieve the current operating state of self-sufficient components a measurement of their
electrical quanitites is necessary. Therefore the test-mode for this components is being specified
as measured. Furthermore there are components built into the machine that have a constant

15

3 Machine Tool Analysis

operating state. For instance the machine lights or the controller’s LCD panel are normally
always switched on. These components are specified as constant on respectively constant off in
case of the tool magazine drives, which are not being used as will be explained later.

The electrical operating parameters of the power consumers listed in table 3.2 can be found in
table 3.3. In case of the consumer being supplied by an alternating current (AC) the number of
phases, the permissible frequency of the alternating current as well as the circuit configuration
is being specified. Circuit configuration means whether a three-phase AC consumer is being
connected to the supply in a star or delta circuit. Apart from that table 3.3 contains the rated
voltage, rated current and rated power for any of the consumers within the machine. In addition
to that a rotational speed is given, if the consumer is a motor or pump.

Conclusively the electrical power consumers contained in the DMU 100 Monoblock® are being
depicted in fig. 3.4 assigned to their superordinate functional modules. The labels to the left of
some of the components indicate how the corresponding component can be controlled. In case of
the five axes this can be achieved by executing a command for a linear interpolated movement of
any of the axis. The main spindle drive, the coolant pumps 1 and 2, the fume separator and the
chip conveyor drive motor can be switched on explicitely as well by according M-commands. If
a component within the scheme in fig. 3.4 has no such label the component is self-sufficient and
can not be controlled directly. As mentioned it’s operating state therefore needs to be measured
by a current sensor. Components which are not being examinde in the further analysis are being
left in a constant operating state indicated by a label stating either on or off.

16

3 Machine Tool Analysis

Table 3.2: Main power consumers within the DMU 100 Monoblock®. Sheet and Part ID refer to the
DMU circuit diagram [61].

ID Sheet ID Part ID Part Name Type M-Code Test-Mode

0 A0-09/001 -A0-09E51 Machine Light Roof Light constant on
1 A0-09/001 -A0-09E61 Machine Light Side Light constant on
2 A4-01/001 -A4-03P21 Control LCD Panel LCD constant on

3 B0-01/001 -B0-01M21 Hydraulic Pump Motor measured
4 B1-01/001 -B1-01A21 Machine Lubrication Pump Motor measured
5 B1-02/001 -B1-02A21 Oil-Air Lubrication Pump Motor measured
6 B1-10/001 -B1-10A21 Blower Air Lubrication Pump Motor measured
7 B2-01/001 -B2-01M21 Coolant Pump 1 (for inner cooling) Motor M08 / M09 controllable
8 B2-01/001 -B2-01M41 Coolant Pump 2 (for outer cooling) Motor M07 / M09 controllable
9 B2-08/001 -B2-08M21 Coolant Spray Gun Pump Motor constant off
10 B4-01/001 -B4-01M21 Fume Seperator Motor Motor M324 / M325 controllable
11 B5-01/001 -B5-01E21 Control Cabinet Heat Exchanger Motor measured
12 B5-10/001 -B5-10M21 Cooling Unit: Compressor Motor measured
13 B5-10/001 -B5-10M41 Cooling Unit: Cooling Fan Motor measured
14 B5-10/001 -B5-10M61 Cooling Unit: Feed Pump Motor measured
15 B6-04/001 -B6-04M51 Chip Conveyor Drive Motor Motor M70 / M71 controllable
16 B6-06/001 -B6-06M21 Chip Conveyor Lifting Pump Motor measured
17 B8-01/001 -B8-01M41 Rotating Inspection Window Motor constant on

18 C1-02/001 -C1-02M31 Main Spindle Drive Motor M03 / M05 controllable

19 D1-01/001 -D1-01M21 X-Axis Drive Motor controllable
20 D1-11/001 -D1-11M21 Z-Axis Drive Motor controllable
21 D1-21/001 -D1-21M21 Y-Axis Drive Motor controllable
22 D2-01/001 -D2-01M21 C-Axis Drive Motor controllable
23 D3-01/001 -D3-01M21 B-Axis Drive Motor controllable
24 D5-01/001 -D5-01M21 NC Dividing Attachment Motor constant off

25 F8-11/001 -F8-11M71 Tool Magazine Drive 1 Motor constant off
26 F8-15/001 -F8-15M71 Tool Magazine Drive 2 Motor constant off

17

3 Machine Tool Analysis

Table 3.3: Rated electrical characteristics of the main power consumers as documented in the DMU
100 Monoblock® circuit diagram [61].

ID Current Phases Circuit Voltage Frequency Current Power Speed

0 DC – – 24 V – N.A. 65 W –
1 DC – – 24 V – N.A. 65 W –
2 DC – – 24 V – 0.78 A 16.8 W –

3 AC 3 star 400 V 50/60 Hz 3.70 A 750 W 1380 min−1

4 AC 1 – 230 V 50/60 Hz 0.46 A 105 W N.A.
5 AC 1 – 230 V 50/60 Hz N.A. N.A. N.A.
6 AC 1 – 230 V 50/60 Hz 0.65 A 144 W N.A.
7 AC 3 star 400 V 50/60 Hz 1.57 A 750 W 2753 min−1

8 AC 3 star 400 V 50/60 Hz 7.00 A 3000 W N.A.
9 AC 3 star 400 V 50/60 Hz 1.57 A 750 W 2753 min−1

10 AC 3 star 400 V 50/60 Hz 2.10 A N.A. N.A.
11 AC 1 – 230 V 50/60 Hz 4.20 A 580 W N.A.
12 AC 3 star 400 V 50/60 Hz 2.20 A 1280 W N.A.
13 AC 3 star 400 V 50/60 Hz 0.26 A 110 W N.A.
14 AC 3 star 400 V 50/60 Hz 2.20 A 850 W N.A.
15 AC 3 star 400 V 50 Hz 0.88 A 250 W 13.5 min−1

16 AC 3 star 400 V 50 Hz 4.60 A 2200 W 2850 min−1

17 DC – – 24 V – 0.66 A 16 W 2300 min−1

18 AC 3 star/delta N.A. N.A. N.A. N.A. N.A.

19 AC 3 N.A. N.A. N.A. 9.10 A 5700 W 3000 min−1

20 AC 3 N.A. N.A. N.A. 15.00 A 9900 W 3000 min−1

21 AC 3 N.A. N.A. N.A. 9.10 A 5700 W 3000 min−1

22 AC 3 N.A. N.A. N.A. 6.10 A 2090 W 4500 min−1

23 AC 3 N.A. N.A. N.A. 6.10 A 2090 W 4500 min−1

24 AC 3 N.A. N.A. N.A. 4.00 A 1900 W 3000 min−1

25 DC – – 24 V – 1.60 A 42 W 52 min−1

26 DC – – 24 V – 1.60 A 42 W 52 min−1

18

3 Machine Tool Analysis

Figure 3.4: Functional modules and main power consumers of the DMU 100 Monoblock®. Inputs and
outputs show whether a module is actively controllable during testing, is staying in a
constant state or is controlled automatically and its state being measured. [61]

19

4 Data Acquisition

The aim of the following chapter is the acquisition of measurement data which is the necessary
basis for creation of the dataset for classifier design in the forthcoming chapters of this work.
Falling back upon the now fully understood milling machine first a brief overview of the data
that’s required to being measured is given. The available measurement quantites are being
described and a choice of quantities needed for further analysis steps is being made. Afterwards
the data acquisition toolchain is being explained. This includes a deatailed description of the
measurement hardware being used in this work as well as bus and network systems required
for data transfer and storage. In the following section the possible different switching states of
the machine components are being examined and ordered systematically. In this essential step
the possible classes as output variables of the later classification task are being defined. After
definition of the classes a test program for the milling machine is being developed that controls
the machine and allows for acquisition of training data for the different machine states defined
before. In the last section of this chapter the test cycle is being run and the measurements are
being conducted. Results of the data measured during the test cycle are being presented and
descriped in detail.

4.1 Overview of the Measurement Data

In order to fully understand and model the machine behaviour which is crucial for designing and
evaluating a classifier in the subsequent project states a datatset containing all the information
about the machine behaviour needs to be created. The first step to achieve this is to program
the machine in a particular way so that switching states of all the different machine components
follows a well known sequence. This allows to model the correlation between machine component
states and patterns wihtin the measured current flow in the machine’s main power line. One
problem with this approach is the missing contrallability of some of the machine components via
the machine controller. For example the control cabinet heat exchanger has it’s own temperature
controller and therefore works indepentend of the main machine controller. This makes it
impossible to know the exact component state from only programming the machine via the
machine controller. Apart from the control cabinet heat exchanger the chip conveyor lifting
pump, the cooling unit, the hydraulic pump and the three lubrication pumps work self-sufficient
so their states need to be measured as well. Moreover the eletrical quantities on the machine’s
main power line are being monitored in order to find out the correlation between component
states and patterns within the machine’s current signal. Figure 4.1 shows, which measurands are
being acquired during these measurements in order to determine the current component’s state.
These are current i(t) and power factor cos(ϕ) for any of the monitored machine components
and voltage u(t) as well as active power P for the machine’s main power line. Because of the
fact, that the machine works on three-phase AC current, the measurements are conducted on

20

4 Data Acquisition

the three individual phases L1, L2 and L3. Only some of the components are connected to just
one phase, so that the eletrical quantities for this component need to be measured only on that
particular phase.

The three different colors of the measurands in fig. 4.1 illustrate whether the measurand is
being used in further analysis steps (green) or not (red). Because it is only necessary to know,
wheter the component is currently working or stopped, it is suffiecient to only look at the actual
component’s current consumption. In order to simplify the classification task, the chip conveyor
lifting pump, the hydraulic pump and the blower air lubrication pump are not taken into account
in the further classification problem. Ignoring these components though not being controllable
directly via the machine controller is possible because their state’s only depend on machine
actions that are directly controllabe via the machine controller. For example the chip conveyor
lifting pump is only activated, when the fluid level within the bottom coolant tank rises above
a specific value. If no collant is used, the chip conveyor lifting pump will never be activated.
The same applies for the hydraulic pump which is activated only on pressure drop within the
machine’s hydraulic system. If no hydraulic drives are being used, that means no tool change is
being issued via the controller, the hydraulic pump will not be activated. Finally the state of
the blower air lubrication pump directly relies on the usage of the compressed air gun. So if the
air gun is not used, the pumps’s state does not need to be taken into account in the furhter
analysis. This simplyfies the classifiaction task enormously as will be explained later in this
chapter. A special position is being held by the cooling unit because it’s state can be assumed
to be constant over time as will turn out in section 4.5. This allows for complete removal of the
cooling unit from the classification task because it’s state will always be the same, so that a
prediction of the component state is not necessary.

4.2 Data Acquisition Toolchain

The following section gives an overview of the toolchain for acquisition of the data being described
in section 4.1. This includes a brief description of the measuring hardware as well as the the
underlying network architecture for data transfer and storage. A flowchart of the toolchain can
be seen in fig. 4.2.

For monitoring the measurands descriped above the current and voltage of the different machine
components need to be measured. From these two measurands any other quantity like the
power or power factor can be derived. Current measurements on the main power line are being
conducted via current transformers of type GMW ASK 412.4 with a conversion ratio of 100 to
5, which means that a measurement current of 100 A leads to an output current of 5 A. Further
information of the current transformer can be found in the documentation [62]. In contrast the
current measurements of any other of the components listed in fig. 4.1 are being performed with
current transformers of type HOBUT 13 Series with a conversion ratio of 60 to 5. Particulars
about the current transformer can be found within the documentation [63]. Every current
transformer is conected to 3-phase power measuring terminals of type Beckhoff EL3403-0010.
These terminals allow for measurement of RMS-values of voltage u(t) and current i(t), active
power P , apparent power S, reactive power Q and power factor cos(ϕ) on all three phases of

21

4 Data Acquisition

Figure 4.1: Overview of different measurands within the acquired data. Red: Data is being stored in
the database but not used in further analysis. Green: Data is being stored and used in
furhter analysis. Blue: Data is being stored and used but component state is assumed
to being constant. Phase names refer to the input ports of the measurement terminals
rather than the actual machine phase which the components are connected to.

22

4 Data Acquisition

Figure 4.2: Flowchart of the data acquisition process as first step of the classification problem.

the three-phase supply with a resolution of 12 bit. The measuring cycle time is dependand on
the frequency of the measured signal, because a measurement value is being determined on each
period of the measurement signal. Given a supply frequency of approximately 50 Hz this results
in a measurement cycle time of 20 ms. Beyond that the mesurement terminals utilize additonal
low-pass and high-pass filters that are activated during the measurement. [64]

Figure 4.3 illustrates all different monitoring terminals built into the machine. It also shows the
terminal addresses on the bus and how voltage and current of the three different phases L1, L2
and L3 as well as the neutral conductor are connected to the terminals. The three terminals
with the addresses 3:1, 3:2 and 3:3 are used for other purposes and not considered any further.
The module to the left with address 3:0 is the EtherCAT-Coupler, that communicates with the
measurement software on the local server via the EtherCAT-Bus which is an ethernet like serial
communication bus for sensor and actor communication purposes in industrial applications.
Table 4.1 contains a more detailed description of the properties of the different measuring
terminals connected to the bus. Further information of the terminals can be found in the

23

4 Data Acquisition

corresponding datasheets [64–66].

Voltage
Current

L1

L2

L3

N

3:0 3:1 3:2 3:3 3:4 3:5 3:6 3:7 3:8 3:9 3:10 3:11

Figure 4.3: Different monitoring terminals on the EtherCAT-Bus. The eight terminals to the right are
3-phase power measuring terminals used for monitoring the electrical current consumption
of some of the components of the CNC milling machine.

Apart from the measuring terminal’s specification it is important to know, how the different
machine components listed in fig. 4.1 are connected to the terminals. This information is
contained in table 4.2. The main power line, chip conveyor lifting pump, cooling unit and
hydraulic pump are three-phase consumers and require three current sensors and a complete
measuring terminal for monitoring each. On the contrary the control cabinet heat exchanger
and the three lubrication pumps are connected to only one phase of the power supply so that in
theory three single-phase consumers could be connected to a single measurement terminal. To
avoid any problems due to signal interference all of the single-phase consumers are connected to
an individual measurement terminal, though. This leads to a higher realibality of the conducted
measurements. Figure 4.4 shows how to connect the current transformers for a three-phase AC
consumer to the three phases L1, L2 and L3 and the neutral conductor N of the power measuring
terminals. As can be seen a common neutral conductor is necessary and used as reference point
for any current and voltage measurements.

Returning to the data acquisition flowchart in fig. 4.2 the measurement data collected via the
power monitoring terminals is transfered over the EtherCAT-Bus to a local machine, which acts
as data collection server not only for the considered milling machine, but for terminals in other
machines and experiments connected to the EtherCAT-Bus as well. On this server a C-script
that communicates with the measuring terminals over the EtherCAT-Bus is being executed
via a remote procedure call within the transmission software implemented in Node.js. An
editable configuration file on that server allows the user to configure the collection script to new
measurement terminals on the EtherCAT-Bus. Among others this script contains information
about the terminal ID and address on the bus, the name of the measured quantity and the

24

4 Data Acquisition

Table 4.1: Overview of the measuring terminals on the EtherCAT-Bus.

Address Type No. Serial No. Description Measurement Range

3:0 EK1100 – EtherCAT-Coupler (2A E-Bus) –
3:1 EL3051 – 1-Channel-Analog-Input Terminal 4 . . .20 mA
3:2 EL3004 – 4-Channel Analog Input Terminal −10 . . .10 V
3:3 EL3004 – 4-Channel Analog Input Terminal −10 . . .10 V
3:4 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:5 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:6 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:7 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:8 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:9 EL3403-0010 38111106 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:10 EL3403-0010 37141511 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A
3:11 EL3403-0010 37141511 3-Phase Power Measuring Terminal 0 . . .500 V, 0 . . .5 A

Listing 4.1: SQL query for retrieval of measurement data from the database on the storage server.

SELECT Time, Value FROM Data WHERE Measurement_id = <id> AND Time BETWEEN <t1> AND <t2>

calibration factors for the current sensors. Any retrieved data is then written over the Internet
into a SQL-database that lies on a data storage server on a different physical machine.

From that database any measured data can be retrieved via an SQL query. For instance listing 4.1
shows how to query all measured data samples consisting of a unix timestamp and a measurement
value that lie in between of the two unix timestamps <t1> and <t2>. The parameter <id>
indicates what column in the database, that means which measurement quantity, shell be queried.
A different table within the same database contains the linkage between measurement ID and
the measured quantiy. This allows for faster queries as the processing of the integer value
measurement ID takes less time to query than the string containing the name of the measured
quantity.

The SQL query can be performed directly on the storage server over a SSH connection or
remotely via any suitable SQL client software like HeidiSQL [67] or the phpMyAdmin web client
[68]. Queried data samples can then be exported into a comma separated text file (CSV) which
can be loaded easily into MATLAB or Python for further processing like data visualization,
feature extraction and selection as well as designing a suitable classifier.

25

4 Data Acquisition

Table 4.2: Mapping between connected components and the measuring terminals.

Address Connected Phase Attached Component

Part ID Part Name

3:4 L1, L2, L3 – DMU Main Power Line
3:5 L1, L2, L3 12, 13, 14 Cooling Unit (complete unit measured)
3:6 L1 11 Control Cabinet Heat Exchanger
3:7 L1 4 Machine Lubrication Pump
3:8 L1 6 Blower Air Lubrication Pump
3:9 L1 5 Oil-Air Lubrication Pump
3:10 L1, L2, L3 3 Hydraulic Pump
3:11 L1, L2, L3 16 Chip Conveyor Lifting Pump

4.3 Definition of Machine States

After succesful retrival of the measurement data the next important step that needs to be
considered in the classfication task is the definition of the classes which are discrete states of the
output variable of the classification algorithm. These classes represent different combinations of
states of any of the machine’s components. As mentioned in section 4.1 some of the components
are being neglected in the definition of possible machine states respectively classes in order to
reduce the number of classes and hereby simplify the design process of a suitable classification
algorithm. The class is the target variable that needs to be estimated by the classifier in the
later prediction phase. With regard to the given problem the class represents a segment in the
measured data in which the machine state is constant, that means the machine’s components are
in a specific constant state. Estimating the class of a given time segment within the measured
test data means the state of any of the machine components is being estimated by the classifier.
If for instance class 1 as defined in table 4.3 is being estimated by the classifier one can assume
the control cabinet heat exchanger to be the only machine component being switched on while
any other component is switched off.

Table 4.3 contains a scheme showing how the machine states or classes are defined. The full
definition of classes can be found in appendix A.1. In total there are 96 different machine states
that are theoretically possible, because there are 11 machine components which can be controlled
directly via the machine’s controller and three machine components that work self-sufficient
and therefore are not directly controllable. This gives 23 = 8 possible combinations of states
for the non-controllable components and 12 possible switching states for the 11 controllable
components, where the first state means that none of the controllable components is switched
on. In any subsequent states one of the controllable components is switched on. For each of
the 12 states of the controllable components every eight possible states of the non-controllable
components need to be taken into account hence giving a total number of 12 · 8 = 96 different
machine states or classses. If any of the 15 controllable and 7 non-controllable components was
considered, this would give 16 · 27 = 2048 different states, which would lead to a much more

26

4 Data Acquisition

N

L3

L2

L1

Consumer L3
•

Consumer L2

•

Consumer L1

Figure 4.4: Current sensor wiring diagram after [64]. The current on the three consumer phases is
measured with current transformers. Those are connected to the three phases and neutral
conductor inputs of the measurement terminal.

complex clasification task.

As can be seen in table 4.3 as well, there are only two possible switching states for the machine
lubrication pump, the oil-air lubrication pump and the control cabinet heat exchanger, where 0
stands for the component being switched off and 1 for the component running. This is sufficient
as these components are either on or off. The situation is different with the main spindle and
the five different axis drives, because these components have continuous states, for example
the main spindle can run with any speed within the range of 0 min−1 to 18000 min−1. This
would result in an infinite number of possible machine states and would therefore be a regression
problem rather than a classsification problem. In order to reduce the number of possible states,
the main spindle’s rotational speed as well as the feed rates of the X-, Y-, Z-, B- and C-axis
are being discretized to two respectively three different states. For the main spindle state 0
means the spindle is stopped, whereas state 1 means the main spindle is rotating with a speed
of 10000 min−1. Any of the five machine axes has three possible switching states. In order to
represent these three states with binary input variables a technique called one-hot-encoding is
being utilized. Instead of allowing the categorial input variables 0, 1 and 2 the component’s
switching state is described with two binary input variables. Therefore any of the five machine
axes in table 4.3 has two corresponding columns representing the axis moving in either positive
or negative direction. If the input variables in both columns are 0 the corresponding axis is not
moving. If the value in the forward-column is 1 this means, that the axis is moving at a constant
feed rate of 12000 mm/min in the positive direction. Accordingly a 1 in the backward-column
of the axis stands for a motion with the same speed in the negative direction. A 1 in both
columns at the same times does not occur as it is obvious that the axis can not move forward
and backward simultaneously.

27

4 Data Acquisition

Table 4.3: Definition of possible machine states. Every machine state is a specific combination of
operating states of the different machine components and can be seen as individual class.

Controllable Non-Controllable
M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 1 0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 1 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 1 0 0 0 0 0 9
0 0 0 0 0 0 0 0 0 1 0 0 0 0 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 11

0 0 0 0 0 0 0 0 0 0 0 0 0 1 12
1 0 0 0 0 0 0 0 0 0 0 0 0 1 13
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 0 0 1 23

0 0 0 0 0 0 0 0 0 0 0 0 1 0 24
1 0 0 0 0 0 0 0 0 0 0 0 1 0 25
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 0 1 0 35

0 0 0 0 0 0 0 0 0 0 0 0 1 1 36
1 0 0 0 0 0 0 0 0 0 0 0 1 1 37
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 0 1 1 47

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

28

4 Data Acquisition

Table 4.3 (continuation) : Definition of possible machine states. Every machine state is a specific
combination of operating states of the different machine components and
can be seen as individual class.

Controllable Non-Controllable
M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0 0 1 0 0 48
1 0 0 0 0 0 0 0 0 0 0 1 0 0 49
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 1 0 0 59

0 0 0 0 0 0 0 0 0 0 0 1 0 1 60
1 0 0 0 0 0 0 0 0 0 0 1 0 1 61
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 1 0 1 71

0 0 0 0 0 0 0 0 0 0 0 1 1 0 72
1 0 0 0 0 0 0 0 0 0 0 1 1 0 73
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 1 1 0 83

0 0 0 0 0 0 0 0 0 0 0 1 1 1 84
1 0 0 0 0 0 0 0 0 0 0 1 1 1 85
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 1 1 1 1 95

4.4 Test Cycle Definition

In order to create a dataset of sufficient size for training of a classifier, the machine needs to
take on every machine state defined in section 4.3 several times and the corresponding current
flow on the three phases of the main power line needs to be measured. For achieving a high
predicition accuracy of the classifier, the training set should contain a specific amount of samples,
that means every state should be taken on multiple times. How many samples are needed is not
known at this point of the analysis and could only be examined in the later classifier design
and validation with the so called learning curve which plots the classification score against the

29

4 Data Acquisition

number of samples in the training set. Because a classifier is not available at this point, the
number of samples needs to be guessed and is therefore chosen to be a very high number so that
the training set is very unlikely to contain too less samples for designing a highly performant
classifier. Another reason for a very high number of training samples is the fact that the machine
can not be put in any of the states deliberately because of the non-controllable component states
of the lubrication pumps and the control cabinet heat exchanger. As every state is taken on
only with a specific propability, it is necessary to have a long measurement time to ensure that
as many of the different machine states is being observed within the training set. Apart from
choosing a long measurement time for one test cycle, the test cycle can be repeated multiple
times in the later execution phase to gather even more training data as well. In this case the test
cycle is repeated three times. Two test cycles are used to get trainings data and one test cycle is
being used in the later validation phase for evaluation of the classifier performance. Because
the number of samples is only an assumption it needs to be validated in the later course of the
project.

To put the machine in as many different states as possible a special program, the test cycle, is
being written and executed on the machine controller. The overall program structure is being
shown in fig. 4.5 and the corresponding subfunctions can be found in fig. 4.6. The flow chart
is only an abstraction of the real machine code, which is being listed in appendix A.2. At the
beginning of the program the setup code illustrated in fig. 4.6a is executed once. Within this
setup procedure the block form of the workpiece is being set to zero as there is no workpiece to be
machined. After this the tool is changed so a specific tool is being used in the test cycle. In this
case tool number 70 is being used. After the tool has been successfully changed and is clamped
into the main spindle all axes are moved to their zero positions. This ensures consistent test
conditions as the axes will always start from the same position, which is especially important if
the axes are not being located in their zero positions before execution of the test cycle. Otherwise
the first axis motions could be different from any proceeding movements and therefore lead to
inconsistent measurement results.

The rotational speed of the main spindle is being set to 10000 min−1 and the feed rate to a
constant value of 12000 mm/min. These are large values that lead to high current consumption
of the drives and therefore ensure clearly distinguishable patterns within the current signal
on the DMU main power line. In the following program sentence the feed override is disabled
with the M47-command to ensure constant feed rates during the execution of the test cycle.
Prior to execution of the program the machine zero needs to be set to X = +554.042 mm,
Y = −280.622 mm, Z = +0 mm, B = +0° and C = +0°. This machine zero is being stored in
the custom machine zeros table in the machine controller as point number 35. The user has to
manually set the machine zero to this specific point to ensure proper execution of the test cycle.
Besides that the oparator needs to ensure that no clamping device is bolted to the machine’s
table in order to gurantee constant testing conditions.

After execution of the setup code the program enters a loop in which the main spindle as well as
any of the five machine axes is being moved several times. First action is the repeated wind
up and stopping of the main spindle as depicted in fig. 4.6b. When the programme enters this
subfunction the main spindle is wound up by issuing the M03-command after a short delay of
2 s. After reaching the desired speed the spindle is being run for 20 s and afterwards stopped

30

4 Data Acquisition

by a M05-command. This procedure is repeated five times. Hereinafter the machine axes are
moved following the scheme that can be seen in fig. 4.6c. After a 2 s-delay the relevant machine
axis is moved forward with a constant feed rate of 12000 mm/s. When the desired position is
reached the machine pauses for 2 s and then moves back the axis to the machine zero with the
same speed. This procedure is repeated five times for each of the five machine axes. The loop
itself is repeated 20 times, so that each movement is repeated 100 times in total. This creates
the necessary high number of training samples within the training set. After completion of the
loop the feed override is switched back on via the M48-command and the program terminated
by an M30-command.

Table 4.4 shows the desired positions and travels for the axis movements within the test cycle.
End point and zero point coordinates refer to the machine zero set before first execution of the
test cycle. Z-1 M91 in the zero point of the Z-axis means the Z-axis is moved downward until it
reaches the end stop switch. This ensures maximum distance between the tool and table for
following safe rotation of the B-axis. This distance and therfore the travel of the Z-axis depent
on the length of the tool used for the test cycle. The desired zero and end points of the axes are
chosen so that the travels are maximized. This helps determining wear of the axes’ bearings or
guidances as well as the ball screws of the translational axes. If the axis moved only in a small
range of the maximum travel such failures would hardly be detected.

Table 4.4: Desired positions and travels of the machine axes movements in the test cycle. Zero point
and end point coordinates refer to the machine zero.

Axis Machine Zero Zero Point End Point Travel

X-Axis 554.042 mm 0.000 mm 900.000 mm 900.000 mm
Y-Axis −280.622 mm 0.000 mm −600.000 mm 600.000 mm
Z-Axis 0.000 mm ~ 647.763 mm (Z-1 M91) 250.000 mm ~ 397.763 mm (tool dependent)
B-Axis 0.000° 0.000° −120.000° 120.000°
C-Axis 0.000° 0.000° 180.000° 180.000°

Figure 4.5 also contains procedures for controlling the switching states of the coolant pumps 1
and 2, the chip conveyor drive motor and the fume seperator motor. The corresponding program
code for the Heidenhain iTNC 530 can be found in listing A.2. These enhancement of the
testcylce needs to be understood as a suggestion for further improvement of the classification
task and are not taken into account for the reasons stated in section 4.1.

4.5 Test Cycle Results

After its successful definition and implementation in section 4.4 the test cycle is being executed
and the corresponding measurement results are being examined in this section. As mentioned
before three test cycle runs are conducted to gather a great amount of training data and
an independend test dataset for later evaluation of classifier performance. Table 4.5 contains
information about the time of the test cycle execution for each of the three runs. This information

31

4 Data Acquisition

Figure 4.5: Flow chart of the program structure of the test cycle. The test cycle is designed to
let the milling machine take on the previously defined states that are used for model
training as well as recognition of any machine component failures or wear. Any motions
and component activations are repeated 20 times in order to create more data samples
for model training. Cooling, chip conveyor and fume separator are not implemented in
the test cycle and might be considered in future studies. Yellowish colored boxes are
subfunctions containing multiple commands as defined in fig. 4.6.

32

4 Data Acquisition

(a) Subfunction for prior
setting up of the ma-
chine.

(b) Subfunction for wind up and
stopping of the main spindle
drive.

(c) Subfunction for movement of
any of the five machine axis.

Figure 4.6: Subfunctions for machine setup as well as spindle and axis motions within the above flow
chart of the test cycle. Both motion sequences are repeated five times in order to create a
bigger amount of data samples.

33

4 Data Acquisition

is needed for read out of data from the database. In the following section a detailed description
of the measurement data of the third test cycle run is given. Corresponding results for the 1st
and 2nd test cycle runs can be found in appendix A.3. They are not explicitly examined in this
section, because the resulting signals look very similar to the depicted ones of the third test
cycle run. All plots are created using a MATLAB plotting script which consists of a main script
shown in listing A.5 and a subroutine for reading CSV files containing the measurement data
which is shown in listing A.6.

One complete test cycle run takes 7200 s for completion resulting in a duration of approximately
360 s for every of the 20 subcycles, in which the five machine axes are moved back and forth five
times. This can be seen in fig. 4.7, which depicts the current consumption of the machine on the
three phases of the the main power line and shows a very specific regular pattern corresponding
to the different motions of the axes. This high correlation between the axis movement and the
current consumption on the main power line can be seen even better in the close-up in fig. 4.8
that contains the current flow on phase L2 for only the first of the 20 subcycles. There any axis
movements are clearly distinguishable. First the five consecutive spindle wind ups and stops can
be perceived, revealing a highly dynamic behaviour of the spindle as the spindle drive consumes
over 55 A on wind up and more than 30 A for stopping. In between of the wind up and stopping
the current consumption appears to be nearly constant. This can be seen in the detail view
of one single wind up and stopping of the spindle in fig. 4.12a. After the spindle movements
follow the back and forth movements of the X-, Y- and Z-axis as well as the clockwise and
anti-clockwise rotations of the B- and C-axis. Figure 4.12 contains detailed views of the resulting
patterns in the current signal in the DMU main power line L2-phase respectively for the forward
movement and the backward movement, which differ especially on the Z-axis where gravity has
to be overcome on the upward movement. The same applies for the B-axis, which rotates in the
vertical plane and therefore is exposed to gravitational pull as well. In contrast the backward
and forward movements of the X-, Y- and C-axis do not show this behavior as motion takes
place perpendicular to ground.

Table 4.5: Location of the three conducted test cycle runs within the measurement database.

Run Start End Type

Date Time Timestamp Date Time Timestamp

1 03/05/2017 20:06:00 CEST 1493834880 03/05/2017 21:30:00 CEST 1493842080 Testset
2 03/05/2017 22:43:00 CEST 1493844200 04/05/2017 00:43:00 CEST 1493851400 Trainingset
3 04/05/2017 11:47:00 CEST 1493891290 04/05/2017 13:00:47 CEST 1493898490 Trainingset

Apart from the current signal on the main power line and according to section 4.1, the current
consumption of the cooling unit, the control cabinet heat exchanger, the machine lubrication
pump and the oil-air lubrication pump have to be taken into account on creation of the dataset
as they determine, which of the states defined in section 4.3 is present at a given time segment
within the measurement results. This knowledge is essential for later labelling of the acquired
datatset. Therefore the current consumptions of these components are being measured as well.
The measurement results are shown in fig. 4.11a, fig. 4.11b and fig. 4.11c.

34

4 Data Acquisition

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

20

40

60

C
u
rr

e
n

t
I

/
A

L1

L2

L3

Figure 4.7: Measured signal of the current flow within the three phases of the DMU main power line
during the complete third test cycle run.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

20

40

60

C
u

rr
e

n
t

I
/

A

L2

Figure 4.8: Close-up of the measured current in the second phase (L2) of the DMU main power line
during a single iteration of the third test cycle. Motions of different axes are clearly
distinguishable.

As said in section 4.1 the current consumption of the cooling unit appears to be nearly constant
over time neglecting slight fluctuations. Noteworthy is the difference of the current consumptions
on the three different phases. As can be seen the current on the L1-phase lies around a value of
4.33 A, the current consumption on the L2-phase is around 4.21 A and on the L3-phase around
4.47 A. Apparently this is due to the internal wiring of the contained compressor, cooling fan
and feed pump (see table 3.2). The difference in the current consumptions on the three phases
can be seen in the main power line signal, where the current on phase L3 is on average higher
than on phases L1 and L2. In turn, the current consumption on L1 is higher than the one on
L2.

At this point attentention should be paid to the nomenclature of the phases, because the phase
names are being chosen from the measuring terminals viewpoint rather than accoring to internal
wiring of the machine. So phase L1 means the current sensor for a specific component power line
phase is being connected to the L1-input on the terminal. This does not imply the measured
component phase to be connected to the L1-phase of the machine main power line. This internal

35

4 Data Acquisition

connection of the considered non-controllable components to the three power phases on the
machine power line can be found in fig. 4.9. As can be determined from the measurement
data in fig. 4.7 none of the non-controllable components is connected to phase L2 of the power
line. This becomes clear because there is no correlation between the curent flow on phase L2
and the current consumption of any of the non-controllable components. Opposite to that
the current flow on phases L1 and L3 changes in a particular manner whenever one of the
non-controllable components is swichted on or off. From this can be learned that the control
cabinet heat exchanger is connected to phase L3 of the main power line and the machine as
well as the oil-air lubrication pump are connected to phase L1 of the main power line. This
allows for a simplified approach on solving the classification problem as under consideration of
only phase L2 the influence of the non-controllable components can be neglected completely.
Neglection of these components reduces the number of different machine states as defined in
section 4.3 to only 12 rather than 96. Use of this will be made in the first part of the following
classification task. In a second step the current signal on phases L1 and L3 of the main power
line and thus all non-controllable components are considered as well.

Figure 4.9: Internal connections of the three considered non-controllable componentes to the three
phases of the machine main power line.

Proceeding with the analysis of the control cabinet heat exchanger’s current signal depicted in
fig. 4.11b a very different behviour from that of the cooling unit can be seen. Rather than being
on an approximately constant level the current consumption of this component switches between
to distinct values of 0.32 A and 2.80 A, whereby a current peak occurs on the rising edge of the
signal due to a slow dynamic behaviour of the contained compressor. The lower value refers to
the control cabinet heat exchanger idling with just the cooling fan being switched on, whereas
the higher current value means the contained compressor is being turned on in addition to the
cooling fan. The effect of the control cabinet heat exchanger on the current signal of the main
power line is again clearly visble as the current on phase L3 of the main power line is increasing
accordingly. This makes clear the control cabinet heat exchanger as a single-phase consumer is

36

4 Data Acquisition

internally connected to the L3-phase of the main power line of the machine.

At last the current signal of the three lubrication pumps shown in fig. 4.11c is considered. As said
before the blower air lubrication pump is just depicted for the sake of completeness and not being
activated resulting in no current consumption on the measuring-input of the terminal. In contrast
the oil-air lubrication pump and the machine lubrication pump are being switched on from
time to time for a specific duration. Moreover the switching interval for the oil-air lubrication
pump is regular. For instance the oil-air lubrication pump is being activated approximately
every 434 s for a duration of 14.5 s consuming around 0.32 A. The machine lubrication pump is
being switched on in a non-regular pattern for a period of 65.5 s consuming around 0.33 A. The
activations occur in intervals ranging from 1380 s to 1500 s. This irregularity in the activation
intervals of the machine lubrication pump can be explained by the fact, that activation does
not occur based on time, but rather than that based on other factors, for example traveled axis
range. This becomes clear, when the machine is operated with another program instead of the
test cycle and the activation intervals change completely and become even more irregular. This
does not affect the oil-air lubrication pump, which seems to be actived in a time based manner.
Close-ups of the current signal of an individual activation can be found in fig. 4.10a for the
oil-air lubrication pump and in fig. 4.10b for the machine lubrication pump. As can be seen
from those signals, the lubrication pumps have a slow dynamic behaviour as well, which leads
to a spike on the rising edge of the current signal. After the current has settled it stays on a
constant level until deactivation of the pump.

2.22 2.24 2.26 2.28 2.3 2.32 2.34

Data Sample 104

0

0.2

0.4

0.6

C
u

rr
e

n
t

I
/

A

(a) Current signal of an individual activa-
tion of the oil-air lubrication pump.

4.2 4.3 4.4 4.5 4.6

Data Sample 104

0

0.2

0.4

0.6

C
u

rr
e

n
t

I
/

A

(b) Current signal of an individual activa-
tion of the machine lubrication pump.

Figure 4.10: Current signals of individual activations of the oil-air and machine lubrication pump in
the third test cycle run.

37

4 Data Acquisition

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

C
u
rr

e
n

t
I

/
A

L1

L2

L3

(a) Current consumption of the cooling unit.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

10

12

C
u

rr
e

n
t

I
/

A

L1

(b) Current consumption of the control cabinet heat exchanger.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

0.2

0.4

0.6

C
u

rr
e

n
t

I
/

A

Blower Air

Oil-Air

Machine

(c) Current consumption of the blower air lubraction pump (L1), the oil-air lubrication pump (L2) and
the machine lubrication pump (L3).

Figure 4.11: Measured current consumption of the different machine components during the third
test cycle run.

38

4 Data Acquisition

1.86 1.88 1.9 1.92 1.94 1.96 1.98

Data Sample 104

0

20

40

60
C

u
rr

e
n
t

I
/

A

L2

(a) Pattern of spindle runup and stop-
ping.

2.56 2.58 2.6 2.62

Data Sample 104

7

7.5

8

8.5

9

C
u

rr
e
n
t

I
/

A

L2

(b) Pattern of X-axis moving back and
forth.

1.08 1.1 1.12

Data Sample 104

7

7.5

8

8.5

9

C
u

rr
e

n
t

I
/

A

L2

(c) Pattern of Y-axis moving back and
forth.

1.29 1.3 1.31 1.32 1.33

Data Sample 104

4

6

8

10

12

14
C

u
rr

e
n

t
I

/
A

L2

(d) Pattern of Z-axis moving up and down.

1.53 1.54 1.55 1.56

Data Sample 104

6

8

10

12

14

C
u

rr
e

n
t

I
/

A

L2

(e) Pattern of C-axis turning back and
forth.

1.71 1.72 1.73

Data Sample 104

6

8

10

12

C
u

rr
e

n
t

I
/

A

L2

(f) Pattern of B-axis turning back and
forth.

Figure 4.12: Different patterns occuring in the current signal on the first phase of the DMU main
power line according to different axes moving either forward or backward.

39

5 Data Segmentation and Labelling

Purpose of this chapter is the implementation of two different approaches for segmentation and
labelling of the previously acquired measurement data. As the measruement dataset only exist in
form of timeseries data preprocessing has to be conducted to transform the timeseries data into
a set of discrete data samples. Therefore it is necessary to break down measured timeseries data
into smaller segments, which are later used as individual samples within the classification task.
Moreover it is necessary to assign one of the previously defined class labels to each segment to
create a training dataset for later training of classifiers. In this section neither the discretization
nor the classifier training takes place, but only an output file will be created, that contains
information about the segmentation and classes of each segment of the measurement data. The
first section in this chapter gives a brief introdution to the task of segmenting and labelling the
measuremend data. Afterwards a manual approach for fulfilling this task is being presented
in detail. Here a software with graphical user interface, which assists the user in segmenting
an labelling of the measurement data is designed. In the subsequent section a fully automated
approach utilizing a template matching algorithm for segmentation is developed. Labelling is
split up into two parts of different complexity in this section. Finally results of the automated
segmentation and labelling algorithm will be presented.

5.1 Segmentation and Labelling Task Outline

An essential step in generating the dataset for the present machine learning problem is the
preparation of the time series measurement data for later processing like feature extraction or
template generation. This includes cutting of the complete 7200 s long traing measurement into
individual segments or samples as illustrated in fig. 5.1 and table 5.1. Each cut is placed on a
state transition of the measurement signal, so that it separates two different machine states as
defined in section 4.3. The first cut is placed on the first data value of the measurement data
so the corresponding segment or sample lies to the right of each cut. For instance segment 5
lies to right of cut 5, whose position is described by the cut index in table 5.1. For cut 5 the
cut index equals 60, meaning that the cut lies on the 60th data point of the measurement data.
Each segment ends at the data point prior to the next cut. In this case cut 6 at data point
80, which gives the upper boundary for segment 5 as data point 79. This definition ensures
nonrecurring inclusion of each data point within the measurement data. Important to notice is
that for later analysis a cut at the end of the signal should be inserted. This restriction results
from the specific implementation of the feature extraction and template creation algorithms.
Otherwise the segment to the right of the last cut, like cut 7 in the schematic, is not considered
in the analysis. To include this segment as well, another cut had to be placed at the last point
of the measurement data. Besides the description of the sample boundaries by the cut index,
another value enables distiguishing between nominal cuts and non-nominal cuts. A nominal

40

5 Data Segmentation and Labelling

cut, like cut 5, marks a transition between controlled machine states, for example a transition
between the idle state and the movement of any of the axis or the main spindle. In contrast
to that a non-nominal cut, like cut 3 and 7, marks a transition in the measurement signal,
which corresponds to activation or deactivation of one of the three non-controllable machine
components, namely the machine lubrication pump, the oil-air lubriaction pump and the control
cabinet heat exchanger. The nominality of each cut is represented by a boolean value, where a
nominal cut is described by the value 1 and a non-nominal cut by the value 0. After cutting
the segments each segment is labelled with the corresponding class, which is retrieved by a
table-lookup of the machine state definitions in table 4.3. This allows for determination of the
class of each segment by knowlegde of the components being active in that particular segment.
For instance in segment 5 in the schematic in fig. 5.1 the x-axis is being moved backward with
the control cabinet heat exchanger being active at the same time. As can be learned from
table 4.3 this corresponds to machine state 15, wherefore segment 5 is labeled with class 15.
This form of labelling allows for a very easy description of each individual segment by only
three integer numbers, which can be efficiently stored in a CSV-file. Furthermore this allows
for high portability and easy to implement later processing like feature calculation or template
creation.

Data Sample

C
ur
re
nt

I/
A

1 2 3 4 5 6 7

Segment 4

Cuts

L3

L1, L2

Figure 5.1: Desired outcome of the segmentation and labeling process. Two different kinds of cuts
delimiting segments within the measurement signal shall be placed based and each segment
shall be labeled with its corresponding class. It needs to be distinguished between nominal
cuts (red) and non-nominal cuts (green). Result of the segmentation and labelling
process is a CSV file containing index and nominality of each cut and the class of each
corresponding segment to the right of the cut.

In the following two different approaches of creating the labeled dataset are taken. The first
one is a manual approach, in which the user has to manually place every individual cut and
determine the class of each segment semi-automatically by table-lookup of the class based on
manual description of the components actived in the current segment. The second one is a fully
automated approach, which determines positions of cuts by looking at the characteristics of
the measurement signal and additional measurements of the three non-controllable components.
Classes for the segments are determined automatically as well based on the periodicity of the

41

5 Data Segmentation and Labelling

Table 5.1: Example for the segmentation and labeling of the measurement data section in fig. 5.1.

Cut No. Cut Index Nominality Class

1 1 1 0
2 10 1 2
3 25 0 14
4 30 1 12
5 60 1 15
6 80 1 12
7 95 0 0

test cycle and the information of the switching states of the non-controllable components. The
two following sections describe both methods in detail.

5.2 Manual Segmentation and Labelling

The first approach for segmentation of the timeseries data is the manual approach. Labeling the
data manually is a very easy approach in preprocessing the timeseries data for later analysis. It
allows for good precision on the cutting process and exact labelling of all classes. Most important
disadvantage of this approach is the long time needed for labelling the whole training data set.
Moreover each time, a new dataset is retrieved, the labelling process has to be repeated manually,
which is very time consuming. Nevertheless this section addresses the manual labelling of the
dataset as it is useful for getting an subjective impression of the structure of the dataset and
the contained classes. To reduce the time needed for labelling the dataset, a software with a
graphical user interface is built which assists in cutting and labeling of the dataset. Figure 5.2
shows the main functions of this label assistant software, whose source code can be found in
listing A.3. As can be seen, first the previously acquired and locally stored datasets are loaded
and visualized as timeseries on different plots. This helps the user to pick the locations of the
cuts with a specific data cursor tool on the plots. Moreover the user has to put the switching
state of every controllable and non-controllable component of the machine for the current time
segment in the software. This allows for automatic determination of the class for the current
sample via table-lookup. Moreover the user needs to select for each cut, if it is a nominal cut
or a non-nominal cut. Input of these values allows for creation of the previously mentioned
CSV-file that contains the labelling information for the given dataset.

Figure 5.3 shows the graphical user interface of the label assistant and explains the main modules
within the interface. Important part of the GUI is the data visualization in the three plots to
the left. On top the main power line currents for all three phases are depicted. In the middle
the signal of the control cabinet heat exchanger can be found an on the bottom the signal of the
three lubrication pumps is shown. On top of the plots the toolbar menu can be found. As can
be seen in the close-up in fig. 5.4 it contains tools for opening an existing labelling file, saving
a created labelling file, zooming and panning within the plots as well as the data cursor tool,

42

5 Data Segmentation and Labelling

Figure 5.2: Process steps of the manual timeseries segmentation and labeling with the label assistant
GUI.

which is used to locate cut positions. On the right side of the GUI window widgets for input
of component states and cut nominality as well as an output of the current labelling file can
be found. Moreover buttons for cut creation and manipulation of the current labelling file, like
removal of lines within the labelling file or the complete file, are contained in this section of the
GUI window.

Figure 5.5 shows a detailed view of the control panel to the right side of the label assistant GUI.
The first three check boxes to the top allow for input of any combination of switching states
of the three non-controllable components. Below a radio button group can be found, which
is needed for input of the controlled state, like for example forward movement of the x-axis,
spindle movement or machine idle (none). As there is only one controlled state per segment
possible, this input is designed as radio button group, in which only one element can be 1 at a
time, whereas all others have the value 0. Below the component state input a text box can be
found which contains a hisotry of the lasst three selected controlled states. This helps for later
labelling as the user easily can see what the last selected state was. Under consideration of the
knowledge of the fixed sequence of controlled states in the test cycle the user can easily figure
out, which controlled state is present in the current time segment.

In the middle of the control panel a checkbox for input of the current cut nominality (see
section 5.1) can be found. This checkbox is reset to value 1 after each processed segment to
prevent continous input of non-nominal cuts, which is usually not reasonable for the existing

43

5 Data Segmentation and Labelling

1

2

3

4

5

Figure 5.3: Graphical user interface of the data label assistant. (1) Machine State Selection, (2) DMU
Main Power Line Current, (3) Segmentation Cuts and Data Labels, (4) Control Cabinet
Heat Exchanger Current, (5) Lubrication Pumps Current.

44

5 Data Segmentation and Labelling

1 2 3 4 5 6

Figure 5.4: Toolbar icons in the data label assistant. (1) Open existing dataset from file, (2) Save
current dataset to file, (3) zoom in tool for plots, (4) zoom out tool for plots, (5) pan tool
for plots, (6) data tooltip for picking cut locations from plots.

measurement data as on every non-nominal cut a tmaximum on other non-nominal cut should
follow. Furthermore a button for adding the current time segment to the labelling dataset can be
found in this area of the GUI window. Each time the user has selected a data point at which a
cut shall be located and a selection of component states has been made, the button is activated
and adds a new line containing the data point index and nominaltiy of the cut as well as the
class of the corresponding time segment to the labelling dataset.

On the bottom of the control panel a table view is located. This table view contains every line of
the currently loaded and processed labelling dataset consisting of cut index, nominality and class.
The view is sorted automatically, so that the highest cut indices are on the top. This allows for
selection of any data point on the plot and automatic positioning of the corresponding label
entry on the correct position within the labelling dataset. Below the table view two buttons can
be found. The left deletes the complete labelling dataset, however it shows a prompt window
asking for confiirmation first. The button to the right is activated whenever the user makes a
selection of one or more rows in the table view. After clicking on the button and confirming the
prompt the selected rows will be deleted from the labelling dataset.

To give a short introduction in how the label assistant is used the main steps of the labelling
process are depicted in fig. 5.6. If a labelling dataset already exists, it can be loaded via clicking
on the load button in the toolbar menu and browsing the corresponding CSV-file. This step is
optional and may be skipped if there is no labelling dataset available and needs to be created
from scratch. After this step the user has to select the data cursor tool from the toolbar menu.
With activated data cursor tool the user clicks into any of the three measurement data plots on
that data point where a cut needs to be made. If needed the cursor can be moved via clicking
and dragging after it has been placed on the plot. Zooming and panning tools help to exactly
position the data cursor. Once the data cursor is on the desired position, first the states of
the three non-controllable components and afterwards the states of the controlled components
need to be selected by checking the corresponding checkboxes and radiobuttons. Hereafter the
nominality of the cut needs to be selected by checking or unchecking the checkbox. Now the cut
can be placed by clicking on the add sample button. A new line contianing cut index, nominality
and sgement class is added to the table view. Moreover a vertical dotted line is added to all
three plots marking the saved cut position. This steps are repeated for every desired cut until
the labelling of the complete dataset is finished. Finally the labelling dataset has to be saved
to a CSV-file by clicking the save button in the toolbar menu. It can be openened and edited
again at a later time.

45

5 Data Segmentation and Labelling

1

2

5

3

4

6

8

7

Figure 5.5: Control Panel of the label assistant GUI. (1) State selection of non-controllabe components,
(2) State selection of controllable components, (3) History of latest three states, (4)
Selection of nominal or non-nominal cut, (5) Button for cutting, (6) Labeled cuts as
output data, (7) Button for deletion of selected rows, (8) Button for clearing complete
dataset.

46

5 Data Segmentation and Labelling

Figure 5.6: Workflow for creating a new segment labeled in the mesaurement dataset and adding it
to the labeling dataset in the label assistant GUI.

5.3 Automatic Segmentation and Labelling

Manual labelling has the significant drawback of being very time consuming. Moreover for
every new training dataset the complete procedure has to be repeated. Besides that, although
the previously presented label assistant GUI significantly reduces the risks for human errors
during the labelling process, the procedure is still not as reliable and consistent as an automatic
segmentation and labelling approach. This is why this section addresses the problem of designing
an fully automatic approach for segmentation and labelling of the given timeseries measurement
data. First an algorithm is presented, which automatically segments and labels only the
measurement signal of phase L2 of the machine main power line, which is not influenced by any
non-controllable component. According to section 4.5 this simplifies labelling of the dataset as
only 12 different classes occur in the data. Later in this section the algorithm will be extended
to also automatically detect state changes of non-controllable components and label the created

47

5 Data Segmentation and Labelling

segments accordingly with one of the 96 possible classes. Output of this algorithm will be two
CSV files. Both contain according to fig. 5.1 the data sample indices at which a segment begins,
the class of the segment and the nominality of the cut, which contains the information about
the cut either corresponding to a state change of one of the controllable 12 states or a state
change of one of the three non-controllable components. Difference between both output CSV
files of the algorithm is that the first CSV file only contains nominal cuts and base classes 0 to
11, whereas the second CSV file contains all cuts and all 96 possible classes.

Automatic segmentation and labelling is conducted in a similar manner as the manual labelling
within the GUI presented in the previous section and contains the same important process steps.
First the measurement data needs to be segmented. That means at every state change a new
segment is introduced, in which the machine state stays constant until the next component state
change. Second the switching states of any of the considered machine components need to be
retrieved. From this information the class according to section 4.3 can be determined for each
segment. This last step is divided into two parts, whereby the algorithm first determines only
the classes of the controllable components and considers the non-controllable components in a
subsequent step.

An overall structure of the main functional steps within the automatic labelling algorithm can
be found in the flowchart in fig. 5.7. This flowchart is divided into the described three main
process steps of segmentation, basic labelling and labelling of non-controllable states as well. In
the following a detailed explanantion of each of these three subprocesses is given. The Matlab
source code of the complete algorithm can be found in listing A.7.

5.3.1 Segmentation

First the automatic segmentation is considered. As can be seen in fig. 5.7 a template matching
approach is used to find out at which locations within the measurement data a state change
occurs and a cut should be placed to introduce a new segment. In this case template matching
basically means for each of the 12 possible kinds of patterns within the signal there is template
that is being compared to the measurement signal at different locations. For each location a
distant measure is calculated that quantifies the similarity between template and measurment
signal. At minimum distance between template and measurement signal the template matches
the measurement signal optimally meaning a pattern very similar to the template has been
found in the measurement signal. The starting point of this subsequence in the measurement
signal is then marked with a cut and a new segment is introduced at this data point.

Figure 5.8 shows the 12 templates for the different kinds of patterns in the current signal in
the machine main power line. Each of these patterns refer to a specific controllable state (see
section 4.3) of the milling machine, for example there is a specific template for the X-axis forward
movement or the main spindle movement. Creation of these patterns is very simple as they are
only extracted from the measurement data from the first of the 20 subcycles of the second test
cycle run. Hereby the templates correspond respectively to the first occurance of the specific
pattern in this subcycle. Calculation of average patterns from a larger set of patterns extracted

48

5 Data Segmentation and Labelling

Figure 5.7: Schematic of the full automatic segmentation and labeling algorithm, which is based on a
time domain shape-based similarity measurement approach.

49

5 Data Segmentation and Labelling

from the training measurement data is not necessary as the templates corresponding to extracted
individual patterns already yield very good results of automatic segmentation.

The priciple of determination of the actual cut positions is shown in fig. 5.9. The brown line
in this diagram represents a section of the measurement data from the second test cycle run
corresponding to the first forward and backward movement of the X-axis in the second subcycle
of the test cycle. The blue segment is the template for the X-axis forward movement from
fig. 5.8b. Starting at the leftmost sample of the measurement data the algorithm iteratively
shifts the template one data sample rightwards in each iteration of a loop. For each iteration
a scalar distance measure is calculated which quantifies the similarity between template and
measurement signal. From a set of different distance measures (see [40, 69]) the infinitiy norm

‖L‖∞ = max {|xi − yi| : i = 1,2, . . . ,m} (5.1)

with measurement data x ∈ Rn and template y ∈ Rm has proofen to be best suitable for the
given task. The value of this norm is depicted as the black line in fig. 5.9. As can be seen,
the distance measure becomes minimal at specific points. These points refer to the template
shifting positions at which the template matches the measurement signal optimally. Exactly this
situation of a template match is schown in fig. 5.9. At this position a cut, represented by the red
vertical line, is set to start a new segment and end the prior one. Afterwards the template is slid
forward until the next match occurs and a new cut can be set. This process is repeatd until the
end of the measurement signal is reached. Due to this template matching approach the whole
segmentation process can be reduced to a problem of finding minima in the distance measure,
which can easily be implemented in Matlab using the findpeaks function. This function is called
with two additional arguments. The first one is the number of peaks that should be returned by
the function. As the function usually returns every peak within the signal, it can not be ensured,
that the number of peaks meets exctly the desired amount of 5 peaks per subcycle per template.
So this value is fixed to the desired value and the function always returns the right amount of
peaks. The second parameter causes the findpeaks function to return peaks in descending order
based on the peak height rather than chronologgically after the peak occurance in the signal.
This ensures in combination with the restricted number of peaks that only the most significant
peaks within the signals are found.

In order to not only find state changes of the X-axis the template matching is repeated for
any of the 12 templates from fig. 5.8 giving a subset of cut positions in each iteration. This
can be seen in fig. 5.10 and fig. 5.11 as well as the diagrams in appendix A.4 which show
each one complete subcycle of the second test cycle run and cut positions found automatically
via template matching. For instance in fig. 5.10 the main spindle template is being matched
to the measurement signal giving five cut positions, marked with red vertical lines. Actually
the algorithm does not only consider the first subcycle, but rather all 20 subcycles in the
measurement data. This results in a total amount of 100 cuts that are found due to template
matching with the main spindle template. Matching of the X-axis forward template results in
the cut positions shown in fig. 5.11. As can be seen the algorithm is not able to distinguish
between the X-axis forward and backward movements as the two coresponding patterns in the
current signal are very similar (see fig. 4.12b). This results in not only 5 cuts, but 10 cuts.
This means comparison of the X-axis forward template helps to find the patterns of the X-axis

50

5 Data Segmentation and Labelling

100 200 300 400 500 600 700 800 900 1000 1100

Data Sample

0

10

20

30

40

50

60

C
u

rr
e

n
t

I
/

A

Main Spindle

(a) Shape template of the main spindle.

20 40 60 80 100 120 140 160 180 200 220

Data Sample

4

5

6

7

8

9

10

11

12

13

14

15

C
u
rr

e
n
t
I
/
A

X-Axis Forward

X-Axis Backward

Y-Axis Forward

Y-Axis Backward

Z-Axis Forward

Z-Axis Backward

C-Axis Forward

C-Axis Backward

B-Axis Forward

B-Axis Backward

(b) Shape template of all other controlled movements occuring in the test cycle.

Figure 5.8: Shape templates used for automatic segmentation of the measurement data. Each template
is shifted over the entire measurement data and a distance measure as later criterion for
an optimal cutting position is calculated.

51

5 Data Segmentation and Labelling

100 200 300 400 500 600 700

Data Sample

6.5

7

7.5

8

8.5

9

C
u

rr
e

n
t

I
/

A

0

2

4

6

8

D
is

ta
n

c
e

 M
e

a
s
u

re

Template

Measurement Data

Distance Measure

Figure 5.9: Principle of the automatic calculation of cut positions by means of minimizing a distance
measure. The template (blue) is slided over the measurement data (brown) and a scalar
distance measure (black) is calculated as function of the lag, that means shifting distance.
Local minima in the distance measure correspond to a shifting position with maximum
correlation between template and measurement data. Cuts (red) are placed at these
positions.

forward and the X-axis backward movement in the measurement data at once. Matching of the
X-Axis backward template in the next iteration of the superordinate loop leads to approximately
the same cut indices. The algorithm handles this problem by calculating cut positions for
both templates and discarding one of the two cuts. This is done in a post processing step,
which requires first ascending sorting of the found cut indices as the findpeaks function does
not return consecutive cut positions, but instead returns the cuts sorted by the depth of the
corresponding minimum in the distance measure. The sorting allows for easy calculation of the
spacing between cuts by differention of the cut position vector by means of the Matlab diff
function. The differentiation result is then compared to a specific threshold to determine cuts
which are located closely to each other. In this case the threshold value is chosen to be 50 data
samples. If two cuts lie closer to each other than this threshold value, the cut lying on the
lower data index is removed from the vector containing the cut positions. This is illustrated in
fig. 5.12. Another important step in determining the cut positions is the locating of the end
positions of each segment. The template matching approach only finds the starting position of
each state change, but can not easily detect the endpoint of a segment. In this case endpoint
means the same as starting point of the machine idle state or class 0, in between of each axis
movement. In order to find these cut positions as well, a template matching with the idle state
had to be performed. As this leads to a much higher number of minima in the distance measure
the computational effort increases by a significant amount. To achieve a lower computational
expense as well as an easier implementation of the algorithm the endpoints are determined in an
easier way by adding the template length to the starting point of the corresponding segment.

52

5 Data Segmentation and Labelling

As the pattern lengths can be assumed to be constant over time, this approach gives precise
segment endpoint locations and maintains reasonable computational effort.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

20

40

60

D
is

ta
n
c
e

 M
e
a

s
u
re

Figure 5.10: Distance measure for the main spindle template as function of the shifting lag. The
lag is expressed in data samples of the measurement data. At minimum distance the
measurement data looks most similar to the template and therefore a cut can be made
at this position. Found cut positions are marked with red vertical lines.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n

c
e

 M
e
a

s
u

re

Figure 5.11: Distance measure as function of lag for the X-axis forward template. Due to the similarity
of the X-axis forward and backward template the algorithm finds 10 local minima rather
than only 5.

Result of the automatic segmentation can be seen in fig. 5.13, which shows sections of the
measurement data with automatically inserted cuts. For better visibility only parts of the
signal are shown representing the segmentation of the main spindle states, the X-axis states
and the Z-axis states. Validate of performance of the segmentation algorithm can be done
manually by looking at all cuts placed by the algorithm. This way it can be found that the
algorithm performs very well and is able to determine every single state change precisely without
missing individual state changes or inserting additional cuts at wrong positions. To further
benchmark the algorithm not only the measurement data from the second test cycle run, but
also measurement data from the first and third test cycle run are segmented by the algorithm.
Here the algorithm is able to place every cut at the desired position automatically without any

53

5 Data Segmentation and Labelling

Data Sample

C
ur
re
nt

I/
A

×X ×X ×X X× ×X ×X X× X× ×X X×

L2

Clearance < 50 Samples

Figure 5.12: Removal of double indicated cut positions. Cut positions for some classes are determined
twice, because the algorithm can not determine between forward (solid lines) and
backward (dashed lines) movement of the corresponding axes. This results in twice the
amount of cut positions. To reduce the number to the desired value, pairs of close cuts
are recognized and the left cut is removed.

faults as well. Noteworthy is that the templates are not redefined for these two segmentation
runs. This means even with templates from the second test cycle run data a proper segmentation
of the first and third test cycle run data is possible. This is due to the high similarity of the
measurement data of all three experiments.

5.3.2 Labeling of Controllable State Changes

After the succesful segmentation of the measurement data class labels need to be applied to each
segment. This means for each cut the segment right to this cut needs to be given an integer
number according to the class definitions in section 4.3. As in this stage only the current on
phase L2 of the main power line and therefore only controllable states are considered, it is
sufficient to label the segments with class numbers from 0 to 11. The whole classification task is
as easy as assigning the class of the current template in the matching process described above
to each cut found in that iteration of the superordinate loop. To make it clear consider fig. 5.10
and fig. 5.11 again. These two diagrams show the resulting cut positions for different kind of
templates. For instance fig. 5.10 shows the cut positions which result from the template matching
with the main spindle template. As it is exactly known, that these cut positions belong to the
main spindle template, it is possible to assign the corresponding class 1 for the main spindle
movement to each of the segments demarkated by the found cuts. As the algorithm proceeds
every template once and retrieves corresponding cuts for all templates, every set of cuts can be
labeled with the corresponding class number. Advantage of this approach is a high reliability
even in the rare case of a faulty located cut. If only the known fixed class sequence would be
applied to the segmented measurement data, a single missing cut would lead to missclassification
of all following segments. However the presented approach is robust against this kind of failure

54

5 Data Segmentation and Labelling

500 1000 1500 2000 2500 3000 3500 4000

Data Sample

0

20

40

60

C
u

rr
e

n
t

I
/

A

L2

(a) Automatically determined cut position during the spindle movement.

7000 7200 7400 7600 7800 8000 8200 8400 8600

Data Sample

6.5

7

7.5

8

8.5

9

C
u

rr
e

n
t

I
/

A

L2

(b) Automatically determined cut position during the X-axis movement.

1.3 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.4

Data Sample 104

4

6

8

10

12

14

C
u

rr
e

n
t

I
/

A

L2

(c) Automatically determined cut position during the Z-axis movement.

Figure 5.13: Evaluation of automatic segmentation of measurement data considering only phase L2 of
the current on the main power line. Red lines mark the cut position that were determined
automatically via the template matching algorithm.

55

5 Data Segmentation and Labelling

as it determines the class for each segment individually without relying on the application of the
known fixed class sequence.

The only difficulty arises from the aforementioned problem of not being able to distiguish between
for example the X-axis forward and backward movement which makes additional postprocessing
in form of removal of desely lying cuts necessary. As mentioned the algorithm calculates distances
between adjacent cuts and discards the cut with lower index in case of two cuts lying very close
to each other. It can not be determined, whether the class of the deleted cut coressponds to the
forward or backward movement of the axis. Therefore another postprocessing step of modifying
the class sequence is necessary. In order to get the desired class sequence, first the distinction
between forward and backward movement of the X-axis, Y-axis and C-axis is removed as these
are the states the algorithm can not distiguish. This results in the same classification of forward
and backward movement of the X-axis with class 2, respectively class 4 for the Y-axis forward
and back movement and class 8 for both types of C-axis movement. Z-Axis and B-axis forward
and backward movements are more distinct and can therefore be discrimated by the template
matching approach. Therefore the different classes for forward and backward movement of these
axes can be applied directly. The resulting class sequence for one subcycle of the test cycle data
looks as follows

c = [1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4
0 4 0 4 0 4 0 4 0 4 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 8 0 8 0 8 0 8 0
8 0 8 0 8 0 8 0 8 0 8 0 10 0 11 0 10 0 11 0 10 0 11 0 10 0 11 0 10 0 11 0] .

As can be seen classes 3, 5 and 9 do no occur in the sequence due to the described problem. In
order to get the correct class labels from this sequence, the subsequences c1 = [2 0 2], c2 = [4 0 4]
and c3 = [8 0 8] need to be found and replaced by the subsequences ĉ1 = [2 0 3], ĉ2 = [4 0 5] and
ĉ3 = [8 0 9]. It is important to only replace every second occurance of the found subsequences to
retrieve the desired class sequence. The output sequence for one individual subcycle then looks
like following

ĉ = [1 0 1 0 1 0 1 0 1 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 4 0 5 0 4 0 5 0 4
0 5 0 4 0 5 0 4 0 5 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 8 0 9 0 8 0 9 0
8 0 9 0 8 0 9 0 8 0 9 0 10 0 11 0 10 0 11 0 10 0 11 0 10 0 11 0 10 0 11 0] .

Now the sequence contains the desired classes and distiguishes correctly not only between forward
and backward movement of the Z-Axis and B-axis, but between the forward and backward
movement of X-axis, Y-axis and C-axis as well. Problem of this solution is the lower reliability
as it depends on the correct outlook of the prior class sequence c. If an error occurs within
this sequence, the subsequence replacing might fail as well. Though only a few samples would
be affected, rather than the complete sequence, so this disadvantage can be neglected and the
solution accepted for automatic labelling of the segmented measurement data.

To validate the proper function of the automatic labelling, the output sequence of the algorithm
is compared to the desired class sequence c. It is found that the algorithm performs well in
labelling the segments of any of the three measurement test cycles correctly. Only in case of
the measurement signal from the second test cycle run, the last segment, corresponding to a

56

5 Data Segmentation and Labelling

backward movement of the B-axis is not cut and labelled properly. However this is due to the
fact, that the signal has been read out from the database with too less margin at the end of the
signal. This prevents the algorithm from calculating the distance measure for the last segment
as the distance measure is always shorter by the number of samples of the applied template.
This fault only means, there is one training segment less for the B-axis backward movement. As
there are 299 more training segments of this kind, the problem can easily be neglected.

One last step has to be performed to finalize the automatic segmentation and labelling of the
controllable states before the non-controllable states can be considered in the next section. In
order to classify the first segment of the measurement data correctly, a cut at the first data
sample has to be inserted, to mark the machine idle state, respecitvely class 0, at the beginning
of the measurement dataset. The class sequence ĉ changes slightly as a class label 0 is inserted
at the first position in the sequence. Finally the previosly found cut positions and determined
base classes for each segment are stored in the aforementioned CSV file.

5.3.3 Labeling of Non-Controllable State Changes

The algorithm presented in the prior section only deals with cutting and labelling of the
controllable state changes. This means state changes of the main spindle as well as all five
machine axes. Negotiation of the three non-controllable components is possible by considering
only the current signal on phase L2 of the machine main power line, because none of the
controlled components is connected to this phase. In the following section the automatic cutting
and labelling algorithm shall be extended to enable automatic cutting and labelling of both kind
of state changes under consideration of all three power line phases. A flowchart of this part of
the algorithm can be found to the right side of the overall functional diagram of the cutting and
labelling algorithm in fig. 5.7. As can be seen, the non-nominal labelling relies on the outputs of
the first two functional segments of the algorithm, the segmentation and the nominal labelling.
In the non-nominal cutting and labelling process additional cut positions of state changes of
non-controllable components are found and merged with the already estimated cut positions of
the nominal state changes. The previously determined class sequence containing only the 12
controlled state is used as well to calculate the class sequence of all 96 classes, which are possible
under consideration of the non-controllable components. Output of this part of the algorithm is
the previously described CSV file introduced in fig. 5.1 that contains all cut positions, the class
of the corresponding segment and the nominality of each cut. This section will describe in detail
how the automatic cutting and labelling of the non-nominal state changes is conducted.

The first step of detecting non-nominal state changes is the measurement signal analysis of
all three non-controllable components, the machine lubrication pump, the oil-air lubrication
pump and the control cabinet heat exchanger. From these three signal can the switching states
of the three non-controllable components be retrieved via comparison with a fixed threshold
value. Knwoledge of the switching states is important for later determination of the segment
class. Figure 5.14 shows how the switching states of the control cabinet heat exchanger within
the second test cycle run can be determined. As can be seen, the measured current value is
compared to a threshold value, in this case 0.6 A. Whenever the measured current consumption
of the control cabinet heat exchanger exceeds the threshold value the binary sequence takes on

57

5 Data Segmentation and Labelling

the value 1. Accordingly the sequence takes on value 0 when the measured current lies below
the threshold value. Output of this processing step is a binary sequence with the same length as
the original discrete measurement data vector. Though, the example only shows the binarizing
of the control cabinet heat exchanger, the same approach can be used for determination of the
binary sequence of the measurement signal of the lubrication pumps. Only the threshold value
is changed to a value of 0.1 A for the pumps.

0 0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

10

12

C
u

rr
e

n
t

I
/

A

0

0.5

1

1.5

2

B
in

a
ry

 V
a

lu
e

Measurement Data

Binary Sequence

Threshold Value

Figure 5.14: Functional priciple of converting measurement data of non-controllable components into
a binary sequence. Whenever the measured current increases over the threshold value
the binary sequence takes on the value 1, otherwise the sequence takes on the value 0.

To find the index values of the state changes of the non-controllable components the binary
sequences need to be differentiated, which is conducted by means of the Matlab diff function.
This function calculates differences between adjacent samples within the binary sequence. If no
state change occurs, the difference is zero. Only at the state change from 0 to 1 the difference is
1 and on at the state change from 1 to 0 the difference takes on the value −1. Take for instance
the binary sequence

s = [0 0 0 0 1 1 1 1 0 0 0 0] .

For this sequence the diff function will output

ŝ = [0 0 0 1 0 0 0 −1 0 0 0] .

Finding the positions of the state changes is now as simply as finding the non-zero elements
within the sequence ŝ. This can be done by means of the find function in Matlab. This function
returns the index values of all non-zero elements in a vector. For the example sequence the
function will return the state change positions 4 and 8. Under consideration of measurement
data of all three non-controllable components all non-controllable state changes can be found
via this method. An example for a found non-nominal cut is shown in fig. 5.15. Here the control
cabinet heat exchanger is activated and the corresponding cut position, which is marked with a

58

5 Data Segmentation and Labelling

green vertical line, is determined via binarization and differentiation of the measurement signal
of the control cabinet heat exchanger. Nominal cuts, which are found via application of the
earlier described template matching approach are depicted as well as red vertical lines.

1.715 1.716 1.717 1.718 1.719 1.72 1.721

Data Sample 105

0

5

10

15

20

C
u

rr
e

n
t

I
/

A

Main Line L1

Main Line L2

Main Line L3

Control Cabinet

Heat Exchanger

Nominal Cut Non-Nominal Cut

[000] [000] [001] [001] [001]

Figure 5.15: Example of nominal cuts (red) and a non-nominal cut (green) within the measurement
data. The non-nominal cut is set due to activation of the control cabinet heat exchanger.
Triplets to the right of each cut indicate switching states of the three non-controllable
components within the current segment.

After succesful determination of non-nominal cut positions classes of the new created segments
must be determined and class labels of existing segments must be updated in order to create the
final class sequence containing all 96 possible classes as defined in section 4.3. To achieve this
the algorithm first finds the nominal cut to the left of each non-nominal cut and assigns its class
to the coresponding non-nominal cut. An example of this process is shown in fig. 5.16. As can
be seen, the second and the last cut, coloured green, are non-nominal. All other cuts, which are
coloured red, are nominal cuts. Classes of these segments are previously determined as described
in section 5.3.2. So the nominal class sequence for the depicted section of the measurement
signal is cnom = [2 0 3 0]. Now the left neighbour of each non-nominal cut has to be found and
its class assigned to the non-nominal cut. This gives the sequence of copied classes ccopy = [2 0],
which can be merged with the nominal class sequence cnom. After merging both sequences the
resulting sequence is sorted in an ascending order based on the position index of the cuts. This
process gives the final class sequence cres = [2 2 0 3 0 0], which contains six elements for all six
cuts rather than only four cuts like the previously determined nominal class sequence. So the
length of the class vector is increased by the number of non-nominal cuts.

Parallel to updating the classes of each segment, the algorithm assigns the cut nominality. As
defined earlier, a nominal cut is a cut that marks a state change of one of the controllable
components, whereas a non-nominal cut marks a state change of one of the three non-controllable
machine components. So prior to the aforementioned sorting of the classes vector another vector
containing the nominality of both nominal and non-nominal cuts is created. This is possible
because after merging nominal and non-nominal classes the nominal cuts are the first elements

59

5 Data Segmentation and Labelling

Data Sample

C
ur
re
nt

I/
A 2

[000]

2

[001]

0

[001]

3

[001]

0

[001]

0

[001]

copy copy

L3

L1, L2

Figure 5.16: Schematic showing the lenghtening of the class sequence by copying the nominal class of
the left neighbour of each non-nominal cut. The resulting class sequence needs to be
updated by consideration of the switching states of non-controllable components shown
in numerical triplets to the right of each cut.

of the vector and the non-nominal cuts follow after the nominal cuts without being mixed. So
the first elements can be given the nominality 1 as they are nominal cuts and the remaining cuts
are marked with nominality 0 as they are non-nominal cuts. During the mentioned sorting of
the cuts based on their positions not only the coresponding classes, but also the cut nominality
are sorted in the same manner.

Before the class labels of all segments can be recalculated another processing step is conducted.
This steps aims to mark very short segments in the measurement data, which occur every time a
non-nominal cut is very close to a nominal cut. In this case the resulting segments only contain
a few data samples and are therefore not usable as samples for the later classification task. As
the shortest template, the template for the B-axis backward movement, has a length of 56 data
samples, the threshold value for marking a segment as too short is set to 20. So every resulting
segment that contains less than 20 data samples is marked. The demarkation of those elements
is done by setting the segments nominality to a value of −1. So it is possible to decide in later
process steps, whether to use these segments or discard them.

Finally the algorithm needs to update the lengthened class sequence, because it does only
contain the 12 base classes rather than a set of all possible 96 classes. In order to find out
the actual class of every segment, it is necessary to know, which switching states of the three
non-controllable components are taken on in each segment. For determining these switching
states the previously created binary sequences are used again. Finding out the swithcing state
of the machine lubrication pump, the oil-air lubrication pump and the control cabinet heat
exchanger is done by looking up the binary value to the right of each cut position. If for example
a cut has been placed on data sample 880, the switching states can be determined by looking up
the binary values at index 881 in the three binarized sequences for the coresponding components.
The results of this lookup operation are shown in fig. 5.15 and fig. 5.16 as numerical triplets
to the right of each cut. In these triplets the first number refers to the state of the machine

60

5 Data Segmentation and Labelling

lubrication pump, the second nuber to the oil-air lubrication pump and the third to the control
cabinet heat exchanger, whereby value 0 means the component is not activated and 1 means the
coresponding component is activated within the current segment. Now for every segment the
switching states of the three non-controllable components are known. In combination with the
already known base class in the range of 0 to 11 it is possible to determine the actual class of
each segment by a table lookup within the class definition table (see table 4.3). Considering the
structure of the class definition table the classes can easily be calculated via adding a scalar value,
which depends on the switching states of the three non-controllable components. If for instance
the control cabinet heat exchanger is acitvated while both lubrication pumps are deactivated,
that means the triplet would be k = [001], the desired class can be found by adding the scalar
value 12 to the previously determined base class. For example given a segment in which the
main spindle and the control cabinet heat exchanger are activated, the previously determined
base class, which does not consider the non-controllable components, would be 1. Adding the
scalar 12 gives class 13, which is the correct classs for a segment in which both main spindle
and control cabinet heat exchanger are activated. This can be checked by looking at the class
definitions in table 4.3. Table 5.2 contains the scalar values that need to be added for all eight
possible switching combinations of the three non-controllable components.

Table 5.2: Scalar values for recalculation of class labels based on switching states of the three non-
controllable components. These values need to be added to previously assigned base class
labels to get proper class labels under consideration of the non-controllable components.

Machine Lubri-
cation Pump

Oil-Air Lubri-
cation Pump

Control Cabinet
Heat Exchanger Scalar

0 0 0 0
0 0 1 12
0 1 0 24
0 1 1 36
1 0 0 48
1 0 1 60
1 1 0 72
1 1 1 84

Big advantage of this approach compared to a normal table lookup is the low computational
effort required for updating the class label. On a normal table lookup for each segment all
96 classes had to be compared to the configuration of base classes and switching states of
non-controllable components. This comparison is computationally much more expensive than a
simple addition of a scalar value for each segment.

5.3.4 Results of Automatic Segmentation and Labeling

A functional demonstration of the whole algorithm can be seen in fig. 5.17. In fig. 5.17a
the current signal of the main power line, in fig. 5.17b the signal of the control cabinet heat

61

5 Data Segmentation and Labelling

exchanger and in fig. 5.17c the signal of the lubrication pumps is depicted. Cuts have been
placed automatically by the algorithm, where nominal cuts are marked by red vertical lines
and non-nominal cuts are represented by green vertical lines in every of the three subplots.
As can bee seen, the algorithm properly detects every controllable state change as well as any
non-controllable state change. Moreover the assigned class labels for each segment are shown
in the plot of the main power line signal. Having a look at the full class definition table in
appendix A.1, it becomes clear that the assigned classes are correct. After the first nominal state
change, the main spindle is activated and simultaneously the control cabinet heat exchanger
runs. This gives class 13, which has been assigned properly. The next cut is a non-nominal
state change, because the oil-air lubrication pump is activated. Therefore the class number of
the next segment is 37. When the main spindle movement stops and the machine falls into idle
state the class label changes to 36 and back to 37 after the subsequent activation of the main
spindle. Deactivation of the oil-air lubrication pump leads to another non-nominal state change
and change of the class label back to 13. Next the control cabinet heat exchanger is switched off
and therefore only the the main spindle is active, while any off the non-controllable components
is deactivated. This results in assignment of class 1 to this segment. The following idle state is
naturally 0 and after another activation of the main spindle the class label is again 1. Having a
look at the labelling of the complete measurement test cycle it becomes clear, that the algorithm
works properly and classifies all segments correctly. This works for any of the three measured
test cycle runs.

Another important feature to test is the detection and demarkation of cuts, which are very
close to each other. As mentioned earlier, the left cut of a pair of closely spaced cuts is marked
with a nominality value of −1. Such a situation can be found in fig. 5.18. Here a section of the
measurement signal from the second test cycle run is shown. As before nominal cuts are marked
with red vertical lines and the only occuring non-nominal cut is marked with a green vertical
line. In this section the special case of two closely lying cuts occurs. The dashed blue line and
the green line lie very close to each other, only seprated by 12 measurement data samples. As
this value falls below the threshold value of 20 Samples, the nominality of the cut is marked
with value −1 and the corresponding cut is show as dashed blue line. In any further analysis
the segment between the blue and the green line can now be discarded easily by checking if
nominality equals −1. It becomes clear that this approach is useful as the segment between
both lines does not contain any specific kind of pattern, but rather only a rising edge of the
current signal, which does not provide enough information for the later classification task.

After running the automatic segmentation and labelling algorithm for every three measurement
dataset, the statistics depicted in table 5.3 for the distribution of different kinds of cuts can be
created. The first three rows consider only the nominal state changes and 12 base classes. The
subsequent three rows regard to the complete labelset containing different kind of cuts and all 96
possible classes. As can be seen the number of nominal cuts varies in a specific range. For the
first three rows this can be explained by the fact that the last segment within the second test
cycle run is not segmented correctly as mentioned earlier. Usually this number should be equal
for every test cycle run. The variations in the number of nominal cuts within the labelset which
considers every type of cut is comprehensible as some of the nominal cuts might be marked as
closely lying or dense cuts. Moreover the fluctuations in the total amount of segments can be
explained by the varying number of non-nominal cuts, which is usually not equal for different test

62

5 Data Segmentation and Labelling

1.085 1.09 1.095 1.1 1.105 1.11 1.115

Data Sample 105

0

5

10

15

20

25

C
u
rr

e
n

t
I

/
A

13 37 36 37 13 1 0 1

L1

L2

L3

(a) Automatically determined cuts in the main power line signal.

1.085 1.09 1.095 1.1 1.105 1.11 1.115

Data Sample 105

0

2

4

6

8

10

12

C
u

rr
e

n
t

I
/

A

L1

(b) Cut positions in the signal of the control cabinet heat exchanger.

1.085 1.09 1.095 1.1 1.105 1.11 1.115

Data Sample 105

0

0.1

0.2

0.3

0.4

0.5

C
u

rr
e

n
t

I
/

A

Blower Air

Oil-Air

Machine

(c) Cut positions in the signal of the lubrications pumps.

Figure 5.17: Evaluation of automatic segmentation of measurement data considering all three phases
of the main power line as well as the three non-controllable components. Red lines mark
cut positions of nominal state changes, green lines non-nominal state changes. In the
main power line signal additionally class labels for the segment to the right of each cut
are shown.

63

5 Data Segmentation and Labelling

1.751 1.7515 1.752 1.7525 1.753 1.7535 1.754 1.7545 1.755 1.7555

Data Sample 105

0

5

10

15

20

25

C
u

rr
e

n
t

I
/

A

43 36 42 18 12

L1

L2

L3

Figure 5.18: Example for detection of closely lying cuts. The dashed blue line represents a cut that
lies too close to the non-nominal green cut and is therefore marked with a nominality
value of −1.

cycle runs as the non-controllable components can be switched on or off irregularly introducing
a new segment on each state change. The same counts for the number of dense cuts, which
is only influenced by the random distribution of cut positions. Because the positions of the
non-nominal cuts vary in each test cycle run, the pairs of closely lying cuts differ as well.

Table 5.3: Statistics of the segmented and labeled dataset. The number of segments corresponds to
the total number of cuts in the signal. Dense cuts represents the number of cuts marked
with nominality −1 due to lying too closely to another cut. The first three rows refer to the
labelling of only nominal state changes and base classes, the following three rows consider
all types of cuts and all 96 classes.

Test Cycle Run Segments Nominal Cuts Non-Nominal Cuts Dense Cuts

1 2201 2201 − −
2 2199 2199 − −
3 2201 2201 − −

1 2250 2194 38 18
2 2249 2193 43 13
3 2251 2191 43 17

Another important information for later development of a classifier is the distribution of classes
within the labeled datasets. These distributions can be illustrated with help of histograms as
shown in fig. 5.19. This histogram contains the class label distribution for all three labeled
measurement datatsets from the different test cycle runs considering only nominal state changes
and therefore only the 12 possible base classes. As can be seen, class distributions within all

64

5 Data Segmentation and Labelling

test cycle runs are very similar to each other. The majority of samples belongs to class 0, that
means the machine idle state. This is reasoned by the idle phases, which occur after each axis
movement in the test cycle. Any other class occurs 100 times in all three test cycles except for
the second test cycle run, in which the last segment is not detected correctly as mentioned earlier.
Even distribution of class labels can be explained by the fixed number for occurance of each of
the different movements within the test cycle. Class distributions change dramatically, when
non-nominal state changes are considered beneath the nominal state changes. The resulting
distributions can be found in the histograms in fig. 5.20 for the three different testcyce runs.
Here the numberof possible classes is 96. As can be seen, the amount of samples per class
is heavily imbalanced, there are around 400 Samples in class 0, the machine idle state and
around 600 samples in class 12, the idle state with simultaneously activated control cabinet
heat exchanger. The number of samples in classes 1 to 11, which correspond to the base classes,
lie around 40 samples. In classes 13 to 23, which refer to the different axes movements with
simultaneously activated control cabinet heat exchanger, this number is between 50 and 60
samples per class. Much lower frequencies occur for the higher classes, which correspond to axes
movements with concurrent activation of the machine or oil-air lubrication pump, combinations
of those two and combinations of the two lubrications pumps with the control cabinet heat
exchanger. As these machine states are much more uncommon than the base classes with eiter
activated or deactivated control cabinet heat exchanger, the number of samples per class is very
low for the higher classes. Hence there are classes, which only contain a single sample or even
no sample. Moreover there are classes, which have a single sample in only one of the three test
cycle runs. These imbalanced class distribution will have a large impact on the further classifier
development. Therefore consequences of this unique characteristic of the present dataset will be
analysed in further course of this work.

0 1 2 3 4 5 6 7 8 9 10 11

Class

0

200

400

600

800

1000

1200

S
a

m
p

le
s

Testcycle Run 1

Testcycle Run 2

Testcycle Run 3

Figure 5.19: Histogram of class distribution within created labelsets of the three test cycle runs
considering only nominal state changes and therefore only the 12 base classes.

Summarizing the previous chapter two methods for segmentation and labelling of the given
measurement dataset have been developed. One manual approach with help of a graphical

65

5 Data Segmentation and Labelling

398 634

0 10 20 30 40 50 60 70 80 90

Class

0

20

40

60

S
a

m
p

le
s

Testcycle Run 1

(a) Class distribution within first test cycle run.

445 604

0 10 20 30 40 50 60 70 80 90

Class

0

20

40

60

S
a

m
p

le
s

Testcycle Run 2

(b) Class distribution within second test cycle run.

446 603

0 10 20 30 40 50 60 70 80 90

Class

0

20

40

60

S
a

m
p

le
s

Testcycle Run 3

(c) Class distribution within third test cycle run.

Figure 5.20: Histograms of class distributions within created label sets of the three test cycle runs.
Considered were all kind of state changes and therefore all 96 possible classes.

66

5 Data Segmentation and Labelling

user interface and a fully automated approach. The fully automated approach uses templates
of known patterns to determine at which positions the individual segments start and end.
Segmentation of non-controllable state changes is done by thresholding the measurement signals
of the three non-controllable components and finding state changes in these binary signals. Each
segment is then labelled automatically with one of the 96 possible class labels. Moreover the
algorithms determines, whether a cut is nominal, non-nominal or if the segment contains too less
elements. Finally two CSV files are created. The first one contains indices of every cut position,
the nominality of each cut and the class of each coresponding segment. The second one contains
similar information, however comprises only nominal cuts and the 12 base classes. All three in
this way segmented and labeled measurement signals can now be further processed and used for
development and evaluation of a classifier.

67

6 Shape Based Classification

In the following chapter two different approaches for classifying time sequences of the previously
segmented measurement data are proposed, implemented and evaluated. Different from the usual
machine learning approach, which will be conducted in the subsequent chapter, both classifiers
developed in the course of the following chapter will operate directly on the time domain data
without any need for transforming the time sequences into feature space. The proposed classifiers
utilize Dyamic Time Warping (DTW) and cross-correlation to calculate similarity between test
sequences and reference sequences for each class, so called class templates. Class labels are then
assigned according to the most similar class template for each test sequence. Similarity in this
case refers to the signal shape in the time domain, which is why this classification approach
is called shape based template machting. Prior to development of the classifiers foundations of
shape based template matching are explained. First a short introduction in the overall process
of classifying time sequences based on template matching is given, followed by two sections
introducing Dynamic Time Warping and cross-correlation as typical measures for determining
class membership of time sequences by comparison with class templates. After explanation of
the basic concepts class templates for each of the 12 possible base classes the milling machine
can take on are created. For this purpose a literature review is coducted and an overview
over different existing shape averaging methods is given. Afterwards foundations of creating
templates by averaging over multiple training sequences and simultaneously maintaining basic
shape information of the signal are presented. Finally one specific algorithm for sequence
averaging, the Accurate Shape Averaging (ASA) algorithm is picked out and the major steps of
the algorithm are described in detail. Afterwards the ASA algorithm is implemented in Matlab
and equipped with some further functionality to create and store class templates for all 12
base classes in one execution of the algorithm. Results of this algorithm are then presented.
After class template creation the actual classifier algorithms are developed and the algorithm is
explained in detail. As both algorithms have multiple freely selectable parameters the classifier
algorithm is adpoted to conduct an exhaustive search for the optimal set of parameters. In order
to find the optimal parameter set classification accuracy is evaluated and compared for different
sets of parameters. In the end of the chapter some conclusions are drawn and proposals for
further improvements of the developed algorithms are made.

6.1 Foundations of Shape Based Classification

The following section gives a detailed overview of the foundations needed for understanding
of the template creation and template matching algorithms which are implemented in the
later course of this chapter. First some basic concepts of the overall process of shape based
classification via template matching are introduced. Afterwards Dynamic Time Warping (DTW)
and cross-correlation are explained in detail. Both are important measures for determining

68

6 Shape Based Classification

similarity of test and reference sequence. DTW is furthermore used for shape based non-linear
alignment of time sequences which provides a distance measure that is unsusceptible to phase
shift or non-linear distortion of the time base of both test and reference sequence.

6.1.1 Principle of Shape Based Classification

In the following section foundations of time series classification shall be briefly introduced.
Finding and identifying subsequences in larger time series databases is a very common problem
in the research community and many different approaches to solve this problem have been
proposed. For instance [70] proposes a method of dismantling a larger time series into smaller
linear pieces. Afterwards he calculates a distance measure to compare the query sequence with
the database and find possible locations of the subsequences. A similar method is developed
in [71], where a similarity measure is used to directly compare two time sequences as well. An
approach that is robust to noise, scaling and translation of patterns to be matched is proposed
in [72]. Another method presented in [73] utilizes Dynamic Time Warping (DTW), which is
introduced in section 6.1.2, to compare sequences that are even misaligned and distorted in
amplitude and time. Advantage of this property of the DTW is also taken in [74], where a
method called Spatial Assembling Distance (SpADe) is proposed. This method is capable of
finding subsequences and patterns not only in static but also in streamed time series data.
Besides these more typical methods that calculate a similarity or distance measure between the
sequences, there exist completely different approaches. For example in [75] a Hidden Markov
Model (HMM) is used to locate and identify subsequences within a larger time series database.
Apart from that [76] utilizes the Discrete Fourier Transform (DFT) to transform the sequences
from the time domain into the frequency domain and compare both sequences based on the first
few frequencies, which are most representative for the sequence. A further concept introduced
in [77] uses a sliding window to transform a subsequence of the time series database into a
trace in the feature space. This trace is then compared to the trace of the subsequence and
similarity between both sequences is measured. Finally [78] proposes an algorithm for calculating
cross-correlation and applies it to a template matching problem in an image database rather
than time series database. However as cross-correlation will be used in the later classification
task as well this paper provides valuable information about determining pattern location via
cross-correlation. More general information about time series classification can be found in [79]
and [80].

General task of the subsequent template matching classification is to identify different types of
segments of a larger time series. This time series as well as the smaller segments are univariate,
real-valued and uniformly sampled time sequences. Segments of the larger time series are created
by automatic segmentation as described in section 5.3. The classifier has to assign a specific
class label to each of the segments in the time series as shown in fig. 6.1. Here the time series
contains four different kinds of patterns, which correspond to class labels 0 to 3. The class
for each segment is predicted based on a template matching approach. This means there are
four different templates corresponding to each of the four classes respectively. Templates for
the example patterns in fig. 6.1 are shown in fig. 6.2. Template matching means, the classifier
algorithm compares each of the segments that need to be classified with the four templates

69

6 Shape Based Classification

and calculates some similarity measure for each of the four templates. Then the algorithm
decides for the most similar template and assigns the template class to the current segment.
This comparison is repeated for every segment in the larger time series until all segments are
labeled.

Data Sample

C
ur
re
nt

I/
A 0 1 0 2 0 1 0 3 0

Predicted Classes

Figure 6.1: Example of a larger time series containing multiple instances of the four example patterns.
Task of the classification algorithm is to assign one of the four possible classes {0, 1, 2, 3}
to each of the time segments within the larger time series.

0 1 2 3Class

Template

Figure 6.2: Four different kinds of example patterns or templates that need to be classified within a
larger time series by template matching.

Successful implementation of a template matching approach comprises multiple steps. First
the time series needs to be segmented, which is done either automatically as described in
section 5.3 or manually as explained in section 5.2. After this templates for the occuring patterns,
representing a specific class each, need to be created. This is done in section 6.2 by averaging
multiple instances of training patterns from the training data sets in a particular way. After
this an algorithm which sequentially compares every segment with every template and decides
which template is most similar to the current segment needs to be developed. This is done
in section 6.3. As this algorithm has multiple parameters, which can be chosen freely, it is
necessary to conduct a parameter studies to find out optimal values of the paramters. Results of
these parameter studies can be found in section 6.4. When the optimal paramters are identified
performance of the classifier can be evaulated. Evaluation is necessary, as the classifier usually
does not predict the correct class for every single segment in the larger time series. As there is a
high number of segments in the test set it is possible that wrong class labels are assigned to
some segments. The goal of designing a good classifier is to minimize this prediction error and
predict as many classes as possible in the correct way. The number of correct predictions can be

70

6 Shape Based Classification

used to define a measure for the classifier performance, the so called accuracy

η = TP
N

(6.1)

with the number TP of segments, which were classified correctly and the total number N of
segments. If every segment is labeled with the correct class accuracy would be 1. The other
extreme is an accuracy of 0 which corresponds to incorrect labelling of each segment. The
evaluation metric is also used for determining optimal parameters in the previously conducted
paramter studies.

Core of the template matching classification is calculation of similarity between template and
current segment of the larger time series, the test sequence. As already mentioned in the
literature review, there exist multiple different approaches of determining similarity between
template and test sequence. In the following two different approaches are implemented. First a
distance measure based on Dynamic Time Warping (DTW) is used. It is explained in detail
in section 6.1.2. The second approach, which is implemented and evaluated in the later course
of this chapter is a similarity measure based on the cross-correlation between template and
test sequence. Fundamentals of cross-correlation are presented in section 6.1.3. Idea of both
approaches is to calculate a real-valued scalar quantifying similarity between template and test
sequence. Different from simple distance or similarity measures like euclidean norm, manhattan
norm, infinity norm (see [40]) shape of template and test sequence is considered in calculation
of the distance measure. This non-linear alignment based on amplitude values is explained in
the fundamentals section of the DTW. Cross-correlation usually does not provide such a shape
based alignment, in this case however, template and test sequence are first non-linearly warped
by means of DTW and afterwards the cross-correlation is calculated. Both template matching
classifiers will be implemented and parameterized in the subsequent sections and performance
will be evaluated and compared.

6.1.2 Dynamic Time Warping

An important distance measure for discrete signals in the time domain can be computed via
Dynamic Time Warping (DTW), first introduced in [81]. It is extensively used in the following
classification utilizing template averaging and template matching and therefore a brief overview
of the theoretical foundations of DTW are presented in this section.

DTW provides an accurate similarity measure for discrete time series data. Other than for
example euclidian distance, which computes the similarity of two signals by linear matching
of the signals indices, DTW first aligns the signals optimally by non-linear distortion of both
signals and calculates a distance measure on the so aligned signals. This leads to much higher
accuracy than other distance measures and is often used for pattern detection in time series
data [82]. Consider the two example signals x ∈ Rm and y ∈ Rn with

x = [1 1 1 2 2 3 3 2 1 1] (6.2)

and
y = [1 1 2 2 2 2 3 3 2 1 1] (6.3)

71

6 Shape Based Classification

as shown in fig. 6.3. Both signals have roughly the same outline, though signal y has a length of
n = 11 and is therefore one sample longer than signal x with length m = 10. As can be seen in
fig. 6.3a computation of euclidian distance between x and y happens by linear matching of the
signal indices. This means each sample xi of the first signal is matched with the corresponding
sample yi of the second signal. This is illustrated by the black lines between corresponding
samples. In this case calculation of the euclidian distance is even impossible, because the signals
have different lengths. The last sample of signal y had to be removed to be able to calculate
euclidian distance of these two signals. [83]

Different from that DTW matches corresponding samples within both signals so that a cumulative
distance measure between both signals is minimzed. This results in the index matching shown in
fig. 6.3b. So DTW calculates a distance measure between two signals not sample by sample, but
additionally considers an optimal matching between the samples of both signals for calculation
of the distance measure. For instance in the two example signals the first two samples of signal
x are matched up with the first sample of signal y this means, the distance measure is calculated
first for the pair of samples (1,1) and afterwards for the pair of samples (2,1). The optimal
matching of both signals is stored in the so called warping path w. In this example the warping
path would be w = {(1,1), (2,1), (3,2), (4,3), (4,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10), (10,11)}.
Here the first value of each pair contains the sample index of signal x and the second value the
sample index of signal y. [83]

An illustration of the warping path can also be found in the distance matrix in fig. 6.4 as yellow
path through the matrix. However before the warping path can be determined, the distance
matrix D ∈ Rm×n has to be calculated as follows

di,j = (xi − yj)2, (6.4)

where xi and yj are the ith and jth samples in the signals x and y. The DTW algorithm now
searches for the path w through the distance matrix that minimzes the warping cost

DTW (x,y) =

√√√√ K∑
k=1

D (wk). (6.5)

Here k describes all tuples wk = (i,j) of the warping path w, where max {m,n} < K < m+n−1
is satisfied. The warping path has to start at the lower left corner of the matrix and end at the
upper right corner, so it must be w1 = (1,1) and wK = (m,n). Morover the indices i and j must
monotonically increase by rather 0 or 1. This means the warping path can only move to the
top, to the right or to the left within the distance matrix. Determination of the warping path is
usually done via dynamic programming. Hereby the cumulative distance

γi,j = di,j + min {γi−1,j−1, γi−1,j, γi,j−1} (6.6)

of the current distance di,j of the warping path within the distance matrix D and the three
possible adjacent elements is evaluated. The path proceeds in the direction, which leads to the
smallest increase of the cumulative distance giving the warping path with minimum cumulative
distance. [83, 84]

72

6 Shape Based Classification

×

i
1 2 3 4 5 6 7 8 9 10 11

yi

1
2
3

xi

1
2
3

Sequence y

Sequence x

(a) Euclidian distance between two time series. This does
not allow for signals of different length.

i
1 2 3 4 5 6 7 8 9 10 11

yi

1
2
3

xi

1
2
3

Sequence y

Sequence x

(b) DTW distance between two time series.

Figure 6.3: Calculation of euclidian distance and DTW distance of two time series. DTW calculates
a distance measure between the two signals providing additional optimal alignment of the
series. Euclidian distance on the opposite compares the series index by index and is less
suitable for pattern recognition applications.

The optimal warping path found by the DTW algorithm can deviate significantly from the
diagonal in the distance matrix. This is shown in fig. 6.5a. Here the maximum deviation of the
warping path from the matrix diagonal is 7 samples. So the signals, which have in this case
both the same length of n = m = 16 samples are warped by an amount of 43.75 %. This high
distortion of the signals can lead to overfitting of the warping path to outliers in the signal. To
prevent the warping path from deviating too far away from the matrix diagonal different kind
of global boundary conditions are suggested in the literature [85, 86]. Figure 6.5b shows for
instance a Sakoe-Chiba band of with b = 2 samples. The warping path can only lie within the
dark grey area between the limits parallel to the matrix diagonal. This means any sample xi
of the first signal can only be matched to neighbouring samples within a range of 2 samples,
thus samples yj with j = i− 2, i− 1, i, i+ 1, i+ 2. Further warping of the signal is not possible.
This leads to a cumulative distance larger than the optimum value, which is found without

73

6 Shape Based Classification

0

0

1

4

4

1

1

0

0

0

0

0

1

4

4

1

1

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

0

0

1

1

1

4

4

1

0

0

1

1

4

4

4

4

4

1

0

0

1

1

4

4

4

1

1

0

1

1

0

0

1

1

1

0

0

1

4

4

1

1

0

0

0

0

0

1

4

4

1

1

0

0

0

1

1

1

2

2

3

3

2

1

1

1 1 2 2 2 2 3 3 2 1 1

yj

xi

i

j

Figure 6.4: Calculated distance matrix between two different time series x and y. The calculated
warping path w, which results in lowest cumulative distance is marked yellow.

global boundary conditions, however prevents excessive warping of the signals. In practice often
a width b of 10 % of the signal length is chosen, though in [87] smaller warping windows of 4 %
in average lead to highest accuracy. Apart from the Sakoe-Chiba band other global boundary
conditions like the Itakura parallelogram have been developed. [86–89]

Though DTW provides a very accurate similarity measure for timeseries classification, even
on distorted time sequences, it has the major drawback of high computational cost due to its
high time complexity of O(n2) [87]. To speed up DTW several lower bounding methods have
been introduced to speed up DTW query operations on large datasets [85, 86]. Before lower
bounding can be applied, all sequences must be reinterpolated to the same length and a global
constraint on the warping window, like the described Sakoe-Chiba band must be applied. Aim
of lower bounding is to search through the available set of candidate time sequences not by
calculating DTW distance, but instead calculating another distance measure with linear time
complexity, like the euclidian distance. Only if this distance is smaller than a specific threshold,
the DTW distance of this candidate sequence with the query sequence is calculated. By choosing
an appropiate threshold for the lower bouding function, the amount of sequences, which need
to be fed into the DTW calculation can be reduced. Listing 6.1 shows an example algorithm

74

6 Shape Based Classification

(a) Warping path without
bounding conditions.

b

(b) Warping path with addi-
tional Sakoe-Chiba band
with width b.

Figure 6.5: Effect of bounding conditions on the warping path. Without any bounding condition the
warping cost is minimal, but the warping path can be far away from the matrix diagonal.
With an additional linear bounding condition the maximum distance of the bounding
path from the matrix diagonal can be limited. This does not result in minimum distance
between warped signals, but gives less warped and distorted signals.

that speeds up a sequential search by utilizing a lower bouding function to preselect suitable
sequences for the DTW distance calculation. [85]

Another approach to speed up DTW is presented in [90]. Here instruction set extensions for
an application-specific embedded processor for calculation of the DTW distance between two
signals are developed. To increase performance and reduce energy consumption of the processor
logarithmic arithmetic is used instead of floating-point arithmetic.

Beneath the described original DTW algorithm, further modified versions of DTW, like Derivative
Dynamic Time Warping (DDTW) and Hybrid Dynamic Time Warping (HDTW) have been

Listing 6.1: Pseudocode for a sequential scan search algorithm of query time series Q. The search is
sped up by utilizing a lower bouding function to preselect suitable sequences. [85]

best_so_far = infinity;
for all sequences in database

LB_dist = lower_bound_distance(Ci,Q);
if LB_dist < best_so_far

true_dist = DTW(Ci,Q);
if true_dist < best_so_far

best_so_far = true_dist;
index_of_best_match = i;

endif
endif

endfor

75

6 Shape Based Classification

developed. DDTW caclulates another distance matrix than DTW. Here the distance measure
is not based on the amplitude values of the two signals x ∈ Rm and y ∈ Rn, but instead the
first order derivatives x′ and y′ of both signals are used. So the elements of the distance matrix
D ∈ Rm×n are calculated as follows

di,j = (x′i − y′j)2, (6.7)

where x′i and y′i are the ith and jth elements of the first order derivatives of the sequences x and
y. Because of the distance measure based on the first order derivative DDTW only considers the
slope of both sequences instead of amplitude values when matching up corresponding samples. In
some cases DDTW leads to higher accuracy in signal aligment than normal DTW. For example
DDTW performs well on signals with offsets and low frequency noise. Problems arise from high
susceptibility to high frequency noise. [83]

HDTW overcomes the drawback of attentiveness of DTW and DDTW to only one shape
information. DTW is only susceptible to the amplitude value of both signals and DDTW only to
the slope of the signals. Therefore both methods capture only a small part of shape information
of the signal. However HDTW considers both amplitude values and slope of the signals when
matching up data samples of the sequences. To achieve this the distance matrix D ∈ Rm×n is
computed as follows

di,j =
d(0)

i,j − µ0

σ0

+
d(1)

i,j − µ1

σ1

 , (6.8)

where d(0)
i,j is the distance computed from the amplitude values and d(1)

i,j the distance computed
from the signal slopes. Moreover µ0 and µ1 are the means of the distances d(0)

i,j and d(1)
i,j and

σ0 as well as σ1 the according standard deviations. This normalization is necessary due to the
different scaling of the distances of signal amplitudes and slopes. [83]

6.1.3 Cross-Correlation

Cross-correlation is a measure used for determining similarity of two time sequences. It is often
used to find a known subsequence within a larger sequence and is therefore a useful tool for
the problem of recognizing patterns in a measurement time sequence. Cross-correlation of two
continous functions f(t) and g(t) with f 6= g is defined as the integral

Rfg(τ) = (f ? g)(τ) =
∫ ∞
−∞

f ∗(t)g(t+ τ) dt (6.9)

where the star stands for the complex conjugate of the function f(t) and τ means the lag or
displacement on the time axis between both functions.

Consider the two continous functions

f(t) =

 sin (t) , −pi
4 ≤ t ≤ 3π

4

0, otherwise
(6.10)

76

6 Shape Based Classification

and

g(t) =

 sin
(
t+ π

4

)
, 0 ≤ t ≤ π

0, otherwise
(6.11)

which are plotted in fig. 6.6a for the time range −π
2 ≤ t ≤ 5π

4 . As can be seen these functions
correspond to half sine waves, where f(t) starts in the coordinate origin and g(t) is phase shifted
by τ = π

4 to the left. The corresponding cross-correlation function Rfg(τ) as function of the lag
τ is depicted in fig. 6.6b. As can be seen the value of the cross-correlation function reaches its
maximum at lag τ = π

4 , which means both functions f(t) and g(t) are most similar, when g(t) is
shifted to the right by τ = π

4 . In this case most similar means the functions are overlapping and
therefore are completely identical.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Time t / s

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

f(t)

g(t)

(a) Continuous example functions f(t) and g(t) for which the cross-correlation is computed.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Lag / s

0

10

20

30

40

50

C
ro

s
s
-C

o
rr

e
la

ti
o

n

(b) Cross-correlation function Rfg(τ) for the two example functions f(t) and g(t).

Figure 6.6: Example showing the cross-correlation function Rfg(τ) of the two continuous functions
f(t) and g(t). The cross-correlation function reaches its maximum value for a lag of τ = π

4
s, which means that both functions are most similar when g(t) is shifted right by exactly
this lag.

Furthermore it is possible to define cross-correlation for two time discrete functions f(m) and

77

6 Shape Based Classification

g(m) by the infinite sum

Rfg(n) = (f ? g)(n) =
∞∑

m=−∞
f ∗(m)g(m+ n) (6.12)

with discrete timestep m and lag n between both functions.

In terms of a stochastic process cross-correlation has a slightly different meaning. Here cross-
correlation is a measure for the linear correlation of two stochastic variables A and B with
A 6= B. It can be expressed by the Pearson correlation coefficient

ρ(A,B) = cov(A,B)
σAσB

(6.13)

with standard deviations σA and σB and covariance

cov(A,B) = E [(A− µA) (B − µB)] (6.14)

of both stochastic variables A and B. µA and µB are mean values of those variables and E[∗] is
the expected value of the distribution. Covariance can be expressed differently for time discrete
measurement data as it is acquired in the present case. This data can be expressed as random
vector A = (A1, A2, . . . , Ai, . . . , AN)ᵀ containing N elements which take on specificely distributed
values. In this case covariance can be written as

cov(A,B) = 1
N − 1

N∑
i=1

(Ai − µA)∗(Bi − µB) (6.15)

where the star again marks the complex conjugate of the random variable. Because here A
and B are real-valued random vectors considering the complex conjugate has no effect on the
covariance. µA and µB are again mean values of the random vectors A and B and are defined
as

µA = 1
N

N∑
i=1

Ai. (6.16)

The Pearson correlation coefficient is similar to the covariance of the random variables, but
is normalized and therefore takes on values between −1 and 1, were 1 means positive linear
correlation and −1 negative linear correlation. If the correlation coefficient is 0 there is no linear
correlation between both variables. Speaking of cross-correlation in the statistical meaning refers
to the Pearson correlation coefficient of two different variables A 6= B, whereas auto-correlation
refers to the correlation coefficient of one variables at two different points t1 6= t2 in time A(t1)
and A(t2). In this case autocorrelation can be computed according to eq. (6.13) with subtitution
A = A(t1) and B = A(t2). Computation of the Pearson correlation coefficient for the same
variable ρ(A,A) however gives a correlation of 1 as the two time points t1 and t2 are identical
for calculation of the Pearson correlation coefficient.

Utilizing the Matlab function corrcoef for two random vectors A and B gives the correlation
coefficient matrix

R =

ρ(A,A) ρ(A,B)
ρ(B,A) ρ(B,B)

 (6.17)

78

6 Shape Based Classification

which contains cross-correlation and auto-correlation for both variables. Here ρ(A,B) = ρ(B,A)
and as already mentioned ρ(A,A) = ρ(B,B) = 1 apply. Therefore it is sufficient to only look at
ρ(A,B) or ρ(B,A) for determining correlation of the two random vectors A and B. As these
two vectors represent test sequence and class template the Pearson correlation coefficient is a
measure for the linear correlation between test sequence and class template. Whenever this
correlation is very high, the current test sequence and the class template are very similar to each
other and the class of the matched template can be assigned to the test sequence. [91–96]

6.2 Template Creation via Accurate Shape Averaging

In the following section creation of averaged time sequences shall be conducted. This process
step is euqivalent to training of the time series classifier which is developed in the subsequent
section. To understand the need for template averaging the results of automatic segmentation
and labelling in section 5.3.4 are regarded. There measurement data of the second and third test
cycle run is segmented into smaller segments representing one of the 12 base classes as defined
in section 4.3. These segments are used as training samples for the classifier. As mentioned
earlier goal is to predict individual classes of the time segments within the data of the first
test cycle run. In the following classification process a template matching classifier will be
used. Because a template matching classifier is a very simple parameter-free model, it is not
possible to tune any parameters based on training data. This means, no dedicated training
step can be conducted on the training data. Instead during classification it is necessary to
compare every sample of the test dataset with every segment of the training set belonging to
a specific class. For instance, if a given test sample shall be classified, first a comparison with
each of the 200 training samples of class 0 is conducted. Afterwards a comparison with the 200
training samples of class 1 is performed and so on. This results in 200 · 12 = 2400 samples, which
need to be compared to the test sample. For all 2201 samples in the test dataset this would
lead to a number of 2201 · 2400 = 5282400 comparative operations. Comparison in this case
means calculation of the DTW distance between the test sample and each training sample. As
mentioned in section 6.1.2 DTW is computationally expensive, which is why this classification
approach is pratically not feasable as calculation time would be too high. Instead prior to
classification averaging of all samples in the training dataset belonging to a specific class is
conducted, so that only 12 representative samples, so called templates remain. Each template
is an averaged time sequence representing all training samples of the training dataset. So for
each sample in the test dataset a comparison with only 12 templates instead of 2400 training
samples is needed. This sums up to 2201 · 12 = 26.412 necessary DTW distance caulculations
needed for classifying the whole test dataset. This is only 0.5 % of the prior aount of needed
DTW operations. So averaging of training samples to representative class templates leads to
a large benefit in computational expense of the later classification task. Of course averaging
itself is computationally complex and needs to be performed additionally, though this step has
to be conducted only once on the training data. After averaging is finished, templates can be
stored in for example CSV files and are this way easily reusable for the later classification task.
This approach of reducing computational expenses of the classification task is well known as
numersity reduction in literature [97–99].

79

6 Shape Based Classification

As creation of class templates from the training dataset s such an important step in classifying
patterns within time series data, this section is completely dedicated to the averaging process.
First an overview of different methods for time series averging described in literature is given.
After a brief description of the foundations of time series averaging, the Accurate Shape Averaging
(ASA) technique proposed in [83], which is one possible method of averaging two discrete time
sequences under retention of shape information via application of DTW, is presented. Afterwards
ASA is implemented in Matlab and wrapped with additional functionality to process the complete
test dataset in a single execution and to create averaged templates for each of the 12 base classes.
This algorithm is presented in detail in the last section.

6.2.1 Overview Over Existing Shape Averaging Methods

Time series averaging is a very common problem in signal processing and therefore multiple
different solutions to the problem have been proposed in the recent years. General shape
averaging algorithms beyond the context of machine learning can be found in [100–103]. Here
different methods for non-linear aligment and averging of multiple time series are proposed.
Further research in application of DTW for template averging can be found in [104, 105]. Well
established methods for time series averaging are for example Prioritized Shape Averaging (PSA)
[106], Random Sampling [107], Ranking [108] and Adaptive Warping Window (AWARD) [109]. A
derivate of the DTW algorithm called Scaled Dynamic Time Warping (SDTW) is introduced in
[106] as well. This algorithm provides averging of two sequences with additional weighting of both
sequences. Further improvements of the DTW algorithm for shape averaging called Cubic-Spline
Dynamic Time Warping (CDTW) and Iterative Cubic-Spline Dynamic Time Warping (ICDTW)
are proposed in [110]. Here not only the averaged amplitude, but also the proper placement
of data points within the averaged sequence is considered. Another very powerful time series
averaging method is Dynamic Time Warping Barycenter Averaging (DBA) introduced in [111].
This approach computes the average of all time sequences in one single step instead of computing
the pairwise average of two sequences in each iteration of a loop. DBA is the newest algorithm
for sequence averaging and outperforms every existing algorithm, though it is more complex to
implement than other methods like ASA.

6.2.2 Foundations of Shape Averaging

At this point a short introduction to shape averaging shall be given, because shape averaging is
different from usual amplitude averaging of signals. This is shown in fig. 6.7. Here two time
sequences containing the same shape feature, but at two different temporal positions, shall be
merged into one averaged sequence. If amplitude averaging is performed, like in fig. 6.7a, the
merged sequence is constructed by calculating the mean of both original sequences sample-by-
sample without considering any information about the shape feature and its temporal position.
Shape averaging by means of DTW is different from that by first non-linear aligning both
signal based on the contained shape information and then calculating the mean for both aligned
sequences. Result is a sequence, containing an averaged version of the original shape feature that
was contained in both original sequences. Consequently this form of averaging is the desired one

80

6 Shape Based Classification

for the present problem of class template creation by averging of multiple training sequences.
If shape averaging is applied to all training sequences it is possible to retrieve only one final
averaged sequence containing all shape information of the training sequences neglecting any
phase shifts or misalignments between the training sequences.

+

=

(a) Arithmetic averaging of two se-
quences.

+

=

(b) Shape averaging of two sequences.

Figure 6.7: Difference between arithmetic averaging and shape averaging of two sequences. Only
shape averaging maintains the shape information of the original sequences, while this
information is lost in general when arithmetic averaging is conducted. [83]

Before the ASA algorithm for shape averaging of training sequences is explained in detail, it is
helpful to understand how the merging process of multiple different sequences is performed in
general. This pairwise sequence averaging is illustrated in fig. 6.8. Consider the initial vector

t = (t1, t2, t3, . . . , tr) (6.18)

containing all r training sequences t1, t2, t3, . . . , tr. All of these training sequences belong to the
same base class {0 . . . 11} and therefore represent this class. In this case r equals 100 as for each
class 100 training segments exist within the second test cycle run, which is chosen as basis for
creation of the averaged class templates. Though there are twice as much training segments
in the acquired training data, in the following training segments from the third test cycle run
are not considered. This is due to the high computational complexity of the DTW averaging,
which results in long computation time. In order to reduce the time needed for averaging,
only the training segments from the second test cycle run are used for template creation. To
create a single representative averaged class template from these r = 100 different sequences,
pairwise avergaging needs to be conducted as the ASA algorithm can only handle two sequences
at a time. Therefore, iteratively two sequences, say sequences t1 and t2, are picked from the
sequence vector t and averaged by means of DTW. Result is the averaged sequence t12. In the
same iteration both original sequences t1 and t2 are removed from the sequence vector and the
averaged sequence is inserted into the vector. So in each iteration the length r of the sequence
vector t decreases by 1. If this process is repeated r − 1 times, only one averaged sequence is
left. This sequence contains shape information of all the different training segements initially
stored in the sequence vector t. Which sequences are merged in each iteration can be chosen in
different ways. First it is possible to just merge the first and second segment each time, second

81

6 Shape Based Classification

the two sequences can be chosen randomly and third segments can be chosen based on some
criteria. In this case the similarity of each pair of sequences is calculated and then the most
similar sequences are averaged in each iteration. This will be explained in more detail below.

· · ·

· · ·tr

...
t4

t3

t2

t1

tr

...
t4

t3

t12

tr

...
t3r

t12

t12...3r

r = 100 r = 99 r = 98 · · · r = 1
Figure 6.8: Schematic showing pairwise averaging of two sequences in each iteration. As the ASA

algorithm can only perform averaging of two sequences at a time, sequencing of averaging
operation is necessary. In each iteration the two most similar sequences are identified
and averaged by means of DTW. Both original sequences are removed from the sequence
vector and the averaged sequence is inserted. If initial number of sequences is r the
algorithm terminates after r − 1 iterations when only one averaged sequence is left.

6.2.3 Operational Principle of the ASA Algorithm

Now that the general operating principle of pairwise averaging is understood, the ASA algorithm
is explained in more detail. This algorithm, first introduced in [83] comprises four major steps,
which are

1) Localizing pair of most similar sequences,
2) Alignment of both sequences by means of DTW,
3) Calculation of the shape averaged sequence,
4) Resampling of the averaged sequence.

First these four steps are examined in a more general manner and afterwards the actual
implementation of the ASA algorithm including any additional functionality for iterative pairwise
averaging and class template creation for every 12 base classes is presented. It is important to
understand that the following four steps are conducted every time two sequences are averaged.

6.2.3.1 Localizing Pair of Most Similar Sequences

First step in calculating an average of two sequences is localization of the two most similar
sequences within the whole sequence vector t. Calculating the average of the two most similar

82

6 Shape Based Classification

sequences results in higher accuracy of the averaging result than choosing the sequences randomly
as the most similar sequences need to be time warped by the smallest possible amount. To find
the most similar pair of sequences a distance matrix D ∈ Rr×r containing the DTW distances
di,j between each pair of the r sequences in the sequence vector t is calculated. Result is the
following matrix

D =

1 2 3 j r

d1,1 d1,2 d1,3 · · · d1,j · · · d1,r 1
0 d2,2 d2,3 · · · d2,i · · · d2,r 2
0 0 d3,3 · · · d3,j · · · d3,r 3
...
0 0 0 · · · di,j · · · di,r i
...
0 0 0 · · · 0 · · · dr,r r

. (6.19)

Because the distance matrix is symmetrical, which means di,j = dj,i, it is sufficient to calculate
only the top right triangular matrix. Every element below the matrix diagonal is set to 0.
Obviously the diagonal elements are di,i = 0 as well as the distance of a sequence from itself is 0.
Because the most similar sequences need to be found, the minimum non-zero element within the
distance matrix D has to be found. To achieve this, every matrix element di,j = 0 is found and
replaced by di,j =∞. Now the minimum element as well as its row and column index is found
by means of the Matlab min function. In this example the bold printed element d1,2 in matrix
D is the smallest element. As this element is the distance between the first and second sequence
t1 and t2 these two sequences are the most similar ones in the current iteration of the algorithm.
Because of the high number of necessary DTW distance calculations the step of finding the most
similar pair of sequences is very slow. Acceleration is possible by using a lower bounded DTW
as described in section 6.1.2. [83]

6.2.3.2 Alignment of Both Sequences by Means of DTW

After the pair of most similar sequences is found, both sequences need to be aligned correctly
in order to calculate the shape average in the next step. Alignment is conducted by DTW of
both sequences as described in section 6.1.2. Having a look back at fig. 6.3b makes clear, what
happens in this stage of the ASA algorithm. The warping path w is determined so that the
warping cost is minimized. Result is a non-linear alignment based on the amplitude values of
both sequences as illustrated in fig. 6.3b. This steps ensures matching of the charactersitic shape
features of the sequences, which is essential for calculating a shape average instead of only an
arithmetic average. As the DTW distance is calculated independently from the DTW distance
used for determining similarity of the sequences, it is possible to change the distance metric of
the DTW function or apply a global constraint like for instance a Sakoe-Chiba band on the
warping path. [83]

83

6 Shape Based Classification

6.2.3.3 Calculation of the Shape Averaged Sequence

After the sequences are now properly aligned, the actual averaging can be conducted. Both
sequences t1 and t2 are merged and the average sequence t12 is calculated. The elements of this
sequence are determined by

t12,k(t1, t2, wk,1, wk,2) =
(
wk,1 + wk,2

2 ,
t1 (wk,1) + t2 (wk,2)

2

)
. (6.20)

Here k = 1,2, . . . , K with max {m,n} < K < m + n− 1. n and m are the number of samples
within t1 and t2. This means the length of the averaged sequence t12 is equal to the length of
the warping path w. wk,1 and wk,2 are the kth tuple wk = (wk,1,wk,2) = (i,j) of the warping
path. Consider the example sequences t1 ∈ Rm and t2 ∈ Rn with t1 = [1 1 1 2 2 3 3 2 1 1] and
t2 = [1 1 2 2 2 2 3 3 2 1 1] from section 6.1.2 again. For this sequences the warping path was w =
{(1,1), (2,1), (3,2), (4,3), (4,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10), (10,11)}. The resulting aver-
aged sequence t12 calculated after the formula above would be t12 = {(1,1), (1.5,1), (2.5,1), (3.5,2),
(4,2), (4.5,2), (5.5,2), (6.5,3), (7.5,3), (8.5,2), (9.5,1), (10.5,1)}, which is illustrated in fig. 6.9a as
the pink dashed line. [83]

6.2.3.4 Resampling of the Averaged Sequence

Last step of the ASA algorithm is resampling of the averaged sequence. Due to non-linear
alingment of both original sequences the averaged sequence contains more data points than
the original sequences. For instance the calculated averaged sequence t12 contains 12 samples,
whereas the length of the original sequences t1 and t2 was 10 and 11 respectively. Each time
an individual data point of one of the original sequences is matched with more than one data
point of the other sequence a new data point in between of those two matched up data points
occurs in the averaged sequence. This leads to additional data points in the averaged sequence,
which might be not properly aligned with the sampling grid of the original series. The problem
becomes even worse, when averaging is repeated multiple time as happens in this case. On each
averaging iteration new data points are inserted in between of the data points of the original
sequences. So in each averaging iteration the averaged sequence becomes longer. To overcome
this issue, resampling by means of cubic spline interpolation is conducted after each averaging.
In the implementation the Matlab function spline is used to calculate an interpolated sequence.
Interpolation reduces the number of data points to the number of samples in the shorter original
sequence. In this case the number of data points is reduced to 10. Moreover the data points in
the interpolated sequence are exactly aligned to the sampling grid of the original sequence. This
can be seen in fig. 6.9b, where the green line represents the cubic spline interpolated averaged
sequence t∗12. [83, 112]

6.2.4 Description of the Template Creation Algorithm

After the functional principle of the ASA algorithm for shape averaging of sequences is now fully
understood the overall algorithm for iterative pairwise averaging and template creation for all 12

84

6 Shape Based Classification

t2

t1

t12•• •
••• •

• •
•

• •

(a) Accurate shape averaged sequence
of two discrete signals.

t2

t1

t∗12• •
•

• •
•

•
•

•
•

(b) Cubic spline resampled averaged
sequence.

Figure 6.9: Accurate shape averaged sequence (pink) of two original signals t1 and t2 and same
sequence after cubic spline interpolation (green). The averaged output sequence contains
more samples than both of the original sequences, which is why cubic resampling is needed
to reduce the number of samples of the averages sequence to the number of samples within
the original signals. [83]

base classes is presented in the following section. The full Matlab sourcecode of this algorithm
can be found in listing A.8. A schematic of the functional principle of the whole algorithm not
only consisting of the ASA algorithm, but also including loading of labeled training dataset and
iterative pairwise averaging of two sequences as described in section 6.2.2 is shown in fig. 6.10.

First the labeled measurement data from the second test cycle run is loaded. As mentioned in
section 6.2.2 it is sufficient to create the class templates based only on the training samples
within the measurement data from the second test cycle run. Using the samples from the third
test cycle run as well would not lead to much improvement of the averaging result as there are
already 100 training sequences per class. Instead computation time would increase drastically,
as the number of DTW operations per iteration needed for determination of the pair of most
similar sequences scales with the order O(n2).

After loading of the labeled dataset the algorithm enters the first loop, which iterates over the
12 different base classes. Result of each iteration of this loop is an averaged class template for
the corresponding base class. To achieve this first all training segments belonging to the current
base class are retrieved and stored in the sequence vector t. A special case is the idle class 0,
because the training set does not contain only 100 segments of this type, but 1101. So in order
to reduce the number of segments of class type 0, only the first 100 segments occuring in the
labeled training set are retrieved. The first and last segments as well as the segment in between
of the first two subcycles are discarded as they are longer than the usual 2 s long idle phases in
between of each axis movement. Another problem occuring with the idle class 0 is length of the
training segments, which varies for each segment. For each other base class segments have the
same lengths as the end cut is placed after a constant amount of samples (see section 5.3.1).
But for the idle class the endpoint is the next starting point and this position flucutates by some
samples. In order to create a proper class template for the idle class, it is necessary to bring all
training segments to the same length. To do this the length of each training segment of classs

85

6 Shape Based Classification

0 is determined and the minimum is calculated. Then every training segment of this class is
shortened to this minimum length.

Now that all preprocessing is done the actual pairwise shape averaging as already described in
section 6.2.2 is conducted. As it is necessary to calculate the shape average pairwise another loop
is needed that iterates over all r = 100 training segments that are stored in the sequence vector t
for the current base class. As length r of the sequence vector t decreases in each iteration of this
loop by 1, the loop is run as long as the length of the sequence vector is larger than 1. If it is 1
the loop terminates and the sequence vector only contains the final averaged sequence for the
current base class. On execution of this loop first the triangular distance matrix D as described
in section 6.2.3.1 is calculated to determine which two sequences within the sequence vector are
most similar. Then the minimum non-zero element and its position within the distance matrix
is retrieved. Row and column indices of this element provide the indices of the two most similar
sequences in the sequence vector t.

After the two most similar sequences have been found according to section 6.2.3.2 another DTW
is performed to non-linearly align both sequences based on their amplitude values. At this point
it is possible to select, whether the warping path shall be unconstrained as in fig. 6.5a or a
Sakoe-Chiba band as in fig. 6.5b shall be applied to restrict the deviation of the warping path
from the matrix diagonal in the cumulative distance matrix calculated during the DTW (see
fig. 6.4). In this case the width of the Sakoe-Chiba band is set to b = 10 samples.

Now shape averaging of the aligned sequences as described in section 6.2.3.3 needs to be performed.
The retrieved sequence is stored and afterwards resampled as explained in section 6.2.3.4. This
is done by means of the Matlab spline function [91], which takes the averaged sequence as well
as a vector containing the query points at which the amplitude value of the sequence shall be
evaluated, as input arguments. Subsequently both original sequences are removed from the
sequence vector t and the averaged and interpolated sequence is inserted instead of the two
sequences. The position index within the squence vector t at which the averaged sequence is
inserted is given by the row index of the minimum element in the distance matrix. So if for
instance sequences t1 and t2 are identified to be most similar the index values of the minimum
element are (i,j) = (1,2). Therefore both sequences t1 and t2 are removed from the sequence
vector t and the averaged sequence t12 is inserted at index position i = 1 in the sequence vector
giving the updated sequence vector

t = (t12, t3, t4 . . . , tr) (6.21)

with updated length r = r− 1. Now the whole process starts all over with the updated sequence
vector t until the termination criterion of r = 1 is met.

The whole process described above is repeated 12 times to create averaged templates for every
base class from all training sequences. Finally the resulting 12 templates are stored to a CSV
file and variable values are exported to a Matlab file for later usage. Moreover the resulting
templates are visualized amongst all 100 training segments for each of the templates.

86

6 Shape Based Classification

(a) Overall structure of the template averag-
ing algorithm.

(b) Subroutine for shape averag-
ing by means of DTW.

Figure 6.10: Schematic of the template averaging algorithm. In each iteration the two most similar
sequences are found and merged in an average sequence by means of dynamic time
warping. Averaging is repeated until only one final average sequence is left. This is
repeated for all 12 different kinds of templates, each corresponding to one of the 12 base
classes.

87

6 Shape Based Classification

6.2.5 Results of the Template Creation Algorithm

Results of the template creation algorithm can be found in fig. 6.11 and fig. 6.12, which show
resulting averaged templates for class 0, 4 and 5 respectively. Here the gray lines correspond
to the 100 training sequences within the segmented and labeled measurement data from the
second test cycle run. The green line corresponds to the averaged sequence calculated via
unconstrained DTW and the red line on the contrary is the averaged template resulting from the
DTW contrained with a Sakoe-Chiba band of width b = 10. As can be seen escpecially in fig. 6.12
the constrained DTW provides better averaging results, which complies with the results from
[87] that state narrow constrained DTW performs in general better than unconstrained DTW.
Though the unconstrained DTW achieves minimum distance between each pair of sequences
during the averaging step, it leads to overfitting of the averaging result to outliers within the
sequence vector. This can be seen in the multiple steps the green line shows. On the opposite
the red line as result of a constrained DTW is much smoother and does not show any steps.
This behaviour can also be seen in the class templates for all other base classes that can be
found in appendix A.5. Only the class templates for classes 8, 9, 10 and 11 differ as here the
results from the constrained and the unconstrained DTW are nearly the same. This might be
explained by the fact that the training sequences differ much less from another than the training
sequences for the other base classes.

Regarding execution time the algorithm needs approximately 1110 s for calculation of all class
templates excluding time needed for loading the labeled training data, storing created templates
in CSV files and plotting of results. Here it becomes apparent, why the templates were calculated
based on only the trainign samples from the second test cycle run instead of all available training
segments form second and third test cycle run. As already said, execution time scales with
O(n2) using all training templates would increase execution time by manifolds. As the averging
needs to be performes only once and the averaged templates are then available in form of CSV
files for later usage, the long execution time of the averaging is no problem and the algorithm
does not need to be further improved. However some improvement could be performed in future
work as the distance matrix D in section 6.2.3.1 is recalculated completely in each iteration
of the pairwise averaging to find the most similar pair of sequences. As the sequence vector t
only changes by the two orginal sequences that are removed and the averaged sequence that is
inserted it would be sufficient to only recalculate some of the distances in the distance matrix in
each iteration as all other distances are constant. This would drastically reduce the number of
necessary DTW distance calculations and speed up execution of the template creation algorithm
significantly. As this would only affect execution time of the algorithm, rather than the averaging
result this optimization is not performed at this point because as already mentioned template
creation needs to be performed only once.

6.3 Development of Shape Based Classifiers

In the following section algorithm and implementation of the template matching classifier
are presented. Refering back to the fundamentals of shape based time series classification in
section 6.1.1 the classifier algorithm introduced in this section has the overall task to determine

88

6 Shape Based Classification

10 20 30 40 50 60 70 80

Data Sample

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

Figure 6.11: Resulting averaged template of the accurate shape averaging algorithm for sequences
of class 0, which is the machine idle state. Gray lines represent all 100 individual
sequences from the second test cycle run, which were used for calculating the averaged
sequence, shown as green and red lines with cross markers. The red line corresponds to
the averaging result of a DTW with a Sakoe-Chiba band as global constrained for the
warping path.

classes of all segments in the previously segmented measurement data which was gathered during
the first test cycle run. Prediction of these classes shall be as accurate as possible, this means
as many class labels as possible shall be estimated according the true classes of the segments.
The proposed algorithm includes two different classifiers. The first classifier is based on DTW
distance and the second one calculates cross-correlation coefficients of the test sequence and
each template to determine which template is most similar to the segment and assign a class
label accordingly. Results of both classifiers are not combined, however performance of both
classifiers is measured and compared in the next section. Now the operational principle of the
algorithm containing both classifiers is described in detail. The full Matlab sourcecode can be
found in listing A.9. A flowchart containing the main process steps of the template matching
algorithm is depicted in fig. 6.13. In fig. 6.13a the overall structure of the algorithm is illustrated
and fig. 6.13b shows the core part of the algorithm containing both classifiers that perform class
prediction on each segment in the test set.

Before any classification can be conducted necessary data needs to be loaded. This includes the
averaged class templates created in section 6.2, the measurement data from the first test cycle
run which is used as test data and the labelset created in section 5.3 containing only nominal
segments. The labelset contains information about segment boundaries within the measurement
data, which is important because the classifier shall determine a class label for each individual
segment. So it is neccessary to know start and end point of each segment. After this initial
information is loaded the algorithm enters the main loop which iterates over all segments within
the test set. In this loop first the current segment is retrieved from the measurement data based
on the cut positions in the labelset. Now the algorithm needs to calculate distance or similarity
measures for the current test segment with each of the class templates to determine which class
template is most similar to the sequence. The class of this template is then assigned to the

89

6 Shape Based Classification

20 40 60 80 100 120 140 160

Data Sample

7

7.2

7.4

7.6

7.8

8

8.2

8.4

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 4, the Y-axis forward movement.

20 40 60 80 100 120 140 160

Data Sample

7

7.2

7.4

7.6

7.8

8

8.2

8.4

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Averaged template for class 5, the Y-axis backward movement.

Figure 6.12: Resulting averaged templates of the accurate shape averaging algorithm for sequences of
classes 4 and 5, in which the Y-axis moves forward and backward. Gray lines represent all
100 individual sequences from the second test cycle run, which were used for calculating
the averaged sequence, shown as green and red lines with cross markers. The red
line corresponds to the averaging result of a DTW with a Sakoe-Chiba band as global
constrained for the warping path.

90

6 Shape Based Classification

current segment. To caluclate similarity of the test segment with each class template another
loop within the main loop iterates over all 12 class templates for each segment. In this loop
first the signal mean is removed to prevent the classifiers from being obstructed by any signal
offsets which might vary over long time periods, for instance because of the power consumption
of the cooling, which is assumed to be constant, however this is not exactly true. After this
the actual distance or similarity measure is calculated. First the DTW distance between the
current class template and the current segment is calculated and the distance stored in a vector.
Moreover the warping path is stored and used to realign template and test segment. For these
realigned sequences then the cross correlation coefficient is computed and stored in another
vector. After all 12 iterations of the inner loop the DTW distance vector and the correlation
coefficient vector contain 12 elements each for all 12 class templates. Now the minimum DTW
distance respectively the maximum correlation coefficient is found by means of the Matlab
min respetively max functions and the class label of the corresponding template is retrieved
and stored in the ouptut dataset matrix. This matrix has seven columns as shown in table 6.1
which contain an integer number as index for the current segment, the segment startpoint and
endpoint, the maximum correlation coefficient and via cross-correlation predicted class, the
minimum DTW distance and the via DTW predicted class. This information is stored for every
segment within the test set and finally stored in a CSV file. Based on this results moreover the
classification accuracy for both classifiers according to eq. (6.1) is calculated and displayed.

Table 6.1: Extract from the output dataset created by the template matching classifier algorithm.

No. Cut Index Cross-Correlation Classifier DTW Classifier

Start End Max. Coefficient Predicted Class Min. Distance Predicted Class

1 1 470 0.72419 7 6.2234 0
2 470 1611 0.99972 1 61.311 1
3 1611 1710 0.79537 1 0.62404 0
4 1710 2851 0.99994 1 43.024 1
5 2851 2950 0.8524 8 0.68651 0
6 2950 4091 0.99983 1 57.703 1
...

...
...

...
...

...
...

2201 359405 359461 0.9996 11 1.9179 11

As mentioned in section 6.1.1 both classifiers have multiple freely selectable parameters, which
need to be chosen properly to achieve optimal prediction accuracy. An overview of all parameters
is given in fig. 6.14. As can be seen for both classifiers there are four parameters which can
take on multiple different values. For instance during computation of the DTW distance in the
classifier algorithm the DTW can use different kinds of distance measures for determining the
distance matrix D ∈ Rm×n between the signals x ∈ Rm and y ∈ Rn. According to [91] there
are three different distance metrics are available. The euclidean distance

di,j =
√

(xi − yj)2, (6.22)

91

6 Shape Based Classification

(a) Overall structure of the template match-
ing classifier algorithm.

(b) Subroutine for calcula-
tion of similarity between
current segment and each
template.

Figure 6.13: Schematic of the template matching classifier algorithm. Each time series segment of the
previously segmented measurement data is compared to the 12 averaged class templates
and the most similar class is assigned to the segment. This is repeated for every segment
within the first test cycle run and afterwards the accuracy score of the classifier is
calculated. Similarity of templates and segments is calculated by means of the lowest
DTW distance or highest cross correlation coefficients.

92

6 Shape Based Classification

the squared distance
di,j = (xi − yj)2 (6.23)

and finally the symmetric Kullback-Leibler distance
di,j = (xi − yj)(log xi − log yj). (6.24)

Besides the distance measure another parameter that can be varied to change performance of the
template matching classifier is restriction of the warping path w by some global constraint like a
Sakoe-Chiba band as illustrated in fig. 6.5b. As the width b of this band is an arbitrary positive
integer value it is neccessary to choose reasonable limits for the width. In this parameter studies
the band width is varied in a range from 1 to 60, which is a sensible choice as the smallest
template, which is the one for class 11, contains only 57 samples. So limiting the deviation of the
warping path far beyond the number of 57 samples makes no sense as this is identical with not
using a constraint on the warping path at least for this class at all. Another classsification run
is executed without using a global constraint on the DTW warping path, which is synonymous
with an infinite band width b→∞. Next parameter which can be choosen freely is the kind of
averaged class template used for determining class labels. As mentioned in section 6.2.5 two
different kinds of averaged templates were created. One utilizing a Sakoe-Chiba band of width
10 for restricting the DTW warping path during the averaging and another one without any
restriction of the warping path. Averaged class templates for both variants looked different
from each other and were stored in separate CSV files. At this point classification accuracy
is compared for each of the two different sets of class templates. The last parameter which is
changed in the parameter studies is the removal of the offset from each segment and template. As
mentioned earlier in this section removal of the mean makes the classification invariant against
varying offsets of the test sequence and therefore affects classification accuracy. To examine this,
one half of the classifications is performed with removed offsets of test sequence and template
and the other half without removed offset. There is one constraint regarding calculation of the
symmetric Kullback-Leibler distance metric. As this metric calculates logarithmic values of the
signal amplitudes xi and yj it is not possible to calculate this measure for negative amplitude
values. This becomes a problem when the mean value is subtracted from the test sequence as
well as the template as then negative amplitude values occur. So whenever the distance metric
is symmetric Kullback-Leibler distance the classification accuracy is only measured for the test
sequence and templates without removal of the mean value. All those parameters apply for both
the DTW classifier as well as the classifier based on maximum cross-correlation between test
sequence and class templates, because the cross correlation coefficients are calculated for the
DTW aligned test segment and class templates.

The described four parameters and their possible values span a parameter grid of 3×60×2×2 =
720 different classsification tasks for which prediction accuracy has to be calculated each. As
one classification involves prediction of classes for all 2201 segments in the test set, evaluation of
calculation accuracy of all 720 different combinations of the parameter values is computationally
very expensive and takes a long computation time. However this process needs to be carried out
only once to find the optimal combination of parameter values. Therefore long computation
time is not a major issue.

Evaluation of the parameter grid is conducted via a modified version of the template matching
algorithm presented in fig. 6.13. Main difference of this algorithm are the three loops that are

93

6 Shape Based Classification

Figure 6.14: Overview of freely selectable parameters and possible parameter values for both DTW
classifier and cross-correlation classifier. A paramter studies is conducted to find the
optimal set of parameters that leads to highest classification accuracy.

wrapped around the whole classification algorithm except for the measurement data, labelset
and class template import. The inserted three loop iterate over the possible values of the used
DTW measure, width b of Sakoe-Chiba band and options for removal of the sequence mean
values. For each of the resulting 240 iterations the achieved classification accuracy is stored
along the setting of the three mentioned parameters. The last of the four parameters, the kind of
class templates used for classification is not changed in a loop, but needs to be changed manually
by modifying the class template import filename. After calculation of the according classifier
accuracies results are plotted. Another run of the classification algorithm has to be performed
manually for retrieval of prediction accuracy for a DTW without global constraint of the warping
path. The according Matlab sourcecode for the modified algorithm for the parameter studies can
be found in listing A.10. Results of the parameter studies are examined in the next section.

6.4 Evaluation of Classification Result

In this section experimental results of the exhaustive grid search for optimal parameters of both
DTW as well as cross-correlation template matching classifiers are analysed and the optimal set
of parameters for both classifiers is determined. In this case the optimal set of parameters is the

94

6 Shape Based Classification

combination of parameter values which lead to highest classification accuracy η as defined in
eq. (6.1). In this case accuracy can be measured easily by comparing the prediction result with
the labelset. The labelset created in section 5.3 contains true class labels for each of the 2201
segments of the measurement data of the first test cycle run. So calculating accuracy is as easy
as comparing each predicted class label with the correpsonding true class label in the labelset.
Whenever the predicted class is identical to the true class of the segment, accuracy is increased
by 1/2201. Therefore an optimal classifier would reach accuracy of 1.

In the following results of the parameter studies described in section 6.3 are presented in different
diagrams showing accuracy score of both the DTW and the cross-correlation classifier for multiple
different combinations of parameters. First fig. 6.15 shows accuracy of the the DTW classifier for
different DTW distance metrics. Moreover width of the Sakoe-Chiba band restricting the DTW
warping path globally is changed in the range of 1 to 60 with a step size of 1 and accuracy score
is shown for these different widths. In fig. 6.15a the mean value is removed from test segment as
well as class template. Different from that fig. 6.15b shows accuracy score without prior removal
of signal mean. As mentioned before symmetric Kullback-Leibler distance can not be evaluated
for negative signal amplitudes. Therefore this measure was not evaluated for the sequences with
prior removal of the mean value as here negative amplitude values occur. Accuracy score for
the cross-correlation classifier und the same parameter variations is depicted in fig. 6.16. Both
classifiers use class templates that are created utilizing DTW with a global contraint on the
warping path, in this case a Sakoe-Chiba band of width b = 10 as explained in section 6.2.4.
In contrast to this fig. 6.17 and fig. 6.18 show accuracy for the DTW and the cross-correlation
classifier respectively. Again the first plot shows the accuracy score for different DTW distance
measures witout prior removal of the test sequence and class template mean values. Unlike this
the lower plot again shows accuracy score for sigals without removal of the mean value.

Finding the optimal set of parameters for both classifiers is now as easy as looking at the
combination of parameters that achieve highest classification accuracy. Peak accuracy scores for
every tested combination of parameters are shown in table 6.2. Here the accuracy scores for
both classifiers as well as the correpsonding width of the Sakoe-Chiba band at which highest
accuracy is reached are listed. Maximum accuracy scores, printed in bold, are 97.0000 % for the
DTW classsifier and 77.9545 % of the cross-correlation classifier. The DTW classifier achieves
this accuracy optimum utilizing a class template that was created with globally restricted DTW
warping path, removed mean value from test sequence and class template, squared distance
measure of the DTW and a width of b = 1 for the Sakoe-Chiba band restricting the warping
path during classification. Opposed to that the cross-correlation classifier reaches maximum
accuracy for a Sakoe-Chiba band width b = 37 and euclidean distance measure for the DTW.
Again the used class template is one created with restricted DTW warping path and signal mean
of test sequence and class template are removed. Looking at the results for the classification
accuracy in table 6.2 it becomes clear that the DTW classifier performs generally much better
than the cross-correlation classifier. How big the difference between both classsifer accuracies
is depends on the combination of parameters. For the optimum case of the DTW classifier
the cross-correlation accuracy is 20.64 % lower than accuracy of the DTW classifier. For the
optimum case of the cross-correlation classifier the difference is 18.73 %. If the signal mean is
not removed from test sequence and class template performance of the cross-correlation classifier

95

6 Shape Based Classification

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.915

0.92

0.925

0.93

0.935

0.94

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

symmetric kullback-leibler

(a) Accuracy of the DTW classifier on the test set without previous subtraction of the mean value.

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

0.97

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

(b) Accuracy of the DTW classifier on the test set with previous subtraction of the mean value.

Figure 6.15: Classification accuray η of the classification based on DTW distance with globally
contrained warping path. Constraint is a Sakoe-Chiba band with width b that is varied
during the parameter studies. Different colored lines refer to different distance measures
for calculating the DTW warping cost. Accuracy is estimated both for the test set
with and without previous subtraction of the mean value of each segment. Here class
templates which were averaged with a Sakoe-Chiba band of width b = 10 as global
constraint on the warping path were used as reference.

96

6 Shape Based Classification

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.54

0.55

0.56

0.57

0.58

0.59

0.6

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

symmetric kullback-leibler

(a) Accuracy of the cross-correlation classifier on the test set without previous subtraction of the mean
value.

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

(b) Accuracy of the cross-correlation classifier on the test set with previous subtraction of the mean value.

Figure 6.16: Classification accuracy η of the classification based on cross-correlation of the templates
with the subsequences of the test set. As template and test sequence are aligned via DTW
accuracy depends on the Sakoe-Chiba band width b and the DTW distance measure
as well. Again the accuracy is compared for the test set with and without previous
subtraction of the mean value of each segment. Here class templates which were averaged
with a Sakoe-Chiba band of width b = 10 as global constraint on the warping path were
used as reference.

97

6 Shape Based Classification

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

symmetric kullback-leibler

(a) Accuracy of the DTW classifier on the test set without previous subtraction of the mean value.

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

(b) Accuracy of the DTW classifier on the test set with previous subtraction of the mean value.

Figure 6.17: Classification accuray η of the classification based on DTW distance with globally
contrained warping path. Constraint is a Sakoe-Chiba band with width b that is varied
during the parameter studies. Different colored lines refer to different distance measures
for calculating the DTW warping cost. Accuracy is estimated both for the test set
with and without previous subtraction of the mean value of each segment. Here class
templates which were averaged without a global constraint on the warping path were
used as reference.

98

6 Shape Based Classification

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

symmetric kullback-leibler

(a) Accuracy of the cross-correlation classifier on the test set without previous subtraction of the mean
value.

5 10 15 20 25 30 35 40 45 50 55 60

Sakoe-Chiba Band Width b

0.55

0.6

0.65

0.7

0.75

0.8

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

euclidean

squared

(b) Accuracy of the cross-correlation classifier on the test set with previous subtraction of the mean value.

Figure 6.18: Classification accuracy η of the classification based on cross-correlation of the templates
with the subsequences of the test set. As template and test sequence are aligned via DTW
accuracy depends on the Sakoe-Chiba band width b and the DTW distance measure
as well. Again the accuracy is compared for the test set with and without previous
subtraction of the mean value of each segment. Here class templates which were averaged
without a global constraint on the warping path were used as reference.

99

6 Shape Based Classification

compared to the DTW classifier even goes down. Here the DTW classifier accuracy is up to
37.05 % better than accuracy of the cross-correlation classsifier.

Table 6.2: Peak accuracies η and optimal width b of Sakoe-Chiba band for DTW and cross-correlation
classifiers for different combinations of parameter values.

Kind of Class
Template

Signal
Mean

DTW Distance
Measure

Sakoe-Chiba
Band Width b Accuracy η / %

DTW XCOR DTW XCOR

with constraint removed euclidean 1 37 96.6818 77.9545
with constraint removed squared 1 37 97.0000 76.3636

with constraint not removed euclidean 1 7 93.4545 58.9091
with constraint not removed squared 1 6 93.8182 59.4545
with constraint not removed symmetric KL 1 6 93.7727 59.5000

without constraint removed euclidean 1 52 92.4091 75.9545
without constraint removed squared 57 56 93.7273 74.5455

without constraint not removed euclidean 1 19 93.0909 56.0455
without constraint not removed squared 1 23 93.5455 58.3636
without constraint not removed symmetric KL 1 23 93.4091 58.4091

The last parameter option that has to be tested is usage of an globally unrestricted DTW warping
path for calculation of the distance matrix during the DTW. Regarding to the experiments
above this complies to an infinite Sakoe-Chiba band width b→∞, meaning the warping path
can reach its global minimum, however is susceptible to outliers and therefore can lead to a high
amount of signal warping. Again accuracies of both classifiers under different combinations of all
other parameters except for the band width b of the Sakoe-Chiba band are evaulated. According
results are shown in table 6.3. Once more maximum accuracy vealues reached for both classifier
are printed in bold. For the DTW classifier the maximum accuracy reached is 96.3182 % and for
the cross-correlation classifier it is 74.0000 %. Both values are slightly lower than the peak values
reached with globally restricted warping path in the DTW process. However the differences in
accuracies reached with the DTW and cross-correlation classifier are still similar to the ones in
table 6.2. In the cases with removed mean value from all test sequences and class templates
DTW accuracy is approximately 20 % better than cross-correlation accuracy. If the mean value
is not removed from test sequence and class template the differences between both classifier
accuracies increase up to 46 %, which is even more than in the above case of globally restricted
DTW. Apart from this accuracies for the DTW classifier are ver similar to the ones shown in
table 6.2. Differences are larger for the cross-correlation classifier, which is reasoned by the
higher distortion of the signals by the unrestricted DTW, which affects the cross-correlation of
test sequences and class templates significantly.

Summarizing the above results, it can be said that the DTW classifier outperforms the cross-
correlation classifier by means of classification accuracy by at least 18 % in every test case.

100

6 Shape Based Classification

Table 6.3: Classification accuracy η of both classifiers for unconstrained DTW for different combina-
tions of parameters. Unconstrained means no Sakoe-Chiba band is applied to the warping
path, so b→∞.

Kind of Class
Template

Signal
Mean

DTW Distance
Measure Accuracy η / %

DTW XCOR

with constraint removed euclidean 96.3182 73.8636
with constraint removed squared 95.3182 73.1364

with constraint not removed euclidean 92.7727 48.8636
with constraint not removed squared 92.9545 48.7727
with constraint not removed symmetric KL 92.4545 48.7727

without constraint removed euclidean 92.0000 73.3182
without constraint removed squared 93.3636 74.0000

without constraint not removed euclidean 92.7273 46.6364
without constraint not removed squared 93.8636 47.6818
without constraint not removed symmetric KL 93.1364 47.6818

Generally performance of the DTW classifier is best for a combination of removed mean value
from the signals and utilization of class templates created with globally restricted DTW. There
is no significant difference in accuracy of the DTW classifier when restricting the warping path
during the classification. Removing signal mean values from test sequences and class templates
does not affect accuracy of the DTW classifier much, however accuracy of the cross-correlation
classifier is significantly increased by removing the mean values. The best classifier found by the
exhaustive grid search of the defined parameter grid is the DTW classifier using a Sakoe-Chiba
band of width b = 1, squared distance metric, removed mean values and class templates created
with globally restricted DTW. Reason for this combination of parameters being optimal is
comprehensible as for instance the class templates created with globally restricted DTW warping
path are much smoother than the templates created without restriction (see section 6.2.5).
Moreover removal of the signal means increases classification accuracy as the signal offset is
ignored. This is important as the measurement data has a sligthly varying offset due to neglection
of the influcence of the cooling unit. When the offset is removed only signal shape is taken into
account on classifying a pattern rather than looking on the absolute amplitude values. This
increases especially performance of the cross-correlation classifier, whereas the DTW classifier
is not affected that much by removal of the signal offset. Regarding the distance metric of
the DTW the squared metric performs in most casses similar to symmetric Kullback-Leibler
distance and slightly bettern than euclidian distance. This might be due to the fact that squared
and symmetric Kullback-Leibler distance weight larger distances between test sequence and
class template higher than smaller distances, whereas euclidean distance applies same weights
regardless of how large deviation between both sequences is.

101

6 Shape Based Classification

Apart from the simple accuracy score used for finding optimal classifier parameters it is interesting
to examine how good the classifiers can distinguish between individual classes. For this purpose
a confusion matrix is a very helpful tool. Such a matrix is calculated for both optimally adjusted
classifiers. The confusion matrix for the optimal DTW classifier is shown in fig. 6.19 and the
confusion matrix for the optimal cross-correlation classifier is depicted in fig. 6.20. The confusion
matrix is a square matrix with columns referring to the predicted class labels 0, 1, . . . , 11 occuring
in the test set and rows referring to the true class labels 0, 1, . . . , 11. Matrix elements (i,j)
contain the number of samples of a specific kind in the test set that are labeled with a specific
class label according to the column of the element. For instance element (2,3) = 3 in the
confusion matrix for the DTW classifier refers to the number of segments of true class 2 (row
i = 2) in the test set that are misclassified as class 3 according to the column index j = 3. So
elements that do not lie on the matrix diagonal from the top left to the bottom right corner
refer to misclassified segments, whereas elements on this matrix diagonal are correctly classified
elements. So for an ideal classifier with accuracy of 1 all elements except for those on the
diagonal are zero. In opposite to the accuracy score the confusion matrix not only shows how
many classes are misclassified, but also illustrates how classes are mixed up with other classes.
This allows for detection of classes, which can not be distiguished properly by the classifier.

Regarding the optimal DTW classifier the overall accuracy is very good and only a few classes
are misclassified, meaning only a few elements except those on the matrix diagonal differ from
zero. Only classes 4 and 5, which refer to the forward and backward movement of the Y-axis
are mixed up many times. Class 4 is mistakenly classified as class 5 exactly 13 times, which
equals 13 % of all 100 segments of true class 4. Class 5 is falsely classified as class 4 precisely 23
times, equivalent to 23 % of all segments of true class 5. This shows, the classifier is weak in
distiguishing especially those two classes, however performs very well on all other classes, which
is why the resulting overall accuracy is as high as 97 %.

The confusion matrix of the cross-correlation classifier shown in fig. 6.20 looks similar to the one
of the DTW classifier, however there are more elements which do not lie on the matrix diagonal
and differ from zero, meaning there are more misclassified elements. In total 485 of the 2201
segments are classified with wrong class labels giving the overall accuracy of 77.9545 % which
is equal to the accuracy found earlier. The confusion matrix now shows which of the classes
are most problematic and get misclassified most frequently by the cross-correlation classifier.
As can be seen classes 4 and 5 are misclassified most often similar as with the DTW classifier.
31 % of segments with true class 4 are falsely classified as class 5 and 20 % of segments with
true class 5 are misclassified as class 4. Different from the DTW classifier the cross-correlation
classifier has also problems with distiguishing between classes 8 and 9 which refer to the forward
and backward movement of the C-axis. Moreover classes 2 and 3 are mixed up, but only by 6 %
respectively 9 %, which is higher than the misclassification ratio of the DTW classifier for those
both classes, but still on an acceptable level. The biggest isue with the cross-correlation classifier
in comparison to the DTW classifier is recognition of class 0 which corresponds to the idle state
of the machine. Only 726 of the 1101 segments with true class 0 are classified correctly as class
0, which euqals only 65.94 %. Instead segments with true class 0 are misclassified in 17.08 % of
all cases as class 7, in 13.90 % of all cases as class 8 and in 1.81 % of the cases as class 6. A few
segments are even misclassified as classes 1, 3, 4, 9, 10 and 11. All in all the cross-correlation

102

6 Shape Based Classification

classifier performs not as good as the DTW classifier as it misclassifies classes more frequently
and has serious problems labelling segments which refer to the idle state correctly.

So all in all the developed DTW classifier with optimally adjusted parameters achieves best
performance and can therefore be used to classify segments in future test data sets.

6.5 Conclusion of Shape Based Classification Approach

In the course of the preceeding chapter first foundations of template matching classification were
explained. This included a detailed description of the overall process of classifying time sequences
by comparison with other known time sequences, so called templates. Moreover Dynamic Time
Warping (DTW) and cross-correlation were introduced as useful distance respectively similarity
measures for classification of time sequences. After this a detailed explanation of the process
involved in creating class templates by averaging multiple training sequences was given. The
Accurate Shape Averaging (ASA) algorithm was implemented in Matlab to create templates for
the 12 base classes corresponding to the basic states of the milling machine. After evaluation of
the averaging results two template matching classifiers were developed. One based on DTW
distance and another one based on cross-correlation of test sequence and class templates. Both
classifiers had four parameters with different possible values which needed to be choosen properly
to achieve maximum classsification accuracy. This was done by an exhaustive grid search, which
led to optimal parameter sets for both classsifiers. Performance of both classifiers was evaluated
and compared. Here it turned out that the DTW classifier outperformed the cross-correlation
classifier easily and achieved a high classification accuracy of 97 %.

Although the achieved classsification accuracy of the optimized DTW classsifier is already
very good and suffiecient for most applications further improvement is possible. For instance
classes which are confused by the algorithm frequently as for example classes 4 and 5 could be
merged into one virtual class containing all segments from both classes. This would simplify the
classification task and increase classification accuracy as there were less misclassifications on
those two classes. Moreover segments with true class 0 are misclassified 19 times as class 1, which
is due to the fact that in between of the 20 subcycles of the test cycle run there occur 19 longer
idle phases, which are misclasified as class 1 which refers to the main spindle activation. In
order to prevent this misclassification it would be necessary to create another class template for
the longer idle state in between of the subcycles. If this optimizations were conducted accuracy
would approach 100 % resulting in an optimal classifier for the given classification problem.

Apart from this during the exhaustive grid search for the optimal set of parameters one parameter
that possibly affects classification accuracy was not considered. Meant is the warping path
restriction during template creation. In the preceeding chapter only two cases were examined,
first class templates were created by DTW averaging with unrestricted warping path and second
a Sakoe-Chiba band of width b = 10 was implemented to restrict deviation of the warping path
during DTW averaging. As the above results show this modification of the template creation
process significantly affects classification accuracy of both the DTW and the cross-correlation
classifier. To investigate how restriction of the DTW warping path during template creation
influences accuracy of the later classification, further research is neccessary. Apart from the

103

6 Shape Based Classification

two cases tested above multiple different sets of averaged templates with different settings for
the Sakoe-Chiba band width, for instance in the range of 1 to 60 with step size 1, should be
created and resulting classsification accuracy of both classifiers should be compared. This way
the Sakoe-Chiba band during template creation can be optimized and classification accuracy
might be enhanced further. Before conducting this additional parameter studies it is neccessary
to speed up the template averaging algorithm presented in section 6.2.4 as the creation of all 12
class templates takes 1100 s. This would lead to a duration of 66000 s for completion of the set of
class templates for the parameter studies in the range proposed above. As already mentioned in
section 6.2.5 further improvement of the template creation algorithm by means of computational
expense of the algorithm is easily possible so that investigation of this parameter is possible.

The last aspect that should be considered in future work is usage of Hybrid DTW instead of
normal DTW for both creation of the class templates and calculation of the DTW distance during
classification. As explained in section 6.1.2 HDTW considers not only the amplitude values
of the signals, but also the slope at each sample position for calculating proper alignment of
both sequences. This way more shape information is used to algin both signals and classification
accuracy might increase.

104

6 Shape Based Classification

0

0

0

0

0

0

0

0

0

0

0

1080

0

0

0

0

0

0

0

0

0

0

100

19

0

0

0

0

0

0

0

0

4

97

0

0

0

0

0

0

0

0

0

0

96

3

0

1

0

0

0

0

0

0

23

87

0

0

0

0

0

0

0

0

0

0

77

13

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

97

0

0

0

0

0

0

0

0

0

0

100

3

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure 6.19: Confusion matrix for the optimal DTW classifier. Rows show true classes and columns
predicted classes of each segment within the test data set. Ideally all elements except for
the diagonal from the upper left to the lower right would be zero, meaning class labels
are predicted correctly for all segments in the test set.

105

6 Shape Based Classification

0

0

0

0

0

0

0

0

0

0

0

726

0

0

0

0

0

0

0

0

0

0

100

5

0

0

0

0

0

0

0

0

6

85

0

0

0

0

0

0

0

0

0

0

94

9

0

1

0

0

0

0

0

0

20

69

0

0

0

1

0

0

0

0

0

0

80

31

0

6

0

0

0

0

0

0

0

100

0

0

0

0

0

20

0

0

0

0

100

0

0

0

0

0

0

188

0

0

29

90

0

0

0

0

0

0

0

153

0

0

71

10

0

0

0

0

0

0

0

2

0

100

0

0

0

0

0

0

0

0

0

2

100

0

0

0

0

0

0

0

0

0

0

2

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure 6.20: Confusion matrix for the optimal cross-correlation classifier. Rows show true classes and
columns predicted classes of each segment within the test data set. Ideally all elements
except for the diagonal from the upper left to the lower right would be zero, meaning
class labels are predicted correctly for all segments in the test set.

106

7 Feature Based Classification

Aim of the following chapter is the development and evaluation of a classical machine learning
approach for classification of the previously acquired and segmented measurement data. Different
from the shape based classification approach presented in chapter 6 measurement data is first
transformed from the time tomain into feature space which reduces the amount of data to
process significantly and makes the data applicable to common machine learning algorithms
for classification. Before applying any classification algorithms first fundamentals of feature
based classification are explained. This includes an introduction in the common terminology
and matehmatical formulation regarding feature based datasets as well as a detailed insight into
the general operational principle of feature based classifiers. Thereby focus lies on explanation
of the neccessary process steps training, evaluation and testing. Afterwards the classification
models used in the later course of this chapter are explained in detail. After clarification of the
basics a literature review is conducted to collect possible features for abstraction of the present
measurement data. The found statistical features are then extracted from the measurement data
and stored in three different 49-dimensional datasets, one for testing and two for training. Besides
a detailed overview of the extracted features the extraction algorithm is explained in-depth.
Afterwards the actual classification workflow is implemented in the Python based visual machine
learning tool Orange3. This workflow comprises standardization of the extracted datasets and
selection of the 10 most relevant features by means of a decision tree which ranks features based
on a measure called information gain. The need for dimensionality reduction by feature selection
is justified by explaining problems occuring during classification in too high dimensional datasets.
After feature selection hyperparameters of the utilized classsifiers are tweaked manually to
achieve maximum classification performance on the test dataset. Classifiers used are k-nearest-
neighbours, decision tree, random forest, AdaBoost, support vector machine, stochastic gradient
descent and naive bayes classifier. All classifiers are trained on the preprocessed training data
and evaluated on the likewise preprocessed training set. Performance is measured and compared
by means of area under curve, classification accuracy, precision, recall and F1-score. Moreover
confusion matrices for all classifiers are created and analyzed. Finally conclusions are drawn
and performance of the developed feature based classifiers is compared to performance of the
previously developed shape based classifiers.

7.1 Foundations of Feature Based-Classsification

The following section gives an overview of the foundations of feature based classsification. It
first introduces common terminology of feature based datasets and explains their basic structure.
Afterwards follows a brief introduction into feature space represenation of the dataset and
an explanation of the operational principle of feature based classifiers. Moreover the section
describes the typical process steps training, evaluation and testing of a classification model and

107

7 Feature Based Classification

explains on a general level how model fitting to the training data is achieved and how new data
samples can be classified. In this context the very important concept of the decision boundary
is introduced and examples for a well fit classifier and a badly fit classifier are given. After
teaching the fundamentals of feature based classification this section gives a detailed insight
into the functional concepts as well as pros and cons of seven popular models used for pattern
classification. The presented algorithms are k-nearest-neighbour, decision tree, random forest,
AdaBoost, support vector machine, stoachstic gradient descent and the naive bayes classifier.
The list is limited to these seven algorithms as they are used in the later course of the analysis.

7.1.1 Dataset Nomenclature

To understand the difference between the feature based classification approach and the shape
based classification conducted in chapter 6 this section first explains the basic concept of feature
extraction from time series data and introduces fundamental terms for describing data in the
context of feature based classification.

Consider the previously acquired measurement data which corresponds to a discrete sequence of
equally sampled amplitude values sj with j = {1, 2, . . . , q}. During segmentation as described
in chapter 5 the complete measurement time sequence is cut to n shorter time series segments.
The kth segment can therefore be described as

sk = {sk,1, sk,2, . . . , sk,j, . . . , sk,q} . (7.1)

Length q of each of the n time series segments is not constant, but varies significantly.

While the shape based classification developed in the previous chapter worked directly with
these sequences, the feature based classsification aims to reduce amount of data needed for
classification by transforming each of the n time series segments to a set of scalar values, the
feature vector, which is then fed into the classification algorithm. The step of calculating the
feature vector for the time series segment is called feature extraction. One of the scalar values
x

(i)
k ∈ R is calculated by applying a linear or non-linear function fi : Rq → R to the time series

segment sk. Such a function could be for instance calculation of the mean value of the time
series segment

x
(i)
k = fi(s) = 1

q

q∑
j=1

sk,j. (7.2)

To get a set containing p different scalar values for description of the time series segment p
different functions fi(s) with i = {1, 2, . . . , p} need to be applied to the time series segment sk.
This gives the feature vector

xk =
{
x

(1)
k , x

(2)
k , . . . , x

(i)
k , . . . , x

(p)
k

}
. (7.3)

This feature vector can also be called sample in the context of feature based classification.
Caution needs to be exercised as in context of shape based classification as conducted in the
previous chapter the whole time series segment was called sample. Here only the abtraction of
the segment in form of the feature vector xk is the sample.

108

7 Feature Based Classification

If all n time series segments are considered the feature extraction gives n different samples xk

with k = {1, 2, . . . , n} which can be composed in a data matrix X ∈ Rn×p with

X =

x
(1)
1 x

(2)
1 · · · x

(i)
1 · · · x

(p)
1

x
(1)
2 x

(2)
2 · · · x

(i)
2 · · · x

(p)
2

...
x

(1)
k x

(2)
k · · · x

(i)
k · · · x

(p)
k

...
x(1)
n x(2)

n · · · x(i)
n · · · x(p)

n

. (7.4)

This data matrix is also refered to as dataset. Columns x(i) ∈ Rn with i = {1, 2, . . . , p} are
simply called features containing feature values for all n samples. The data matrix can also be
written as set

X = {x1,x2, . . . ,xk, . . . ,xn} ∈ Rp (7.5)
where the xk are samples in form of row vectors. In this case the dataset is not labeled. Labelling
means that another column vector c = {c1, c2, . . . , ck, . . . , cn}ᵀ is added to the data matrix. So
each sample can be assigned a single class label ck which results in the labeled dataset

XL =

x
(1)
1 x

(2)
1 · · · x

(i)
1 · · · x

(p)
1 c1

x
(1)
2 x

(2)
2 · · · x

(i)
2 · · · x

(p)
2 c2

...
x

(1)
k x

(2)
k · · · x

(i)
k · · · x

(p)
k ck

...
x(1)
n x(2)

n · · · x(i)
n · · · x(p)

n cn

. (7.6)

Each of the n class labels can take on one ofm different values ck ∈ C with {C = 1, 2, . . . , l, . . . ,m}.
These are nominally scaled values whcih means it is only possible to compare if two class labels
are different or equal. It is neither possible to compare if one class label is greater or lower
than the other (ordinal scale) nor can be conducted any arithmetic operations on the class label
values (interval and ratio scale). The labeled dataset can also be described as set

XL = {x1,x2, . . . ,xk, . . . ,xn} ∈ Rp × {c1, c2, . . . , ck, . . . , cn} (7.7)

with an additional class label vector. Despite mathematically not being identical, both the set
and the matrix representation can be used for description of the dataset. [40, 44]

7.1.2 Principle of Feature Based Classification

Now that fundamentals of feature extraction are fully understood the operational principle of a
feature based classification algorithm is explained in this section. Moreover training and testing

109

7 Feature Based Classification

of a feature based classifier are described in detail. First Consider the labeled example dataset

XL =

6.3 3.8 2
2.2 4.2 1
2.0 3.3 1
5.3 0.9 3
5.5 3.9 2
4.7 1.3 3
4.2 0.8 3
5.3 3.4 2
1.3 4.0 1

. (7.8)

It consists of n = 9 samples and two features x(1) and x(2) corresponding to the first resepctively
second column of the matrix, hence dimensionality of the dataset is p = 2. The third column
represents class labels. As can be seen, the dataset contains three different classes ck = {1,2,3},
whereby each class occurs three times. The dataset can be plotted as shown in fig. 7.1. Each
sample corresponds to a point

(
x(1), x(2)

)
in a two-dimensaional plane. If the dataset contained

more than two features, for example three, a three-dimensional plot would be neccessary to
display the dataset. Accordingly for a p-dimensional dataset p linearly independent base vectors
would be needed for display of the data. These base vectors span a vector space called feature
space. Coming back to the example it becomes clear that samples are accumulating in feature
space depending on their class. For instance all samples of class c = 1 are in the upper left
corner, samples of class c = 2 are in the upper right corner and samples of class c = 3 are located
in the lower area of feature space.

Like in the previously conducted shape based classification feature based classification consists
of three major steps training, evaluation and prediction. This is illustrated in fig. 7.2. In the
training phase the classifier is fit to a labeled training dataset, which is created by feature
extraction from measurement data and manual or automatic labeling (see chapter 5). During this
process the model parameters are adjusted based on the training data, so that the classification
algorithm adopts to the training data and learns specific properties of the samples belonging to
a distinct class within the training dataset. When the classifier training is finished performance
of the classifier is evaluated by predicting class labels of another independet test dataset created
by feature extraction from an independent experiment. These predictions are then compared to
the true class labels of the labeled test dataset and some performance score like classification
accuracy is calculated. If the score is sufficient the trained classifier can be used to predict class
labels of new data samples with unknown class label. [44, 45, 113]

Returning to the example dataset plotted in feature space in fig. 7.1 training of the classifier
can be understood as determination of a so called decision boundary which separates feature
space into multiple different regions belonging to a specific class each. During the training phase
appearance of this boundary is adjusted based on the training dataset. In this case for instance
the boundary is placed so that the distance between decision boundary and each sample of the

110

7 Feature Based Classification

x(1)

x(2)

•
•

•

× ×

×

Decision Boundary

c = 1 c = 2

c = 3

Figure 7.1: Two dimensional feature space with samples from example dataset and decision boundary.
Samples belong to three different classes which can be separated by three linear functions,
forming a more complex decision boundary which divides feature space into three areas
each belonging to a particular class.

Figure 7.2: Flowchart of the basic process steps for machine learning, model training, evaluation
and testing. First the model consisting of a set of model parameters is trained based
on the training data. During training model parameters are fit to the data. Afterwards
model performance is evaluated on an independent evaluation dataset. When model
performance is sufficient it can be used for making predictions on previously unseen test
data. Hyper-parameters can be tweaked to change model behaviour during training and
testing.

111

7 Feature Based Classification

training dataset is maximized. For the sake of simplicity here the decision boundary consist only
of linear functions which in general is not neccessary. Depending on the classification algorithm
used the decision boundary can be non-linear as well. Moreover the decision boundary is in
general not a one-dimensional line, but a (p− 1)-dimensional hypersphere, depending on the
number p of features describing each sample. If for example the dataset contained 3 rather than
only 2 features the decision boundary would have been a two-dimensional surface, separating
classes in three-dimensional feature space. If the user-adjustable parameters of the algorithm, so
called hyper-parameters, are choosen well and the ratio between number of feature and number
of samples in the training dataset is choosen appropietly a the resulting decision boundary
is very smooth separating classes well without overfitting to outliers in the training dataset.
This is shown in fig. 7.3a. If on the opposite hyper-parameters are choosen unfavourable the
resulting decision boundary can become rough and overfit to the training data as can be seen in
fig. 7.3b. This case is unwanted as then later prediction would become less accurate, because the
classification algorithm is indeed fit very precisely to the training data, however has not adopted
to the general characteristics of the training data. This property of the classification algorithm
is refered to as generalization. A well trained algorithm is able to generalize to different test
dataset very well and achieves high classification performance. When the classifier is overfit
to the training data, generalization and therefore classification perforance is usually poor. [44,
114]

x(1)

x(2)

×
× ×

×

×

× ×

×××
×

×
× ×

×

× •
•

•
•

•
•

•

•••
•

•

•
•

•

• •

c = 1 c = 2

(a) Smooth decision boundary as result of well
choosen hyper-parameters of the classifier.

x(1)

x(2)

×
× ×

×

×

× ×

×××
×

×
× ×

×

× •
•

•
•

•
•

•

•••
•

•

•
•

•

• •

c = 1 c = 2

(b) Rough decision boundary which overfits to out-
liers as result of badly choosen hyper-parame-
ters.

Figure 7.3: Difference between a smooth decision boundary and a rough decision boundary as result
of model overfitting. If user-adjustable parameters of the classifier are tuned well the
resulting decision boundary separates both classes without overfitting to outliers. On the
opposite if parameters are chosen insuffieciently the decision boundary becomes rough
and overfits to the training data which results in poor classification performance on test
datasets which differ from the training dataset.

Once the classifier is fit to the training dataset prediction on a test dataset can be performed.
Aim is to predict as many class labels of the test dataset as possible correctly. Operational
principle of the prediction step is illustrated in fig. 7.4. As the test data is acquired from an

112

7 Feature Based Classification

experiment in form of a time discrete sequence, first transformation into feature space needs to
be performed. This is done the same way as on the training data by applying multiple different
functions on each segment of the test measurement data (see eq. (7.2)). This results in a set of
scalar values for each test segment which can be composed in a matrix (see eq. (7.4)). The three
test samples within fig. 7.4 for instance belong to the test dataset Xt = {xt,1,xt,2,xt,3}ᵀ with

Xt =

0.85 1.60
6.50 1.00
3.94 4.50

 . (7.9)

During the prediction phase the algorithm determines, which class label is most likely for each
of the three test samples. This is done by determining in which area each of the test samples is
located. For instance the first sample xt,1 lies in the area which belongs to class c = 1 according
to the previously created decision boundary. Accordingly the second test sample xt,2 is assigned
class label c = 3, because it lies in the area which was determined as most likely for class 3
during the training phase. Only the third test sample xt,3 is a special case as it is located directly
on the decision boundary between classes c = 1 and c = 2. So it is not possible to determine
which of both classes is to be assigned to this test sample. However this case is very rare as it is
usually not likely to have a test sample located directly on the decision boundary. Moreover to
resolve this issue simply either class label 1 or 2 could be assigned randomly to this test sample.
[44, 45]

x(1)

x(2)

•
•

•

× ×

×

∗
∗

∗

xt,1

xt,2

xt,3c = 1 c = 2

c = 3

Figure 7.4: Illustration of the prediction phase of a feature-based classifier. Test data is transformed
into feature space giving test samples xq (magenta stars). Position of test samples relative
to the decision boundary determines class labels that are assigned to test samples.

The evaluation phase is very similar to the prediction phase. Here a labeled evaluation dataset
which is independent from the training dataset is fed into the classification algorithm which
assigns class labels to each of the samples within the evaluation dataset. As true classes of
the evaluation samples are known it is possible to compute a performance measure of the
classification algorithm by comparing true class labels with predicted class labels. [44, 45]

113

7 Feature Based Classification

7.1.3 Classification Algorithms

In practice multiple different algorithms have been developed addressing the problem of classifying
data based on previously extracted features. The following section gives a brief overview of some
of those classification algorithms which are utilized in the later classification of the measurement
data of the milling machine. The functional principle of every classifier algorithm is explained and
advanatages and disadvanatages of the according algorithm are analyzed. Training and testing
of all those algorithms bascially follows the principles described in the previous section, however
actual realisation differs in practise based on which kind of algorithm is used. Accordingly
complexity and performance of the classifiers are very different. Some of the easier to implement
algorithms, like k-nearest-neighbours need only very short time for training, but take a long time
for testing compared to other more complex to implement algorithms like for instance support
vector machines which usually need longer time for training, but are very fast in predicting
classes of the test dataset. The first algorithm presented is the k-nearest-neighbours classifier
which classifies test samples based on the distance to neighbouring samples in the training set.
Afterwards the decision tree classifier as a hierarchical classifier which splits the feature space
iteratively in two sub spaces is examined. Based on the basic decision tree an ensemble classsifier
called random forest utilizing multiple different decision trees for classification is explained.
With AdaBoost another ensemble method is introduced. AdaBoost combines multiple different
weak learners and iteratively trains each weak learner on samples which are misclasssified by
the previous weak learner. Afterwards support vector machines which try to separate classes in
feature space by inserting a hyperplane and maximizing the distance between the hyperplane
and neighbouring data samples of both classes are described. As most of the machine learning
algorithms include an optimization problem the stochastic gradient descent as important method
for finding an optimum of a cost function is introduced. Finally the last section covers the naive
bayes classifier which is based on bayes’ theorem and calculates probabilities for the class of a
test sample. The following overview over machine learning algorithms is not exhaustive, but
rather covers only algorithms which are implemented in the Python based visual programming
tool Orange3 [115–117] which is used in the analysis in the later course of this chapter. A more
complete list of machine learning algorithms, containing for instance neural networks, deep
learning methods and rule induction algorithms can be found in [118].

7.1.3.1 k-Nearest-Neighbours

One of the simplest feature based classification algorithms is the k-nearest-neighbour (KNN)
classifier which estimates the class label of a test sample by determining class labels of the
k closest neighbouring points. Consider the test sample xt = (3.8, 3) which is plot in fig. 7.5
amongst the training dataset. The training data comprises of samples of two different classes
c = 1 (blue crosses) and c = 2 (red dots). The goal is to predict the most likely class label
for the test sample xt which is done by retrieving class labels of those k training samples that
lie closest to the test sample within feature space. In this example k = 4 is choosen and as
distance measure euclidean distance is computed. As can be seen 3/4 of the nearest neighbours
belong to class c = 2, whereas only 1/4 of the the neighbouring samples belong to class c = 1.

114

7 Feature Based Classification

This distribution represents the probability distribution of class labels for the test sample and
therefore class label ct = 2 is assigned to the test sample. [40, 119]

x(1)

x(2)

2
2

21

×
× ×

×

×

× ×

×××
×

×
× ×

×

× •

•

•
•

•
•

•

•
••
•

•

•
•

•

• •

∗xt

Figure 7.5: Principle of k-nearest-neighbours classification. The algorithm searches within all training
samples for the k nearest neighbours of the test sample xt and assigns that class label to
the test sample which occurs most frequently within the k nearest neighbours. In this
case 3 of the k = 4 nearest neighbours of the test sample belong to class c = 2 (red dots),
wherefore class label 2 is assigned to the test sample.

Distance to neighbouring training samples of a test sample can be defined by any vector or
matrix norm as for instance euclidean norm, manhattan norm, mahalanobis norm or maximum
norm (see [40]). Depending on the used metric outlook of the decision boundary changes.
Another parameter that influences the decision boundary significantly is the number k of nearest
neighbours which are considered during testing. If only the nearest neighbour of a test sample is
considered (k = 1) the decision boundary can be derived from the Voronoi diagram as shown in
fig. 7.6. The Voronoi diagram consist of a net of lines (black lines) which comprise all points in
feature space that have an equal distance to two samples in the training set. Again the distance
measure can be choosen to be any norm. The decision boundary can now be drawn by looking
at the lines which separate samples of different classes. In the simple two-dimensional feature
space of the example this gives a decision boundary composed of piecewise linear functions
(magenta line). In general the decision boundary fits to the training data very well, but is likely
to overfit, if the hyper-parameter k is choosen to small. In this case it is even possible that
the decision boundary becomes discontiguous whenever outliers of one class lie within an area
in which mainly samples of another class occur. This leads to poor classification performance
on test sets differing from the training set. However if k is choosen too big the characteristic
structure of the training data might not be recognized well and classification performance goes
down as well. So finding the optimal value for the hyper-parameter k is esential for getting good
classification results. [40, 44, 120, 121]

A slightly different version of the k-nearest-neighbours classifier utilizes weighting during predic-
tion of the class label of a test sample. Here class labels of neighbouring training samples are
weighted according to their distance to the test sample. So training samples which are closer to

115

7 Feature Based Classification

0 1 2 3 4 5 6 7 8

Feature x
(1)

0

1

2

3

4

5

F
e

a
tu

re
 x

(2
)

Figure 7.6: Decision boundary (magenta line) created during training of a 1-nearest-neighbour classifier.
It can be derived from the Voronoi diagram which consists of all points (black lines) which
have equivalent distance to two samples in the feature space.

the test sample have a higher impact on the class of the test sample than neighbouring training
samples which are further away from the test sample. [117]

The k-nearest-neighbour classifier is a very simple and easy to implement algorithm, however
has the major disadvantage of being computationally expensive during the prediction phase as
for each test sample distance measures to every individual training samples needto be computed.
Moreover the entire training set needs to be stored which requires a large amount of memory
especially for larger datasets. Despite this disadvantage k-nearest-neighbour has the advantage of
not needing any time for model training, because in the training phase the training samples are
only stored, but no computations are conducted. Moreover the algorithm is capabale of finding
even non-linear decision boundaries which fit to the data very well. However this advantages
can not compensate for the high computational effort during predition. So k-nearest-neighbour
is only appropiate for small datasets. For large datasets other classifiers should be prefered. [40,
45]

7.1.3.2 Decision Tree

Another simple but powerful classifier can be realized utilizing a decision tree (DT). Different
from most of the other classification algorithms a decision tree only considers one feature
at a time rather than classifying a test sample based on all features simulataneously. This
is advantageous when operating on high dimensional datasets on which other classifiers are
suceptible to overfitting and resulting poor classification performance. The basical operating
principle of a decision tree is illustrated in fig. 7.7. As can be seen the decision tree algorithm
first determines which of the features separates classes best which is in this case feature x(1),
and splits feature space into two subspaces by inserting an axis-parallel line at the threshold

116

7 Feature Based Classification

value θ1 = 3.85. This step is repeated by looking at the second most relevant feature, in this
case x(2), and inserting two new splits at θ2 = 3.7 and θ3 = 2.7 for the left and right subset of
the first split respectively. This process is iterativelly carried on until some stop criterion like
a minimum error value is reached. Another stop criterion is size of the tree which is usually
measured by either its depth or the number of leaf nodes. Training of such a tree therefore
always consists of two major steps, first determination of the next most relevant feature which
splits classes optimally and second finding a threshold value θ at which to split the considered
sub space of feature space into two new and even smaller subspaces. Determination of the most
important feature is done by computing entropy which is a measure of information yield of a
feature (see [40]). The better a feature separates two classes the higher is its entropy. To create
an entropy optimal tree recursively the feature with highest entropy yield is choosen and a split
on this feature is inserted. [40, 45, 120, 122]

x(1)

x(2)

×
× ×

××
×

×

×

•
• •

•••
•

•

•

•

•

•

•
••
•

•
•

• •

×
×

×
×

×

θ1 = 3.85

θ2 = 3.7

θ3 = 2.7

Figure 7.7: Principle of sequential feature space splitting during training of a decision tree classifier.
Beginning with the most important feature the feature space is iteratively divided into
two subsets dividing classes c = 1 (blue crosses) and c = 2 (red dots) optimally. This
process is repeated until specific stop criterion is reached. The resulting decision boundary
(dashed line) is always piecewise parallel to the feature space axes.

The decision tree which results from training on the above example dataset is shown in fig. 7.8.
As can be seen the tree contains only two hierachy levels and splits feature space into two
subspaces on each split, which leads to four subspaces and therefore four leaf nodes. There are
no more splits needed as the decision tree divides the given dataset already very well with low
error. Each of the four leaf nodes refer to one of the four subspaces in feature space that result
from iteratively splitting of feature space and can be assigned one specific class label c = 1 or
c = 2 depending on the class labels of the majority of samples in each subspace.

During the testing phase the features of the test sample are analyzed in the same order the
decision tree has ranked features during training phase and proceeds along one branch based on
values of each of the features until one leaf node is reached. The class of this leaf node is then
assigned to the test sample. Consider for instance the test sample xt =

(
x(1), x(2)

)
= (4.8, 1)

which lies in the lower right corner of feature space as shown in fig. 7.9a and therefore should be

117

7 Feature Based Classification

θ1 ≤ 3.85 θ1 > 3.85

θ2 ≤ 3.7

c = 2

θ2 > 3.7

c = 1

θ3 ≤ 2.7

c = 1

θ3 > 2.7

c = 2

Figure 7.8: Resulting decision tree after training on the above example dataset. The tree consist
of two hierarchy levels according to the two considered features. In the first level the
tree determines between points to the left and to the right of the vertical split at θ1. In
the next level suspaces above and below two threshold values θ2 and θ3 are distguished,
whereby the threshold θ2 accounts for all points to the right of the first split and θ3 for
all points to its left.

classified as class c = 2. In the first level the decision tree considers feature x(1) which in this
case has the value 4.8 and is therefore bigger than the threshold value θ1 = 3.85. So the tree has
already determined that the test sample lies to the right of the first split. In the subsequent
iteration the second feature x(2) is considered, which for the test sample has the value 1. The
tree compares this values to the second threshold value θ2 = 3.7 and recognizes the test sample
to be located below the corresponding horizontal split line in the right part of feature space.
Therefore the test sample has been located in the lower right corner of feature space, which is
equivalent to the third leaf node, and is classified correctly as class c = 2. The resulting path in
the decision tree is highlighted in fig. 7.9b.

Apart from the described binary classification task where the decision tree had to distiguish
between only two classes, it is possible to use a decision tree for a multiclass problem with more
than two different classes as well. [123]

In practice there are multiple different implementations of classification trees each dedicated to
a specific kind of data. The most common tree algorithm is the Classification and Regression
Tree (CART), which is able to determine entropy optimal split positions on continuous features
as in the example above [124]. Similar to this the Chi-Square Automatic Interaction Detection
(CHAID) finds entropy optimal split positions by means of a Chi-squared test [125]. Different
from CART and CHAID which operate on continous features another tree algorithm, the Iterative
Dichotomiser (ID3) operates only on discrete features [126]. Extensions of this algorithm are the
C4.5 and C5.0 algorithms which allow for additional missing entries in the dataset and remove
redundant branches from the tree [127, 128]. [40, 129]

Decision trees have some advantages as they are for instance invariant to different transofmations
and especially scaling of the features within the dataset, which makes prior normalization of
the dataset unneccessary. Moreover they are easy to interpret by humans and performi well on
high dimensional datasets because of the hierarchical model structure which leads to internal
feature ranking during training. However decision trees have some disadvantages as well as they

118

7 Feature Based Classification

x(1)

x(2)

×
× ×

××
×

×

×

•
• •

•••
•

•

•
•

•

•

•••
•

•
•

• •

×
×

×
×

×

∗xt

θ1

θ2

θ3

(a) Test sample in feature space with previously
trained decision boundary of the tree.

θ1 ≤ 3.85 θ1 > 3.85

θ2 ≤ 3.7

c = 2

θ2 > 3.7

c = 1

θ3 ≤ 2.7

c = 1

θ3 > 2.7

c = 2

(b) Path the decision tree runs through during prediction
of the test samples class label.

Figure 7.9: Illustration of class prediction of a test sample xt with a decision tree. The tree determines
first if the test sample lies right or left of the vertical split at θ1 and afterwards if it lies
below or above the horizontal split at θ2. Here the test sample is correctly located in the
lower right corner and the majority class label c = 2 of this region is assigned to the test
sample. The corresponding path in the decision tree is highlighted (magenta line).

are for instance sensible to changes in the dataset and therefore unstable. Only small changes
in the training dataset can change splitting behaviour of the tree completely which might be
unwanted. Moreover the created decision boundary only consists of axis-parallel segments and
therefore might not separate classes well which leads to poor clasification performance. In the
above example this was no problem as the classes could be separated easily by axis-parallel
boundaries. However if the optimal class boundary would be located under some angle relative to
the feature space axes the resulting tree would contain many splits resulting in a staircase-shaped
decision boundary. Non-linear shaped decision boundaries are therfore not possible to create
with decision trees. Regarding computational expense decision trees are fast to train and allow
for fast prediction as only a few inequalities need to be solved rather than computing distances
between each sample in the training set like the k-nearest-neighbours classifier does. [40, 45,
123, 130]

7.1.3.3 Random Forest

To overcome problems of individual decision trees like easy overfitting to training data and poor
classification performance an ensemble method called random decision forest has been proposed
in [131]. Ensemble methods combine multiple different learners to create one aggregated learning
that overcomes performance issues of the individual learners. In this case the random decision
forest improves accuracy and reduces susceptibility to overfitting of usual decision trees by fitting
multiple different trees to the data and average prediction results of the individual decision
trees. Hereby creation of the individual trees is highly randomized to grow trees in the forests as
uncorrelated as possible. If no randomization would be performed trees within the forest would
look very similar or even identical giving no advantage compared to an individual decision tree.

119

7 Feature Based Classification

To grow decision forests of many uncorrleated trees two methods called bootstrap aggregating
and random subset selection are utilized. Bootstrap aggregating or bagging was first proposed in
[132] and is an ensemble learning technique which is based on random selection of subsets from
the training data. The concept is illustrated in fig. 7.10. Each classifier within the ensemble
is trained on a different randomly choosen subset of the training data giving a set of different
classifiers for the same training data. While each individual classifier is likely to overfit to the
training data the ensemble of different classifiers is not and generalizes much better on unknown
test data. The number of individual trees in the ensemble can vary in a wide range and is
unknown. Therefore it needs to be optimized by evaluationg classifcation performance of the
ensemble with respect to the number of individual trees. [132, 133]

×

×
•

×
•

•

×•
×

•
•

Subset 1
(m = 4)

Subset 2
(m = 4)

Training Data

• •

Tree 1

1 2 1 2

• •

Tree 2

1 2 2 1

Random
Forest

Figure 7.10: Principle of bootstrap aggregating. From the entire dataset multiple subsets (here two
subsets of equal size m = 4) are derived by random selection of samples. Each subset is
used for training of an individual decision tree within the random forest. Because each
tree is trained on a different set of training samples correlation between the trees is low
and therefore classification performance of the random forest is high.

When growing multiple individual decision trees on different subsets of training data which are
created by bootstrap aggregating, performance of the ensmable of trees is much higher than
perfomance of the individual tree [131]. However the so created ensemble still has a problem
with datasets containing a few samples which are highly important while all other features are
less important. In this case individual trees within the esamble are likely to rank the features
in the same order and create splits based on the same few important features. This leads to
high correlation of the decision trees within the ensemble and results in poor classification
performance. A method called random subset selection which overcomes this problem was
introduced in [134]. To understand the operational principle of this method, it is neccessary to
refresh knowledge about feature ranking utilized by individual decision trees when introducing a
new split during training. As described in section 7.1.3.2 each split is inserted along the feature
which leads to highest information gain. Random subset selection changes this behaviour of
individual tree growth by randomly sampling a fixed number of features at each split. The tree

120

7 Feature Based Classification

algorithm now maximizes information gain by introducing the split along the most relevant
feature within this subspace rahter than the entire feature space. Randomizing the subspaces at
each split leads to much less correlated trees within the random forest increasing classification
performance. Regarding the number of features [135] suggests √p features of a p-dimensional
feature space at each split as a first starting point, however recommends tuning the number of
considered features as the optimum value might differ for each problem. [133–136]

Stop criteria for the growth of each individual tree within the random forest can be choosen
depending on the problem as well. Usual stop criteria are maximum depth, meaning maximum
number of splits of each tree and the minimum size of subsets in the dataset at which no more
splits shall be introduced. [117]

Predicting a class of a test sample with help of a trained random forest is as easy as predicting
the class label for the test sample with each individual tree in the forest and assigning the class
which was predicted by the majority of trees to the test sample. Apart from using random
forests for classification problems they are suitable for regression problems as well. [135]

7.1.3.4 AdaBoost

Another ensemble method that combines multiple simple or weak classifiers to create one strong
classifier is the Adaptive Boosting (AdaBoost) algorithm first proposed in [137]. Similar to
random forests AdaBoost is not an classification algorithm, but a so called meta-algorithm
which can be applied to nearly every classification algorithm such as decision trees or k-nearest-
neighbours classifiers to boost their performance. However AdaBooost should only be applied to
weak classifiers and not to more complex ones like state vector machines or neural networks,
because here AdaBoost might easily lead to overfitting of the combined classifier to the training
data [138]. In practive often used are so called Decision Stumps which are single-level decision
trees which split the dataset based on one feature and have a prediction accuracy of only slightly
more than 50 % [139]. AdaBoost combines a large number of these weak classifiers to generate a
strong overall classifier.

In general AdaBoost differs from random forests in the way it applies the weak classifiers to
the dataset. While random forests randomly select subsets from the training data by boostrap
aggregating (see fig. 7.10) and train multiple different decision trees on that subsets simultaneously,
AdaBoost is a sequential algorithm adding only one weak classifier at a time. Based on the
classification results of the recently added classifier subsets of the training set are selected and
the next weak classifier is trained on this subset. Hereby samples which are misclassified by
the previous weak classifier are considered in the training set of the next weak classifier with
higher probability than samples that are classified correctly. Therefore AdaBoost can not train
all of the contained weak classifiers simultaneosly, but needs to train them sequentially. Besides
this sequential determination of a training subset AdaBoost calculates weights for every weak
classifier depeding on the classifiers accuracy. The more accurate a classifier is, the more weight
is assigned to its classification result in the later prediction phase. [140–142]

Considering T different weak binary classifiers ht(x) which output 1 for the positive class and
−1 for the negative class the combined strong learner created by the AdaBoost algorithm can

121

7 Feature Based Classification

be written as
H(x) = sign

(
T∑
t=1

αtht(x)
)

(7.10)

with weights αt for each of the weak classifiers. So the overall classification result can be obtained
by determining the sign of the summed weighted classification results of the weak classifiers. For
equal weights αt this bascially means if the majority of weak classifiers assign label 1 to a test
sample the overall output of the AdaBoost algorithm would be 1 and vice versa. Considering
different weights prediction reults of the weak classifiers have different impact on the overall
predcition output. [140–143]

In the following the training process of an AdaBoost classifier shall be described. Training
comprises of the above mentioned steps of choosing a subset of training samples for the weak
classifier which is added in the next iteration of the algorithm as well as calculating the weighting
factor αt for the current weak classifier. So it a loop which runs from t = 1 to t = T first a weak
classifier is added which computes a prediction output considering training subset of size m of all
training samples. Selection of this subset is random, but considers different probabilities Dt(i)
of each training samples. Here samples with a higher probability are more likely to occur in the
training set than samples with low probability. In the first iteration of the loop probabilities are
all equal and set to Dt(i) = 1/m. As true labels of the training samples are known classification
error εt for the current classifier can be calculated and used for determining the weight αt for
the current weak classifier as

αt = 1
2 ln

(1− εt
εt

)
. (7.11)

This definition gives a weight of zero for classifiers with accuracy of 50 %. So whenever a weak
classifier is not better than random guessing, its output is not considered during computation of
the overall classification output H(x). When classification accuracy of a weak classifier is less
than 50 % a negative weight is assigned. This means always the opposite of the prediction result
of the weak classifier is considered when calculating the overall classification output. Moreover
this definition of the weighting factor αt weights more accurate classifiers exponentially. This
means if the ensemble contains a few good classifiers the overall prediction result is mainly based
on these more accurate classifiers, while less accurate classifiers hardly have an impact on the
overall prediction outcome. [140–143]

After calculating the weighting factor for the current weak classifier the probability distribution
Dt for the training samples needs to be updated. So for each sample within the entire training
set the probability for occuring in the training subset for the next weak classifier is updated
according to

Dt+1(i) = Dt(i)e−αtyiht(xi)
Zt

. (7.12)

Here ht(xi) is the predicted label for the ith sample and yi the true class of the sample. Zt is
a normalization factor that ensures probabilites of all n training samples sum up to 1. It is
computed as

Zt =
n∑
i=1

Dt(i)e−αtyiht(xi). (7.13)

122

7 Feature Based Classification

Illustratively spoken probability of occurance is increased whenever the according sample is
misclassified by the current classifier, so whenever the predicted class ht(xi) and the true class
yi differ. In this case the exponential term is greater than 1 and probability is increased. In the
opposite case of a correctly predicted class label ht(xi) and yi are equal and the exponential
term is a fraction smaller than 1 decreasing probability for the according sample. Moreover
probabilities of samples are updated considering the weighting factor αt of the current classifier
as well. This means misclassifications of a more accurate classifier are considered more important
than misclassifications of a less acurrate classifier. The so calculated probabilities decide which
samples are used in the training set of the subsequently added weak classifier. As probabilites
are higher for the previously misclassfied samples these are more likely to be part of the training
subset for the next classifier and therefore AdaBoost is a method which iteratively tries to detect
issues of the current model and takes counter-measures to improve the classifier. [140–143]

The AdaBoost algorithm terminates when the overall classification accuracy reaches 100 % or
after a fixed number of iterations [144]. Parameters like the number of iterations and the number
T of weak classifiers contained in the ensemble need to be choosen thoroughly to optimize overall
classification performance of the ensemble. [138]

Advantages of the AdaBoost algorithm is the increase in classsification performance by combining
multiple weak classifiers. Moreover it is not only suitable for binary classification problem,
but can be used for multiclass problems as well. AdaBoost is considered one of the most
performant out-of-the-box algorithms meaning it yields in very high predcition performance
on most machine learning problems without much need for parameter tuning [145]. Major
drawback of the AdaBoost algorithm is its high computational complexity. As it involves many
computational operations which need to be executed sequentially AdaBoost has a long execution
time and needs more memory than most of the other classification algorithms. Apart from this
one of the most important disadvantages of AdaBoost is its suceptibility to overfitting to noisy
training data. Because the algorithm assigns highest occurance probabilities to outliers it fits
subsequent classifiers especially to these training samples which leads to overfitting. Therefore
AdaBoost requeires preliminary processing of the dataset. Outliers should be removed and noise
reduced as far possible. [138]

7.1.3.5 Support Vector Machine

Support vector machines are state-of-the-art classification models which separate two classes by
a linear decision boundary or so called hyperplane in feature space. They were first proposed in
[146] and are suitable for both classification and regression problems. Aim of support vector
machines is to find an optimal set of two parallel hyperplanes, which are spanned by samples of
the training dataset and have maximum distance or margin to each other. In between of these
hyperplanes no data samples must lie. Samples which span the hyperplanes are called support
vectors and are sufficient to fully define the decision boundary in form of the two hyperplanes.
An example for the operational principle of a support vector machine is illustrated in fig. 7.11.
Here two different sets of parallel hyperplanes labeled with H1 and H2 separate both classes
c = 1 (blue crosses) and c = 2 (red dots). However the set H1 of hyperplanes separates classes
better than the set H2 as the distance between the two hyperplanes of H1 is larger than the

123

7 Feature Based Classification

distance of the hyperplanes H2, so H1 has a bigger margin and is therefore a better decision
boundary for both classes. [45, 147–149]

x(1)

x(2)

×

×

×××

××
×

•

•
• •

•
••

•

•

H1

H2

margin M1

Figure 7.11: Principle of support vector machines on linearly separable classes. Classes c = 1 (blue
crosses) and c = 2 (red dots) are separated by a set of two linear hyperplanes with
maximum margin, this means maximum distance between both hyperplanes. Each of the
two hyperplanes is spaned by a few data samples of the training dataset, called support
vectors (marked with black circles). They are the only samples needed for describing
the support vector machine. Here the set H1 of hyperplanes has maximum margin M1,
while the set H2 of hyperplanes which linearly separates the two classes as well has a
smaller margin and is therfore not the optimal decision boundary.

Training of a support vector machine means finding a set of two hyperplane with maximum
distance or margin. In general a single hyperplane H(x) can be described as linear function in a
p-dimensional feature space by

wxᵀ + b = 0 (7.14)
with normal vector w ∈ Rp of the hyperplane and a set of points x ∈ Rp in feature space. b ∈ R
is the constant offset of the hyperplane relative to the coordinate origin. According to this
definition of a hyperplane a set of two parallel hyperplanes which lie equidistant and parallel
to the original hyperplane and separate both classes can be created by defining an additional
boundary condition such as

|wxᵀ
s + b| = 1. (7.15)

This gives a set of two parallel hyperplanes each containing the support vectors xs ∈ Rp for the
specific class. These two hyperplanes are illustrated in fig. 7.11 as dashed lines parallel to the
hyperplane H1 and can be expressed by the two equations

wxᵀ
k + b ≤ −1 when ck = 1 (7.16)

wxᵀ
k + b ≥ 1 when ck = 2. (7.17)

Again w is the normal vector, xk is the kth data sample and b is a scalar describing distance
between hyperplane and coordinate origin. According to these two equations feature space is

124

7 Feature Based Classification

split into three regions by the hyperplanes, one between of both hyperplanes and one below
or above of each hyperplane. The regions below or above of the two hyperplanes belong to
class c = 1 respectively c = 2 exclusively which means training data samples lying on or below
the hyperplane satisfying the first equation belong to class c = 1 and samples on or above the
hyperplane satisfying the second equation belong to class c = 2. As mentioned no training
samples must lie in between of the two hyperplanes which makes it sometimes impossible to fit a
set of two hyerplanes to a dataset. However there exists a method to allow for outliers which lie
in the region between both hyperplanes or even on the wrong side of the set of planes. This is
achieved by introducing slack variables which allow for such outliers, but penalize every outlier
by an additional term in the later optimization problem [40]. [40, 45, 146, 147, 150]

To derive a mathematical formulation for the margin of the two hyperplanes first the distance of
an arbitrary point xk in feature space to the hyperplane which lies exactly in the middle of the
two hyperplanes needs to be evaluated. This distance can be calculated as

d = |wxᵀ
k + b|
‖w‖

. (7.18)

When calculating distance between a support vector xs and the hyperplane in the middle the
above equation can be simplified according to the boundary condition in eq. (7.15) to the form

dSV = 1
‖w‖

. (7.19)

The margin is exactly twice dSV as this is the distance between a support vector and the
hyperplane in the middle. Hence margin can be written as

M = 2
‖w‖

. (7.20)

Maximizing the margin can therefore be achieved by minimizing the norm of the normal vector
‖w‖. To simplify this task the normal vector can be expressed as linear combination of all
training samples {xj ∈ X : j = 1, 2, . . . , n}

w =
∑
cj=1

αjxj −
∑
cj=2

αjxj. (7.21)

Instead of minimizing the norm of the normal vector now the weights α1, α2, . . . , αn need to be
optimized. For this the above expression is inserted in eq. (7.16) giving an updated description
for the set of the two hyperplanes∑

cj=1
αjxjx

ᵀ
k −

∑
cj=2

αjxjx
ᵀ
k + b ≤ −1 when ck = 1 (7.22)

∑
cj=1

αjxjx
ᵀ
k −

∑
cj=2

αjxjx
ᵀ
k + b ≥ 1 when ck = 2. (7.23)

This set of equations is fed into an optimization algorithm such as gradient descent [151], newton’s
method in optimization [152] or a method utilizing lagrangian multipliers [153]. Output of the
optimization algorithm is a set of optimal parameters α1, α2, . . . , αn and an optimal constant b

125

7 Feature Based Classification

giving the two hyperplanes which linearly separate both classes with maximum margin. [40, 45,
146, 147, 150]

Predicting the class label of a test sample xt ∈ Rp with a support vector machine consisting of
a set of optimal parameters is as easy as inserting coordinates of the test sample in eq. (7.22)
for the two hyperplanes and evaluating the output. This is identical to determining location of
the test sample relative to the two hyerplanes which form the decision boundary. Whenever
eq. (7.22) gives an output smaller or equal −1 the test sample class is predicted as c = 1 and
when the output is greater or equal 1 the test sample class is predicted as c = 2. One problem
occurs, when test samples lie in between of both hyperplanes which form the decision boundary
as these can not be classified by the support vector machine. [45, 146]

As already mentioned support vector machines can not only be used for creating linear decision
boundaries, but offer a very efficient way of determining non-linear decision boundaries as well.
The solution for this problem is called kernel trick and was first introduced in [154]. Basic idea of
the kernel trick is to transform a training dataset X = {x1,x2, . . . ,xn} ∈ Rp with a non-linear
decision boundary into a higher dimensional dataset X ′ = {x′1,x′2, . . . ,x′n} ∈ Rq with q > p in
which the decision boundary is linear again. So the kernel trick involves first transformation
into the higher dimensional feature space and then training of a support vector machine on this
transformed dataset. This gives the transformed version of the hyperplanes from eq. (7.22) as∑

cj=1
αjϕ (xj) · ϕ (xk)ᵀ −

∑
cj=2

αjϕ (xj) · ϕ (xk)ᵀ + b ≤ −1 when ck = 1 (7.24)
∑
cj=1

αjϕ (xj) · ϕ (xk)ᵀ −
∑
cj=2

αjϕ (xj) · ϕ (xk)ᵀ + b ≥ 1 when ck = 2. (7.25)

Whenever a test sample shall be classified it is transformed into the higher dimensional feature
space as well and then classified in this space. However in practice an explicit transformation of
the dataset into the higher dimensional feature space is not neccessary as the kernel trick allows
for implicit transformation of the dataset by replacing dot products in the lower dimensional
space X with kernel functions k : Rp × Rp → R. This is according to mercer’s theorem as
proposed in [155] equivalent to the transformation ϕ : Rp → Rq which transforms the dot product
into the higher dimensional feature space X ′. So mercer’s theorem states

ϕ (xj) · ϕ (xk)ᵀ = k(xj,xk). (7.26)

Often used kernel functions are the polynomial kernel

k(xj,xk) = (xj · xᵀ
k)
d , d ∈ {2, 3, . . .} , (7.27)

the Gaussian kernel
k(xj,xk) = e−

‖xj−xk‖
2

σ2 , σ > 0, (7.28)
the hyperbolic tangent kernel

k(xj,xk) = 1− tanh ‖xj − xk‖2

σ2 , σ > 0 (7.29)

126

7 Feature Based Classification

and the radial basis function kernel (see [156])

k(xj,xk) = f (‖xj − xk‖) . (7.30)

Replacing the dot products in eq. (7.24) with one of the above kernel funtions gives the generalized
support vector machine∑

cj=1
αjk(xj,xk)−

∑
cj=2

αjk(xj,xk) + b ≤ −1 when ck = 1 (7.31)
∑
cj=1

αjk(xj,xk)−
∑
cj=2

αjk(xj,xk) + b ≥ 1 when ck = 2. (7.32)

which allows for classification of non-linearly separable classes. The simplified case of linearly
separable classes can be represented by inserting the linear kernel k(xj,xk) = xj · xᵀ

k into this
equation. [40, 45, 147]

Support vector machines are charaterized by a very high classification performance on most
of the classification tasks as they guarantee a globally optimized solution rather than only a
local optimum as it might occur with some other classification algorithms. Moreover support
vector machines can find even non-linear decision boundaries efficiently by applying the kernel
trick. Regarding computational expense support vector machines enable very fast prediction
of class labels by inserting the test sample in the equation of the hyperplane and evaluating
the sign of the ouput. However training of a support vector machine requires much more
computational ressources as a usually large optimization problem under consideration of multiple
boundary conditions needs to be solved. Moreover prediction is not as fast as described when
the classification problem is not a binary problem, but rather a multi-class problem. As support
vector machines are not able to directly distiguish between more than two classes the multi-class
problem first needs to be transformed into multiple binary classification problems which are then
fed into support vector machines. Different strategies for reducing a multi-class problem into
single-class problems are described in [157] and [158]. Another disadvantage of support vector
machines is their black-box charater as it is difficult or sometimes impossible to interpret the
parameters of a trained support vector machine. However they are still more easy to interpret
than for instance nerual networks. [40, 147]

7.1.3.6 Stocastic Gradient Descent

Stochastic gradient descent (SGD) is another meta-algorithm often used in classification algo-
rithms. It is used to solve optimization problems such as minimizing a cost function. Similar to
AdaBoost (see section 7.1.3.4) it is not a dedicated classification algorithm, but can be applied
to other classifiers like support vector machines, perceptrons and neural networks (see [45] and
[40]). Thinking back to the support vector machines in section 7.1.3.5 classification was achieved
by inserting a linear decision boundary in form of two hyperplanes, which needed to be placed
optimally by minimizing a cost function. Stochastic gradient descent aims to minimize such a
cost function. [117, 159, 160]

127

7 Feature Based Classification

Consider a cost function J : Rv → R for the parameter vector w ∈ Rv with

J(w) = 1
n

n∑
i=1

Ji(w) (7.33)

which evaluates the cost of a set of parameters w by cumulating the cost for each of the n data
samples in the training set. An example for such a cost function is given in fig. 7.12. Note that
parameter space is only one-dimensional, so there is only one free parameter w ∈ R and the cost
J(w) can be plotted as function of this parameter. As can be seen the cost function has a global
minimum at w = w∗. This minimum is found via stochastic gradient descent. [160]

w

J(w)

w∗

•
winit

∇J(w)

Figure 7.12: Principle of stochastic gradient descent for minimizing a cost function J(w). In this
case parameter space is one-dimensional and the cost function J(w) has only one global
minimum at w∗ which is found by iteratively descending along the approximated gradient
∇J(w) of the cost function for the current parameter w. Descent is controlled by the
learning rate η which is decreased after each iteration until the parameter convergences
to its optimum value for which the cost function is minimal.

To find a minimum by gradient descent first either random values winit for the parameter vector
w are choosen or all parameters are set to 0. Now the gradient ∇J(w) of the cost function
is evaluated for each training sample and the parameter vector is updated by descending the
gradient

w(t+1) = w(t) − η∇J(w(t)) = w(t) − η
n∑
i=1
∇Ji(w(t))/n. (7.34)

This minimizes cost in the next iteration slightly as the gradient always points in direction
of the global or local minimum closest to the according training sample. So descending the
gradient is equal to finding a set of new parameters w(t+1) which lead to slighly lower cost.
Descent along the gradient can be controlled with the learning rate η which specifies how much
the parameter vector is changed in each iteration of the algorithm. As this algorithm needs to
compute the gradient for each of the n training samples in each iteration of the descent this so
called batch gradient descent is not very efficient regarding computational expense especially

128

7 Feature Based Classification

Listing 7.1: Pseudocode of stochastic gradient descent for minimizing a cost function by iterative
updating of the parameter vector. [160]

w = w_init;
eta = eta_init;
while cost > approximative_minimum_cost

random_shuffle_training_set();
for each sample in the shuffled training set

w = w − eta * gradient(J(w));
endfor
eta = eta * decrease_rate;

endwhile

when the training dataset is very large. To resolve this major drawback and make gradient
descent real-time capable even on larger datasets the true gradient is approximated by the local
gradient at one specific training sample giving

w(t+1) = w(t) − η∇Ji(w(t)). (7.35)

In each step of the descent the gradient is evaluated at another training sample. Updating of
the parameter vector w is repeated until each sample within the training set has been selected
once. The order of this evaluation can be either sequential or random. As the random process
might not always directly find a sufficiently good mimumum it is neccessary to run the entire
stochastic gradient descent multiple times with different initial values for the learning rate η
and the parameter vector w. Here the learning rate can be decreased in each of this overall runs
to make the algorithm converge to the approximative minimum. Moreover the entire dataset is
shuffled before each run to further randomize the gradient descent and increase probability of
finding a sufficiently good minimum. The pseudocode for the entire process comprising multiple
different stochastic gradient descents is shown in listing 7.1. [45, 159, 160]

Though approximation of the gradient by only one sample is highly efficient, it can sometimes
be inaccurate. Therefore another version of the stochastic gradient descent computes an average
gradient not based on only one training sample, but a small number of different randomly choosen
training samples called mini-batch. This increases accuracy of the gradient approximations and
results in smoother convergence. [45, 160]

According to [161] and [162] stochastic gradient descent almost always converges to a global
minimum if the cost function is convex or pseudoconvex or to a local minimum otherwise.
Convergion requires the learning rate η to decrease with an appropiate rate.

Adavantages of stoachstic gradient descent are the easy implementation and the high efficiency
of the algorithm even on very large datasets. Usually only a few runs, for instance 1 to 10 are
neccessary to find a sufficiently good minimum [163]. Disadvanatages are the high number of
hyper-paramaters which need to be tuned be the user. Moreover stocastic gradient descent
requires the cost function to be as less distorted in parameter space as possible. This means
features should be scaled for instance into a range of [0, 1] to achieve highest performance of the
stochastic gradient descent. [123]

129

7 Feature Based Classification

7.1.3.7 Naive Bayes

The naive bayes classifier determines class labels of test samples by calculating and comparing
conditional probalilities for each possible class under consideration of additional observations.
It was first proposed by Thomas Bayes in his Essay Towards Solving a Problem [164] which
was published in 1763. Given a finite set of nominally scaled class labels C = {c1, c2, . . . , cm}
and a test sample xt ∈ Rp propability of the test sample belonging to class c = j ∈ C can be
calculated as

P (c = j|xt) = p(xt|c = j)P (c = j)∑
j∈C

p(xt|c = j)P (c = j)
. (7.36)

This is equation is known as Bayes Theorem. Within this formula P (c = j|xt) is the posterior
probability which determines how likely it is that the test sample xt belongs to class c = j.
P (c = j) is the a priori probability for the class c = j. Consider a training set of size n = 10
containing 7 samples of class c = 1 and 3 samples of class c = 2. Prior probabaility of class
1 would be P (c = 1) = 7/10 and prior probability of class c = 2 would be P (c = 2) = 3/10.
So the prior probabaility is derived from the distribution of classes in the training set without
considering any properties of the test sample. Another term that needs to be derived from the
training set is the likelihood p(xt|c = j) for the class label c = j. The likelihood for class c = j
can be calculated from the probability densitiy function of each feature in the test sample. This
is illustrated in fig. 7.13. Here two different classes c ∈ C = {1, 2} are considered and the test
sample is for the sake of simplicity only one-dimensional and has the measured value xt = 5. The
diagram shows two different probability density functions, one for the distribution of xt in each
of the two classes. As can be seen from the distributions the likelihood for class c = 1 under the
oberservation xt = 5 is p(c = 1|xt = 5) = 0.15 and the corresponding likelihood for class c = 2 is
p(c = 2|xt = 5) = 0.01. With both likelihood and a priori probability the posterior probability
P (c = j|xt) can be calculated for both classes. The naive bayes classifier now evaluates the a
posterior probabilites for all class labels under consideration of the oberservation and assigns the
class label c∗ with highest posterior probability to the test sample. So the naive bayes classifier
can be written as

c∗ = argmax
j∈C

P (c = j|xt). (7.37)

Whenever the test sample dimension is larger than p > 1 likelihoods can be decomposed as

p(xt|c = j) =
p∏
i=1

p
(
x

(i)
t |c = j

)
. (7.38)

With this the naive bayes formula can be rewritten as

P (c = j|xt) =
P (c = j)

p∏
i=1

p
(
x

(i)
t |c = j

)
∑
j∈C

P (c = j)
p∏
i=1

p
(
x

(i)
t |c = j

) =
P (c = j)

p∏
i=1

p
(
x

(i)
t |c = j

)
p(xt)

. (7.39)

The denumerator p(xt) of this expression is called evidence and is in a classification task usually
not computed because it is identical for all classes. So if just the class c∗ of a test sample shall be

130

7 Feature Based Classification

predicted only the numerator determines which class is most likely for the test sample. However
if the true posterior probabilities need to be computed, the denumerator has to be considered as
well. [40, 44, 45, 165–167]

xt

p(c = j|xt)

p(c = 1|xt)

p(c = 2|xt)

0.3

0.1

•

•

xt = 5

Figure 7.13: Estimation of likelihoods p(c = j|xt) from the probability densitiy functions of features.
Here only one feature and two different classes c = 1 and c = 2 are considered. likelihoods
for a given test sample or observation xt = 5 are p(c = 1|xt = 5) = 0.3 for class 1 and
p(c = 2|xt = 5) = 0.1 for class 2. If probability density functions are not available they
can be estimated from the training set.

To better understand the naive bayes classifier an example for an easy classification problem
shall be given. Consider a group of 1000 people of which 600 are male and 400 are female. All
people are asked whether they like cars or not and it was evaluated which person has long hair
and which one has short hair. This gives the training set shown in table 7.1. Now the sex of an
independent person which likes cars and has short hair shall be determined by calculating the
posterior probabilities for this person being male or female. So the test sample can be written
as xt = (likes cars, short hair)ᵀ.

Table 7.1: Example training set derived from a group of 1000 people with 600 males and 400 females.
All people are asked if they like cars or not and it is determined if the person has long hair
or short hair.

Sex Likes cars Dislikes cars Long hair Short hair Total

Male 480 120 30 570 600
Female 160 240 360 40 400

From the training set the prior probrability for the test person to be male can be computed
as P (c = male) = 600/1000 = 0.6 and for the test person to be female as P (c = female) =

131

7 Feature Based Classification

400/1000 = 0.4. After this the likelihoods can be computed as

p(likes cars|male) = 480/600 = 0.8 p(dislikes cars|male) = 120/600 = 0.2
p(likes cars|female) = 160/400 = 0.4 p(dislikes cars|female) = 240/400 = 0.6
p(long hair|male) = 30/600 = 0.05 p(short hair|male) = 570/600 = 0.95
p(long hair|female) = 360/400 = 0.9 p(short hair|female) = 40/400 = 0.1.

Before inserting the according likelihoods and a priori probabilities into eq. (7.39) to retrieve the
posterior probabilities for the test person being male or female the evidence is calculated as

p(xt) = P (c = male) · p(likes cars|male) · p(short hair|male)
+ P (c = female) · p(likes cars|female) · p(short hair|female) = 0.472.

(7.40)

Now the posterior probabilities can be calculated. The posterior probability for the test person
being male is

P (c = male|xt) = P (c = male) · p(likes cars|male) · p(short hair|male)
p(xt)

= 0.9661 (7.41)

and the posterior probability for the test person being female is

P (c = female|xt) = P (c = female) · p(likes cars|female) · p(short hair|female)
p(xt)

= 0.0339.

(7.42)
So the posterior probability for the test person being male is 96.61 % and for being female is
3.39 %. Therefore the naive bayes classifier would classify the test person which likes cars and
has short hair as male.

Conclusively it can be said that the naive bayes classifier is despite its simplicity a very powerful
classifier which can outperform modern machine learning techniques in some use cases such
as text classification and spam filtering. Other than for instance the support vector machine
naive bayes performs especially well on multiclass problems and is easy to understand and
implement. Moreover it is heighly efficient as prior probabilities, likelihoods and evidences
need to be estimated only once for a giving training set. Following predictions can be made by
calculating the posterior probabilities for all classes given a test sample. This is very fast which
is why the naive bayes classifier is suitable for real time applications. A major disadvantage of
the naive bayes classifier is the fact that features need to be statistically independent which is in
practice often not the case. Moreover features need to be discrete. If features are continous they
are estimated with a normal distribution which requires according preprocessing of the dataset
to ensure a sufficiently accurate approximation when the normal distribution is calculated.
Alternatively continuous features can be discretized using histograms or a chi-squared test.
Another problem regards feature values which occur in the test set, but are not contained in
the training set. As this missing feature value is not contained in the naive bayes model no
posterior probability for the test sample can be computed making a classification of this sample
impossible. [40, 168]

132

7 Feature Based Classification

7.2 Extraction of Statistical Features

As explained in section 7.1 classification is based on features which are extracted from the time
domain data. The following section covers feature extraction from the measurement data of
the milling machine acquired in section 4.5. Extraction is conducted via a Matlab script that
can be found in listing A.11. Within this script a subroutine which conducts the actual feature
calculation for each time series segment is called. The source code of this subroutine is shown in
listing A.12. The according flowchart of the overall feature extraction algorithm is depicted in
fig. 7.14. The algorithm first loads the measurement data from all three test cycle runs as well
as the labelsets from section 5.3 containing cut positions and true class labels of each segment
within the three measurement datasets. Afterwards it iterates through all segments within the
measurement data and calls the feature calculation subroutine from listing A.12 to calculate all
49 different feature values for the current segment. The so calculated row is then appended to
the output dataset. This process is repreated for each of the three test cycle runs giving three
output datasets containing 49 columns and approximately 2200 rows each. The exact number of
rows depends on the number of segments in the measurement data for the corresponding test
cycle run and are shown in table 5.3. Important to mention is that feature extraction is only
conducted on the current signal for the L2-phase of the DMU main power line. As mentioned in
chapter 5 this is the only signal which is not affected by any of the non-controllable components
like control cabinet heat exchanger, machine lubrication pump and oil-air lubrication pump. So
by extracting features from the L2 current signal only it is possible to simplify the classsification
problem to the 12 controllable machine states instead of determining all 96 possible machine
states as defined in section 4.3. After calculation of all features the datasets are searched for
any non numerical values (NaN) or values that are positive or negative infinity. As these values
would lead to problems in the further process they are replaced with zeros. Finally the extracted
features of the second and third test cycle run are merged into one larger training dataset and
the true class labels known from the previously loaded labelsets are applied to each row of the
datasets. This gives two labeled datasets, one for training and one for testing, whereby the
testing set makes up one third of the entire amount of samples gathered during data acquistion.
Both datasets are then stored as CSV file and in a special tabular format required by the visual
programming tool Orange3 which is used in the subsequent steps of the classification task. For
clarification of how the datasets are composed table 7.2 shows an extract from the training
dataset containing the first few and the last sample as well as the first five and the last feature.

Core of the presented feature extraction algorithm is calculation of features for each of the
segments of measurement data. These features are statistical features meaning they abstract
each segment by a set of statistical measures which is computed for the entire segment. So each
feature corresponds to a scalar value unique for the given segment. One features could be for
example the mean value

s̄ = 1
q

q∑
j=1

sj (7.43)

of the time series data s = {s1, s2, . . . , sj, . . . , sq} within the segment. Here q corresponds to the
number of data samples in the segment and sj to the jth measured L2 current value within the
segment. Despite the fact that the so extracted values are unique for each sample there is a

133

7 Feature Based Classification

Figure 7.14: Flowchart of the feature extraction algorithm. The algorithm extracts a set of 49 features
for each segment within the cut and labeled measurement data from all three test cycle
runs. Features and class abels are merged into two different datasets, one for testing
which contains features from the first test cycle run and one for training comprising
features from the second and third test cycle run.

134

7 Feature Based Classification

Table 7.2: Extract from the created training datatset. The entire training dataset contains 4398 rows
or samples each referring to one segment in the measurement data. Each row is composed
of 49 statistical values or features extracted from the corresponding segment and the true
class label of this segment.

Row No. Features Class

n xq µ2 µ3 µ4 . . . xTHD

1 880 7.2192 4.1342× 10−4 2.4659× 10−6 6.6800× 10−7 . . . 1.7017 0
2 1142 10.3079 45.3944 1.3676× 103 4.9326× 104 . . . −4.3473 1
3 101 7.2345 1.3445× 10−4 4.0141× 10−8 4.8579× 10−8 . . . −5.5881 0
4 1142 10.1106 44.6239 1.3220× 10+3 4.6847× 104 . . . −13.2185 1
...

...
...

...
...

...
...

...
4398 57 8.7478 2.9998 3.1976 20.2808 . . . −1.1694 11

high correlation between feature values for segments belonging to the same class. So segments
belonging to the same class have very similar feature sets which is exploited for later classification
of new test samples.

Apart from the already mentioned mean value many other statistical features can be extracted
from the measurement data segments. The following two tables table 7.3 and table 7.4 show
49 different features which are extracted from the mesaurement data. Moreover the tables
show how the features are mathematically defined and how calculation can be implemented
in Matlab. Within the tables the current time segment of measurement data is called s =
{s1, s2, . . . , sj, . . . , sq}. Summations are usually carried out over the entire q data samples within
the time segment. Only the sums for features 35 to 39 are different as here the summands are
the numbers r of occurances of overshoots, undershoots, rises and falls in the segment. The
value r can differe between the five features. Despite not being exhaustive the presented list of
features contains all features found in related literature [3, 4, 12–15, 84, 91, 169–173]. Features
of the measurement data can be either extracted from the time domain representation of the
signal (see table 7.3) or from the frequency domain (see table 7.4). An explicit conversion of the
measurement signal from time to frequency domain by means of a fast fourier transform (FFT)
is not conducted, but instead special Matlab commands are used which implicitely retrieve
frequency domain features from the time domain signal.

Reason for the relatively high number of extracted features is missing prior knowlegde about
eligibility of specific features for the given classification problem. Depending on the outlook of
the measurement data some combinations of features might abstract the measurement data much
better than other sets of features. Finding the optimal set of features is an essential process
step and is conducted later in this section. To provide a large enough search space for this task
as many features as possible are extracted at this point regardless of any prior assumptions
about how well different features might perform on the given measurement data. With the two
different datasets created in this section subsequent process steps can be performed in the next
sections to fit, evaluate and compare different classification algorithms.

135

7 Feature Based Classification

Table 7.3: Overview of extracted features in the time domain. [3, 4, 12–15, 84, 91, 169–173]

No. Feature Name Calculation Matlab Command

0 Number of Samples q = |s| q = length(s)

1 1st Order Moment (Mean) s̄ = 1
q

∑q
j=1 sj sq = mean(s)

2 2nd Order Central Moment
(Variance)

µ2 = 1
q

∑q
j=1(sj − s̄)2 mu2 = moment(s,2),

mu2 = var(x,1)
3 3rd Order Central Moment µ3 = 1

q

∑q
j=1(sj − s̄)3 mu3 = moment(s,3)

4 4th Order Central Moment µ4 = 1
q

∑q
j=1(sj − s̄)4 mu4 = moment(s,4)

5 5th Order Central Moment µ5 = 1
q

∑q
j=1(sj − s̄)5 mu5 = moment(s,5)

6 6th Order Central Moment µ6 = 1
q

∑q
j=1(sj − s̄)6 mu6 = moment(s,6)

7 7th Order Central Moment µ7 = 1
q

∑q
j=1(sj − s̄)7 mu7 = moment(s,7)

8 8th Order Central Moment µ8 = 1
q

∑q
j=1(sj − s̄)8 mu8 = moment(s,8)

9 9th Order Central Moment µ9 = 1
q

∑q
j=1(sj − s̄)9 mu9 = moment(s,9)

10 4th Order Cumulant c4 = µ4 − 3µ2
2 -

11 5th Order Cumulant c5 = µ5 − 10µ3µ2 -
12 6th Order Cumulant c6 = µ6 − 15µ4µ2 − 10µ2

3 + 30µ3
2 -

13 Skewness v = µ3/
√
µ3

2 v = skewness(s)
14 Kurtosis w = µ4/

√
µ2

2 w = kurtosis(s)

15 Standard Deviation σ =
√

1
q

∑q
j=1(sj − s̄)2 sigma = std(s,1)

16 Relative Standard Deviation sRSD = σ/s̄ srsd = std(s,1)/mean(s)
17 Interquartile Range sIQR = Q.75 −Q.25 siqr = iqr(s)

18 Median smed =
{
s(q+1)/2, q odd
1
2
(
sq/2 + sq/2+1

)
, q even

smed = median(s)

19 Mean Absolute Deviation dmean = 1
q

∑q
j=1 |sj − s̄| dmean = mad(s)

20 Median Absolute Deviation dmed = 1
q

∑q
j=1 |sj − smed| dmed = mad(s,1)

21 Minimum Value smin = minj=1,2,...,q{sj} smin = min(s)
22 Maximum Value smax = maxj=1,2,...,q{sj} smax = max(s)
23 Peak to Peak Value sp2p = smax − smin sp2p = peak2peak(s)
24 Maximum Absolute Value speak = maxj=1,2,...,q |sj | speak = max(abs(s))

25 Square Root Value sSRV =
(

1
q

∑q
j=1

√
|sj |
)2

ssrv = (1/length(s)*
sum(sqrt(abs(s)))).ˆ2

26 Average Rectified Value sARV = 1
q

∑q
j=1 |sj | sarv = 1/length(s)*sum(abs(s))

27 Root Mean Square sRMS =
√

1
q

∑q
j=1 |sj |2 srms = rms(s)

28 Root Sum of Squares sRSS =
√∑q

j=1 |sj |2 srss = rssq(s)

29 Crest Factor ks = speak/sRMS ks = peak2rms(s)
30 Shape Factor kf = sRMS/sARV kf = srms/sarv

136

7 Feature Based Classification

Table 7.3 (continuation) : Overview of extracted features in the time domain. [3, 4, 12–15, 84, 91,
169–173]

No. Feature Name Calculation Matlab Command

31 2nd Hjorth Parameter
(Mobility)

Ψ2 =
√
var (ṡ) /var (s) [hj2,~] = HjorthParameters(s)

32 3nd Hjorth Parameter
(Complexity)

Ψ3 = Ψ2 (ṡ) /Ψ2 (s) [~,hj3] = HjorthParameters(s)

33 Area under Curve sAUC = b−a
2q

∑q
j=1 (sj + sj+1) auc = trapz(s)

34 Area under Autocorre-
lation Curve

sAAC = b−a
2q

∑q
j=1 (sAUC,j + sAUC,j+1) aac = trapz(xcorr(s))

35 Sum of Overshoots s̄OS =
∑r

i=1 sOS,i sos = sum(overshoot(s))
36 Sum of Undershoots s̄OS =

∑r
i=1 sUS,i sus = sum(undershoot(s))

37 Sum of Rise Times t̄r =
∑r

i=1 tr,i srt = sum(risetime(s))
38 Sum of Fall Times t̄f =

∑r
i=1 tf,i sft = sum(falltime(s))

39 Sum of Slew Rates s̄SR =
∑r

i=1 sSR,i ssr = sum(slewrate(s))

7.3 Development of Feature-Based Classifiers

After extraction of features from the measurement data and composing of the training and testing
sets the actual classsification problem can be resolved. All following process steps are conducted
in Orange3 a Python based open-source data visualization, machine learning and data mining
toolkit [115, 116]. It incorporates a graphical user interface which simplifies data manipulation,
model setup and evaluation significantly compared to other machine learning toolkits which
require much more complicated manual scripting [174]. Orange3 workflows comprise different
widgets for data manupulation, data visualization, model fitting and evaluation which can
be dragged to the workspace and modified afterwards. The Orange3 workflow used in the
subsequent sections is shown in fig. 7.15. It contains several different widgets which serve
different purposes. Widgets labeled with Training Data and Testing Data load the datasets
created by the feature extraction algorithm in section 7.2. The training dataset is then directly
fed into a Column Selection and afterwards in a Preprocessor widget. Here first a manual
preselection of features takes places and afterwards features are standardized and an automated
selection of features based on a feature importance measure is conducted. This will be explained
in detail in section 7.3.2. Apart from this the model contains seven different classification
models, more precisely one k-nearest-neighbour model, one tree model, one random forest, one
AdaBoost model, one support vector machine, one stochastic gradient descent model and one
naive bayes model. All those models are explained in detail in section 7.1.3. They are connected
to the Scoring widget and are automatically fit to the preprocessed training data. Tuning of the
hyper-parameters of each model is explained in section 7.3.3. After model training the test set
is loaded from the Testing Data widget and fed into the Scoring widget as well. Because the
preprocessor is connected to the Scoring widget as well the test data is processed the same way
as the training data which is neccessary to enable classification of test samples. The test data is

137

7 Feature Based Classification

Table 7.4: Overview of extracted features in the frequency domain. Any feature is extracted for all
three power line phases L1, L2 and L3. [3, 4, 12–15, 84, 91, 169–173]

No. Feature Name Matlab Command

0 Average Power abp = bandpower(s)
1 3 dB Half-Power Bandwidth hpbw = powerbw(s)
2 99 % Occupied Bandwidth ocbw = obw(s)
3 Mean Normalized Frequency fmean = meanfreq(s)
4 Median Normalized Frequency fmed = meanfreq(s)

5 Spurious Free Dynamic Range ssfdr = sfdr(s)
6 Signal to Noise and Distortion Ratio ssinad = sinad(s)
7 Signal to Noise Ratio ssnr = snr(s)
8 Total Harmonic Distortion sthd = thd(s)

fed into all seven classifier models and the predicted labels are compared to the true labels of
the test data. Based on this different performance scores are measured and confusion matrices
are created for all classifiers giving a more detailed insight into the performance of the classifiers.
Details of this step are presented in section 7.4. Besides the Orange3 implementation the same
classification problem is solved with two Python scripts shown in listing A.18 and listing A.19.
They utilize the machine learning library scikit-learn (see [123] and [175]) to conduct the same
process steps of the Orange3 implementation, however feature an automatic grid search for
finding optimal hyperparameters. For the sake of simplicity and because of very similar results
of both approaches the following process is described by means of the Orange3 implementation
instead of the scikit-learn scripts.

7.3.1 Standardization of Extracted Features

Before any classifier can be fit to the training dataset or any classification can be performed on
the test set, it is neccessary to standardize both training and testing dataset. Standardization
is required for proper operation of many classification algorithms. It comprises centering of
the features by removal of the mean or median value and scaling of each feature to either unit
variance or unit range. [123]

Consider for instance the two-dimensional dataset in fig. 7.16a. As can be seen both features
are significantly different scaled. While the data is broadly distributed along the first feature
x(1) it is almost not spread along the second feature x(2). This is due to different scaling of
both features and leads to poor performance when fitting most classification algorithms to this
kind of misscaled dataset. So standardization of this dataset is needed to increase classification
performance. The same dataset after scaling to unit variance and centering by removal of the
mean value is shown in fig. 7.16b. [40]

138

7 Feature Based Classification

Figure 7.15: Overall workflow of the feature based classification in Orange3. First training data and
test datasets are loaded. Both datasets are then standardized and relevant features are
selected. Based on this preprocessed training data multiple different classifier models
are fit and afterwards their performance is evaluated on the independent test dataset.

To standardize a dataset
X = {x1,x2, . . . ,xk, . . . ,xn} ∈ Rp (7.44)

first each feature x(i) ∈ Rn with i = {1, 2, . . . , p} needs to be centered. This is done by eiter
subtracting the mean value

x̄(i) = 1
n

n∑
k=1

x
(i)
k (7.45)

or the median value

x
(i)
med =

x(n+1)/2, n odd
1
2

(
xn/2 + xn/2+1

)
, n even

(7.46)

from each column of the data matrix x(i). Now features are centered around zero and scaling
to either unit range or unit variance can be performed. If features are scaled to unit range all

139

7 Feature Based Classification

0 0.5 1

x
(1)

0

0.2

0.4

0.6

0.8

1
x

(2
)

(a) Dataset before scaling.

-2 -1 0 1

x
(1)

-3

-2

-1

0

1

2

x
(2

)

(b) Dataset after scaling to unit variance
and centering around mean.

Figure 7.16: Standardization of an unequally scaled dataset. Standardization scales all features to
either unit range or unit variance and centers them around mean or median. The left
diagram shows a two-dimensional dataset with unequally scaled features. The right
diagram shows the dataset after centering around the mean values and scaling to unit
variance. Here both features are similarly distributed.

values in the data matrix lie in the range [0, 1] and if they are scaled to unit variance all features
within the data matrix have roughly the same variance of σ = 1. Scaling a feature x(i) ∈ Rn to
unit range is done by subtracting the minimum value x(i)

min = mink=1,2,...,n{x(i)
k } from each data

value x(i)
k in that column and divinding by the distance between minimum value and maximum

value x(i)
max = maxk=1,2,...,n{x(i)

k } of that column giving the new data values

x̂
(i)
k = x

(i)
k − x

(i)
min

x
(i)
max − x(i)

min
, k = {1, 2, . . . , n} . (7.47)

for the ith column of the data matrix. Scaling of the ith features to unit variance on the other
hand is conducted by subtracting the mean value x̄(i) and dividing by the standard deviation
σ(i) of the feature giving the new data values

x̂
(i)
k = x

(i)
k − x̄(i)

σ(i) , k = {1, 2, . . . , n} . (7.48)

Of course subtraction of the mean value is only neccessary if no previous centering has been
conducted. Otherwise subtraction of the mean value does not affect the scaling operation. [40,
123]

Which method for scaling is suitable for a given problem depends on the outlook of the features.
If features are approximately equally distributed, meaning they have approximately zero variance,
scaling to unit variance is not reasonable as this would lead to very high data values with large
fluctuations in the scaled dataset. Instead equally distributed features should always be scaled
to unit range. However if features can be approximated by a normal distribution scaling to unit
variance is appropiate. In this case distributions of all p features have roughly the same outlook
which significantly improves classification performance. [40]

140

7 Feature Based Classification

Standardization of the dataset is carried out in the Orange3 workflow by means of the Preprocessor
widget. Here the subwidget Normalize Features which is shown in fig. 7.17 is enabled and the
options are set to Center by Mean and Scale by SD which means each feature is centered around
its mean value and scaled to unit variance. [117]

Figure 7.17: Normalization subwidget in the preprocessing widget in Orange3. This subwidget scales
each feature in the dataset to unit variance and centers it around its mean value.

7.3.2 Selection of Relevant Features

After extraction of the features listed in section 7.2 it is neccessary to reduce dimensionality of
the dataset by selecting only the most relevant features in order to achieve optimal classifica-
tion performance. This section first explains why dimensionality reduction is neccessary and
afterwards explains in detail how feature selection is conducted by means of exploiting internal
feature ranking of decision trees. Finally implementation of feature selection within the Orange3
workflow presented in fig. 7.15 is described.

To be able to classify samples of an unseen test set with reasonable performance a decision
boundary needs to be fit to given training data (see section 7.1.2). This decision boundary
should be as simple as possible to improve classification performance on the test set, but must
be complex enough to correctly separate classes of the training set in feature space. For this a
sufficient amount of different features which describe training samples is needed. If for instance
only one feature would be used it could be that this feature is not able to distiguish between
all classes in the training set. Accordingly more features needs to be extracted and considered
during classification. If these features are sufficient in separating all classes in the training set,
performance on the training set increases as shown in fig. 7.18 (red line). Increasing the number
of features, this means dimensionality of the dataset even more creates a very complex decision
boundary that is highly fit to the training data giving a very high classification performance on
this training set. However performance on the test set is very low, when dimensonality is too
high as the highly complex decision boundary is not able to generalize well to unseen training
data which might differ slightly from the training data. Accordingly there is an optimal number
p∗ of features which give a decision boundary that is on one hand able to separate classes of
the training set satisfactory and on the other hand generalizes well to unseen training data.
The problems arising from a too high dimensional feature space are often refered to as curse of
dimensionality. [45, 176, 177]

Reason for increasing performance on the training set with increasing dimensionality is the
growing sparsity of samples in feature space. Consider a training set with 1000 samples. Given a
one-dimensional feature space of length 5 units leads to a densitiy of 1000/5 = 200 samples per
unit. Spreading the same samples in a two dimensional feature space with an area of 5× 5 = 25

141

7 Feature Based Classification

Dimensionality p

C
la
ss
ifi
er

Pe
rfo

rm
an

ce
Training Data

Testing Data

p∗

Figure 7.18: Classifier performance on both test and training set versus dimensionality p of the data
set clarifies curse of dimensionality. A too low number of features is usually not sufficient
for proper classification of unkown test samples. However a too high number of features
leads to highly non-linear decision boundaries which overfit to the training data leading
to poor classification performance on unknown test data. Depending on the particulars
of the datatset there is an optimal number p∗ of features leading to highest classification
performance on the test set. [176]

units decreases densitiy of the samples to 1000/25 = 40 per unit. Increasing dimensionality to 3
gives a cube of volume 5× 5× 5 = 125 units which reduces density of the training set to only
1000/125 = 8 samples per unit. This decrease in density of the training set makes fitting of a
hyperplane in higher dimensions much easier than in lower dimensions because it is less likely for
a training sample to be located on the wrong side of the hyperplane. However transforming the
hyperplane into a lower dimensional feature space gives a highly non-linear decision boundary
which is overfit to the training data and generalizes not adequately to an unseen test set, which
is why performance on the test set decreases with too many features used for classification. Such
a casse of a highly overfit decision boundary is illustrated in fig. 7.19. [45, 176]

Another reason for bad performance on the test set is unequal sparsity of the test set in a high
dimensional feature space. Here sparsity is much higher in the center of feature space than at
its surface, meaning most of the samples lie directly at the surface while the center of feature
space is nearly empty. From this arise problems as samples that lie far off from center of feature
space are harder to classify than samples that lie close to the center. This is because feature
values of these remote samples deviate strongly from the class averages making it harder to
assign a specific class to them. Cause for decreasing sample density in the center of feature
space is the change in the ratio of hypercube volume to volume of the unit sphere around the
center of the hypercube. To clarify this consider the two-dimensional feature space shown in
fig. 7.20. Here the unit sphere around the center is a circle with radius r = 0.5 units and the
hypercube is a square with edge length of a = 1 unit. So the volume (area) of the center sphere is
VS = πr2 ≈ 0.785 and the volume (area) of the hypercube is VC = a2 = 1. So the sphere volume
makes up 78.5 % of the hypercube volume when only two dimensions are considered. Therefore
the center sphere contains most of the test samples making classification easy. Repeating the

142

7 Feature Based Classification

x(1)

x(2)

×
× ×

×

×

× ×

×××
×

×
× ×

×

× × ×
•

•

•
•

•
•

•

•
••
•

•

•
•

•

• •

•

c = 1 c = 2

Figure 7.19: Highly non-linear decision boundary as result of overfitting to the training data in a
high dimensional feature space. In the higher dimension the decision boundary is linear,
however when projected onto a two-dimensional space it becomes highly non-linear
and shows strong overfitting to the training data which leads to poor classification
performance on unseen test data. [176]

same calculation for three dimensions gives VC = 1 and VS = 4/3πr3 ≈ 0.524. So as can be seen
volume of the hypercube stays constant while volume of the center sphere and therefore the
proportion of samples lying in the center of the hypercube decreases. For an infinite dimensional
feature space the volume of the center sphere approaches zero and all samples lie outside of the
center and on the hypercube surface making it hard to classify them. [45, 176]

To avoid the problems arising from too high dimensional feature spaces the number of features
should be kept low. The optimal number of features p∗ which gives maximum performance on the
test set and performs reasonable on the training set depends on different aspects and varies for
each classification problem. First the amount of training samples determine how many features
can be considered before overfitting occurs. In general it can be said that the more training
samples are available the higher dimensionality of the feature space can be choosen. Moreover
the classifier used for classifying test samples affects optimal number of features. Classifiers
that build highly non-linear decision boundaries such as k-nearest-neighbours tend to overfit to
training data easily. When such a classifier is used dimensionality of feature space should be
lower compared to the case of classifiers which fit linear decision boundaries such as support
vector machines or decision trees. Finally the individual outlook of the training data and the
decision boundary needed for distiguishing between classes in the training set influences the
optimal number p∗ of features. [45, 176]

To find the optimal number and combination of features for a given classsification problem
for example an exhaustive grid search could be performed. This tests different numbers and
combinations of features against the classifier performance and decides for the combination of
features which lead to highest performance. These kind of feature selection methods which
incorporate the classifier model is called wrapper-methods. Another type of feature selection

143

7 Feature Based Classification

x(1)

x(2)

×

×

× ×

×

×

×
×

×
××

×

×
× ×

×

× ×

×

×

×
××
×

×

× ×

×

× ×

Center Sphere
(VS = 0.785)

Hypercube
(VC = 1)

0 0.5 1
0

0.5

1

Figure 7.20: Illustration of the number of samples close to the center of feature space compared to
samples at the edges of feature space. In a low dimensional feature space like here (p = 2)
most of the samples lie close to the center of feature space within the unit hypersphere
around the center and are easy to classify. Samples outside the unit hypersphere deviate
much from the class average and are therefore more unlikely to be classsified correctly.
When dimensionality of feature space increases the volume of the hypersphere decreases
while the feature space volume VC stays constant. Accordingly the number of samples in
the center region declines and the majority of samples lies outside of the unit hypersphere
leading to poor classification performance. [176]

method which operates regardless of the actual classifier is called filter-method. Methods of
this kind determine quality of features on different measures as for example variance and
preselect features which have for instance high variance and therefore might be more suitable for
distiguishing between classes than features with low variance. However filter methods are not
able to detect dependencies between features which might lead to problems when the dataset
contains some features which have high variance but are strongly correlated. Apart from this
selection of relevant features can be conducted by utilizing internal feature ranking of the decision
tree algorithm. As mentioned in section 7.1.3.2 decision trees internally rank features and split
feature space along the most important features by introducing axis-parallel decision boundaries
along the selected features. Decision trees can not only be used as classifiers, but also for feature
selection by exploiting their internal feature ranking. After training of the decision tree on a
given training set the most important feature can be found directly after the root node of the tree,
followed be the second most relevant feature in the second tree level and so on. By looking at the
first r hierarchical levels of the tree the r most relevant features can be selected. Internal ranking
of the features within the decision tree is done by comparing the information gain of all features
for each split that is introduced to the tree. This measure describes how much information
is won by introducing a split along a specific value of a specific feature. By comparing the
information gain for split alogn all features the feature giving maximum information gain is
selected. [123, 178, 179]

To understand information gain first the concpet of entropy needs to be introduced. Entropy is

144

7 Feature Based Classification

a measure of impurity of a dataset meaning it describes how much a set of samples containing
a specific class is contaminated by samples of other classes. High entropy is equal to high
information content of a dataset. Consider a labeled dataset

XL = (X, c) = {x1,x2, . . . ,xk, . . . ,xn} ∈ Rp × {c1, c2, . . . , ck, . . . , cn} (7.49)

of size n with class labels ck ∈ {1, 2, . . . , l, . . . ,m}. Entropy for such a dataset can be defined
as

H (XL) = −
m∑
l=1

p(ck = l) log2 p(ck = l) (7.50)

with the probability
p(ck = l) = |{ck ∈ c|ck = l}|

n
(7.51)

of a sample having the class label ck = l ∈ C within the labeled dataset. If only one specific
class label ck = l occurs in the dataset probability for this class label is 1 and probabilities
for all other class labels are 0. Hence in this case entropy is 0 bit which means the dataset is
completely pure and contains only samples of one class. If all m different classes occur with
equal probabilities entropy of the dataset is 1 bit which is the maximum value possible meaning
the dataset has maximum impurity. Given this definition of entropy information gain can be
defined as amount of information gained by inserting a split along the specific value νi of feature
x(i) with i = {1, 2, . . . , p}. Probability for the feature x(i) having the value l ∈ {1, 2, . . . , νi} is

p(x(i) = l) =

∣∣∣{x(i) ∈ X|x(i) = l}
∣∣∣

n
. (7.52)

With this information gain of inserting a split at x(i) = l can finally be computed as

gi = H (XL)−
νi∑
l=1

p(x(i) = l)H
(
XL|x(i) = l

)
. (7.53)

[40, 178, 179]

To better understand the concept of information gain an example shall be given. Consider the
labeled training datatset XL shown in fig. 7.21 which contains 16 samples of class c = 1 and 17
samples of class c = 2. As can be easily seen, the classes can be separated linearly by introducing
a vertical split at x(1) = 4.1. Splitting the data along another split as for instance, x(2) = 2.9
does not help in creating an appropiate decision boundary for the given dataset. Hence the first
feature x(1) is more relevant for the given classsification task than the second feature x(2). This
intuitive solution can also be found by computing information gain for both cuts. Expected
result would be a high information gain for the split along the first feature x(1) = 4.1 and a low
information gain for the split along x(2) = 2.9.

To calculate the information gain first the entropy of the entire dataset need to be computed. It
is

H (XL) = −16
33 log2

16
33 −

17
33 log2

17
33 ≈ 0.99934 bit (7.54)

145

7 Feature Based Classification

x(1)

x(2)

×
× ×

×

×

× ×

×××
×

×
× ×

×

× •

•

•
•

•
•

•

•
••
•

•

•
•

•

• •

4.1

2.9

c = 1 c = 2

Figure 7.21: Example for feature ranking by a decision tree. The split along feature x(1) = 4.1
separates classes much better than the split along x(2) = 2.9 which can be found by
calculating information gain for both splits. Hence the decision tree splits the data along
feature x(1) in its first level and along x(2) in its second level, implicitely ranking both
features according to their relevance.

which is close to the maximum entropy of 1 bit as the dataset contains nearly equal amounts
of samples for both classes. If a decision tree now splits data along the first feature x(1) = 4.1
resulting entropries can be calculated as

H
(
XL|x(1) > 4.1

)
= − 1

16 log2
1
16 −

15
16 log2

15
16 ≈ 0.33729 bit (7.55)

for the subset to the right of the split and as

H
(
XL|x(1) < 4.1

)
= −15

17 log2
15
17 −

2
17 log2

2
17 ≈ 0.52256 bit (7.56)

for the subset to the left of the split. This leads to an information gain for the first split of

g1 = H (XL)− 16
33H

(
XL|x(1) > 4.1

)
− 17

33H
(
XL|x(1) < 4.1

)
≈ 0.56661 bit. (7.57)

Accordingly for the second split the information gain can be calculated from the individual
entropies of the two subsets above and below the split. The entropy for the above subset is

H
(
XL|x(2) > 2.9

)
= − 8

16 log2
8
16 −

8
16 log2

8
16 ≈ 1.00000 bit (7.58)

and the entropy for the subset below the split is

H
(
XL|x(2) < 2.9

)
= − 8

17 log2
8
17 −

9
17 log2

9
17 ≈ 0.99750 bit. (7.59)

This gives the information gain

g2 = H (XL)− 16
33H

(
XL|x(2) > 2.9

)
− 17

33H
(
XL|x(1) < 2.9

)
≈ −0.99816 bit (7.60)

146

7 Feature Based Classification

for the second split. As expected information gain of the second split is much lower than
information gain of the first split. Therefore the tree has ranked feature x(1) as more relevant
than feature x(2) and splits the dataset along the first feature. Of course in reality the value
ν1 = 4.1 of the split position is not given, but needs to be determined simultaneously to the
feature along which the split needs to be inserted. This is done by discretizing both numeric
features x(1) and x(2) and calculating information gain for each possible split position along both
discrete features. The resulting information gains are compared and the highest information gain
gives the most relevant feature as well as the position where the split needs to be inserted. The
entire process is repeated until some stop criterion like depth of the tree or number of selected
features is reached. Result of this process is then a ranking of the first r most relevant features
in the datatset. [40, 178, 179]

Regarding the classification task for the milling machine feature selection is implemented in the
Orange3 workflow shown in fig. 7.15 in form of the Preprocessor widget. Here the subwidget
Select Relevant Features which is depicted in fig. 7.22 is utilized to determine which of the
features extracted in section 7.2 are most relevant. Selection is done as described above by
means of maximizing information gain. The number of features to select is set to 10 as this
number turns out to be a good trade-off between high classification performance on the test set
and low dimensionality of the dataset. [117]

Figure 7.22: Feature Selection subwidget in the preprocessing widget in Orange3. This subwidget
selects the 10 most relevant features from the input dataset, whereby features are scored
according to their information gain.

However preceeding to the automatic feature selection a manual preselection is conducted as
some of the 49 features extracted in section 7.3.2 turn out to be inappropiate for the given
classification task. For the manual preselection a Column Selection widget that filters out
selected columns, this means features from its input dataset and passes the modified dataset to
its output. Features that are manually removed from the dataset are the number of samples q
and area under curve sAUC as they are highly correlated with the length of the segment which is
classified. This is usually unwanted as features should be invariant to changes in the length of
the signal that is classified. In this case it would be suffiecient to rely on the length as feature,
however if the measurement signal is not cut into segments, but instead continuously analyized
as it might be the case in the later course of this project, features should be choosen to be
compatible with such an online analysis. Moreover the median normalized frequency fmed is
removed as it is highly correlated with the mean normalized frequency fmean and therefore the

147

7 Feature Based Classification

feature selection algorithm always chooses both features. A strong correlation also exists between
the 2nd order central moment (variance) µ2, the standard deviation σ and the relative standard
deviation sRSD. Therefore only variance is kept while the other two features are removed from
the dataset. Moreover the minimum value smin, the maximum value smax and the maximum
absolute value speak are sorted out as both minimum and maximum value are contained in the
peak to peak value sp2p and the maximum absolute value is identical to the maximum value for
the given signal which has only positive amplitudes. After removing these features the remaining
dataset comprises 41 different features from which the automatic feature ranking selects the 10
most relevant features. The selected features are shown in table 7.5 together with their according
rank, whereby rank 1 stand for the most relevant feature.

Table 7.5: Subset of 10 most relevant features which maximize information gain and are choosen by
the Orange3 feature selection algorithm. This subset is drawn from the 41-dimensional
dataset of which some features are removed by manual preselection.

Rank Feature Name Symbol Rank Feature Name Symbol

1 9th Order Central Moment µ9 6 Median Normalized Frequency fmean

2 7th Order Central Moment µ7 7 Mean Absolute Deviation dmean

3 8th Order Central Moment µ8 8 Standard Deviation σ

4 4th Order Central Moment µ4 9 Crest Factor ks

5 Peak to Peak Value sp2p 10 Shape Factor kf

Visualizing the 10-dimensional feature space spanned by the slected features if of course not
possible. However projections onto two-dimensional planes in the 10-dimensional feature space
are possible. These planes are spanned by two features each, so there are 100 possible projections.
Orange3 features an automative ranking for those projections according to their information
content. The most informative projection found is shown in fig. 7.23 and is spanned by the
peak to peak value and the mean absolute deviation. While most of the classes are easily
distinguishable as each class corresponds to one cluster of samples, some of the classes like 2, 3,
4 and 5 as well as 6, 8 and 9 lie very close to each other. Zooming closer into the first area as
shown in fig. 7.24a makes clear that classes 2 and 3 as well as 4 and 5 are partly overlapping,
which makes fitting of a decision boundary in between of those two pairs of classes difficult.
Classes 6, 8 and 9 however are not significantly overlapping as can be seen in fig. 7.24b, wherefore
classification of those classes is uncomplicated. Taking into account that the scatterplots are
only a projection of the 10-dimensional feature space and that there are 8 more features which
help distiguishing between the 12 classes it is very likely that classes are easily separable with a
relatively simple decision boundary. Therefore a high classification performance even on unseen
test data can be expected.

7.3.3 Hyperparameter Setup

Each of the seven classifiers used in the Orange3 workflow (see fig. 7.15) for solving the present
classification task comprises a set of hyperparameters which need to be adjusted prior to classifier

148

7 Feature Based Classification

-1 -0.5 0 0.5 1 1.5 2 2.5 3

d
mean

-1

0

1

2

3

4

5

s
p
2
p

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 10

Class 11

Figure 7.23: Two-dimensional projection of a scatterplot of the training dataset. This projection was
ranked as most informative by the Orange3 scatterplot widget and shows all samples in
the training set projected to the plane spanned by the peak to peak value and mean
absolute deviation.

training. As adjustment of the hyperparameters affect classification performance this task is
an optimization problem. Hyperparameters differ from normal model parameters because they
need to be estimated before the classifier is trained on the training data. This estimation is then
usually scored on an independent test dataset. Therefore hyperparameters play an important
role in controlling the training process. During training normal model parameters are adjusted
to fit the model to a given training set. As this fit is only scored on the training data itself,
it is likely that the model overfits to the training data and loses its ability to generalize to
unseen test data. But by introducing hyperparameters which control the training process and
which are scored against an unseen test dataset overfitting can be prevented. Finding optimal
hyperparameters can be done for instance by an exhaustive grid search. Forthis first different
discrete values for each of the hyperparameters that shall be tuned have to be given. They span a
parameter grid containing every possible combination of the hyperparameters which are applied
to the classifier model. Performance of the so created model is scored against a test set giving
a model test score for each combination of hyperparameters. The maximum test score finally
leads to the optimal set of hyperparameters within the predefined grid. Such an exhaustive grid
search has some problems though, because it requires discretization of numeric hyperparameters
and is in most cases computationally expensive. Another method is randomized searching of
the hyperparameter space. This method overcomes the problem of high computational expense,
however does not evaluate each possible hyperparameter combination. [123, 180, 181]

For the given problem hyperparameters are not optimized automatically, but rather by manual
tweaking and evaluating of the classification accuracy on the test dataset. This is reasoned
by the fact that the visual interface of Orange3 does not incorporate any tools for automatic

149

7 Feature Based Classification

-0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.5

d
mean

-0.32

-0.3

-0.28

-0.26

s
p
2
p

Class 2

Class 3

Class 4

Class 5

(a) Area in the scatterplot containing classes 2, 3, 4 and 5.

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

d
mean

0.2

0.25

0.3

0.35

0.4

s
p
2
p

Class 6

Class 8

Class 9

(b) Area in the scatterplot containing classes 6, 8 and 9.

Figure 7.24: Close-up of the two-dimensional projection of the training dataset. The close-ups show
two areas in which classes are more dense packed. The first area contains classes 2, 3, 4
and 5 which are relatively densely packed and partly overlapping which makes fitting of
a decision boundary complicated. The second area contains classes 6, 8 and 9 which are
close to each other however not overlapping significantly, so a decision boundary can
easily be fit in between.

hyperparameter optimzation. However manual adjustment allows for determining which hyper-
parameters are important and which ones are not by means of their influence on the test score.
This makes efficient adjustment of the hyperparameters possible and leads to sufficient scores on
the testset. Table 7.6 shows the selected hyperparameters for each of the seven classifiers that
lead to reasonable classification performance on the test dataset. Important to mention is that
the naive bayes classifier is the only classifier not having any hyperparameters and therefore not
requiring any hyperparameter tuning. Detailed explanations of the individual parameters for all
other classifiers can be found in the Orange3 documentation in [117]. It is not guranteed that
the choosen hyperparameters are the optimal ones, however finding globally optimal parameters
by means of a grid search is not possible as well, because the search space has to be manually
discretized and restricted. Therefore the hyperparameter setting can be seen as reasonable and
is used in the later evaluation and application of the classifiers.

150

7 Feature Based Classification

Table 7.6: Overview of manually-tuned hyperparameters of classifiers implemented in Orange3 [117].
The found parameters result in a reasonable high classification performance.

Classifier Setting Value Type

k-Nearest-Neighbour Number of neighbors 4 Integer
Metric Euclidean Categorical
Weight Uniform Categorical

Decision Tree Induce binary tree Checked Checkbox
Min. number of instances in leaves 2 Integer
Do not split subsets smaller than 5 Integer
Limit the maximal tree depth to 100 Integer
Stop when majority reaches (%) 95 Integer

Random Forest Number of trees 30 Integer
Number of attributes considered at each split Unchecked Checkbox
Fixed seed for random generator 0 Integer
Limit depth of individual trees Unchecked Checkbox
Do not split subsets smaller than 5 Integer

AdaBoost Number of estimators 100 Integer
Learning rate 1.00000 Float
Fixed seed for random generator 0 Integer
Classification algorithm SAMME.R Categorical
Regression loss function Linear Categorical

Support Vector Machine SVM Type SVM Categorical
Cost (C) 1.00 Float
Regression loss epsilon (ε) 0.10 Float
Kernel Polynomial Categorical
Kernel Parameter g auto Float
Kernel Parameter c 0.00 Float
Kernel Parameter d 5.0 Float
Numerical tolerance 0.0010 Float
Iteration limit 10 Integer

151

7 Feature Based Classification

Table 7.6 (continuation) : Overview of manually tuned hyperparameters of classifiers implemented
in Orange3 [117]. The found parameters result in a reasonable high
classification performance.

Classifier Setting Value Type

Stochastic Gradient Descent Classification loss function Perceptron Categorical
Parameter ε 0.10 Float
Regression loss function Squared Loss Categorical
Regularization method Ridge (L2) Categorical
Regularization strength (α) 0.00001 Float
Mixing Parameter 0.15 Float
Learning rate Constant Categorical
Initial learning rate (η0) 0.0100 Float
Inverse scaling exponent (t) 0.2500 Float
Number of iterations 8 Integer
Shuffle data after each iteration Checked Checkbox
Fixed seed for random shuffling 0 Integer

Naive Bayes - - -

7.4 Evaluation of Feature-Based Classifiers

After setting up the proper hyperparameters and training on the preprocessed training dataset
the seven different classifiers presented in section 7.3 can now be evaluated on the independent
and also preprocessed test dataset. For this the Orange3 Scoring widget is used in combination
with the Confusion Matrix widget. Examining the confusion matrix of all classifiers gives a
detailed insight in the accuracy of the classifier and shows especially which classes are misclassified
most frequently. As an exmaple fig. 7.25 shows the confusion matrix for the k-nearest-neighbour
classifier. Corresponding confusion matrices for all other classifiers are depicted in the appendix
in appendix A.6. A confusion matrix shows the true classes of the samples within the test set in
its rows and the class labels predicted by the classifier in its columns. The matrix entries (i, j)
correspong to the number of samples classified as class cj and having the true class ci. So ideally
all elements apart from the matrix diagonal from the upper left to the lower right would be
zero and the diagonal would contain all samples, meaning all class labels are predicted correctly.
Whenever an element not lying on the diagonal is non-zero the classifier has misclassified the
according amount of samples. This behaviour can easily be expressed by means of scalar values
called precision, recall and F1-score which can be computed from the values in the confusion
matrix. The three measures lie in a range between 0 and 1, where 1 is the best score and
0 the worst. Precision is the number of correctly classsified positive samples divided by the
number of samples labeled by the classifier as positive [182]. Consider a precision of 0.6 for class
3. This means in 60 % of the cases class 3 was predicted it was predicted correctly. For the
given k-nearest-neighbour classifier class 3 was predicted 92 + 15 = 107 times. In 92 cases this

152

7 Feature Based Classification

prediction was correct. This gives a precision of 92/107 ≈ 0.8598 for class 3. Recall on the other
hand is the number of correctly classified positive samples divided by the number of positive
samples in the entire test dataset [182]. Consider a recall of 0.3 for class 3. This means in all
the cases class label 3 should have been predicted only 30 % of the labels are correctly predicted.
The F1-score is a combination of precision and recall and usually lies in between of those two
values. Calculating precision, recall and F1-score from the confusion matrix requires definition
of the terms true positive, false positive and false negative. True positives TPi are all samples
of class i that are correctly classified as class i. False positives FPi are all samples that are
predicted as belonging to class i, but actually belong to any other class except for class i. This
is the sum of all elements in the ith column except for the element (i,i) on the matrix diagonal.
False negatives FNi finally are all elements that actually belong to class i, but are predicted as
any other class except for class i. This is equal to the row sum of the ith row except for the
element (i,i) on the matrix diagonal. Given this precision for the ith class can be written as

Precisioni = TPi
TPi + FPi

(7.61)

and accordingly recall can be defined as

Recalli = TPi
TPi + FNi

. (7.62)

Based on this F1-score is defined as

F1 = 2 · Precision · RecallPrecision + Recall . (7.63)

This results in 12 different values for precision, recall and F1-score each. To reduce these to a
single scalar value the scores are averaged. For precision and recall this can be done by summing
the scores over all classes and dividing by the number of classes. For instance the average
precision for all classes can be claulcated as

PrecisionM = 1
m

m∑
i=1

Precisioni (7.64)

wherem is the number of individual classes. Average recall is calculated accordingly. With the two
averaged values F1-score can be calculated according to the above equation by replacing precision
and recall with the averaged values for precision and recall. This form of averaging is called
macro-averaging. It is implemented in Orange3 and computes averaged values independently
of class sizes, meaning it does not consider how many samples belong to each class. Another
form of averaging called micro-averaging computes the averaged values for precision and recall
differently favoring bigger classes. [117, 182, 183]

Besides precision, recall and F1-score performance of the classifiers is compared utilizing classi-
fication accuracy which is the ratio of correctly predicted samples TP out of all samples n as
defined in eq. (6.1). The last measure considered is the area und curve (AUC) value which is
the area under the receiver-operating-curve. This curve plots the recall on the vertical axis over
the false positive rate (FPR) on the horizontal axis for a specific class i. To generate multiple

153

7 Feature Based Classification

different pairs of values for recall and false positive rate any hyperparameter of the classifier is
varied. False positive rate for the ith class is defined as

FPRi = FPi
FPi + TNi

(7.65)

with true negatives (TN) which comprises all samples in the confusion matrix except for the
ones in the ith row and column. An optimal classifier has a recall of 1 and a false positive rate
of 0 giving an area of 1 under the receiver operating curve. [184, 185]

Table 7.7 shows the AUC, classification accuracy, F1-score, precision and recall for all seven
classifiers. F1-score, precision and recall are macro-averaged over all 12 classes. As can be seen
naive bayes and stochasstic gradient descent perform worst with a total classification accuracy of
only 80.1 % respectively 88.1 %. Much better perform AdaBoost and the support vector machine
with 94.5 % or rather 95.4 %. Likewise well perform k-nearest neighbhour with an accuracy of
96.2 % and the decision tree with 96.7 %. Highest performance is achieved by the random forest
classsifier which reaches an accuracy score of 97.7 %. Despite these reasonable high accuracy
scores a closer look on the confusion matrices in appendix A.6 shows that especially the naive
bayes and the stochastic gradient descent classifiers have serious problems with distiguishing
between classes 2 and 3 as well as 4 and 5 which correspond to the forward and backward
movements of x- and y-axis. As the underlying signals look very similar it is clear why both
classifiers have problems to differentiate between these two pairs of classes. Additionally the
naive bayes classifier misclassifies classes 8 and 9 in most cases as class 1. Reason for this is not
obvious as the signal corresponding to class 1, the spindle movement, does not look not very
similar to the signals corresponding to classes 8 and 9, the forward and backward movement of
the c-axis. However it is possible that the extracted and selected features are similar for those
three classes which is why the naive bayes classifier mixem them up. The other five classifiers
classify the majority of samples correctly and only show some misclassifications of classes 2 and
3 as well as classes 4 and 5, however only a fraction of all samples is misclasssified and not all
samples like with the naive bayes and stochastic gradient descent classifier. In general classes
4 and 5 are mixed up more frequently than classes 2 and 3. Classes 0, 1, 6, 7, 10 and 11 are
correctly classified in nearly 100 % of all cases by the other five classifiers. This is reasoned
by the highly different characterstics of the underlying signals in the time domain which lead
to well separated clusters in feature space (see fig. 7.24). Moreover all classifiers excpect for
naive bayes and stochastic gradient descent achieve a very low amount of misclassifications on
classes 8 and 9 which correspond to the forward and backward movement of the c-axis. Only
the support vector machine incrorrectly classifies class 9 as class 8 in 43 % of the cases.

Based on the evaluation results the conclusion can be draw that at least the five better performing
classifiers, k-nearest-neighbours, decision tree, random forest, AdaBoost and support vector
machine achieved sufficient classification performance and are therefore usable for predicting
class labels on unknown test sets in future experiments.

154

7 Feature Based Classification

Table 7.7: Comparison of typical performance measures for the seven different classifiers. All scores
are computed on the test dataset which is independent from the training set.

Classifier Performance Scores / %

AUC Accuracy F1-Score Precision Recall

k-Nearest-Neighbour 99.4 96.2 96.2 96.3 96.2
Decision Tree 98.3 96.7 96.7 96.8 96.7
Random Forest 99.9 97.7 97.7 97.8 97.7
AdaBoost 96.2 94.5 94.5 94.8 94.5
Support Vector Machine 96.8 95.4 95.3 96.0 95.4
Stochastic Gradient Descent 91.8 88.1 85.4 84.8 88.1
Naive Bayes 97.9 80.1 76.4 78.9 80.1

7.5 Conclusion of Feature-Based Classification Approach

The preceeding chapter first introduced foundations of feature based classification. It explained
common terminology of feature based datasets and described in general the basic process
steps of training, evaluation and testing independent of a specific classification algorithm.
Afterwards seven important classification models, k-nearest-neighbour, decision tree, random
forest, AdaBoost, support vector machine, stochastic gradient descent and naive bayes were
described in detail and pros and cons of those algorithms were analyzed. In the subsequent
section 49 different statistical features were extracted from the measurement data, both from time
and frequency domain. Besides a mathematical description of all features the feature extraction
algorithm which was implemented in Matlab was explained. Hereafter the extracted features
were standardized by removal of the mean value and scaling to unit variance. Moreover the
curse of dimensionality was introduced and the 10 most relevant features by means of maximum
information gain were selected. Prior to that some inappropiate features were manually sorted
out. After this hyperparameters of the classifiers were tweaked to achieve maximum performance
of the test set. In the Orange3 implementation this step was conducted manually and in the
scikit-learn script an exhaustive grid search over a given parameter space was carried out for
each classifier. Finally classification performance of the classifiers implemented in Orange3
were evaluated and compared. It turned out that naive bayes and stochastic gradient descent
performed unsatisfactory while the other five classsifiers achieved good classification performance,
above all the random forest classifier with a classification accuracy of 97.7 %.

Despite the satisfying evaluation results for most of the classifiers there is potential for further
optimization. For instance tuning of the hyperparameters was only conducted manually in
Orange3, so it is likely that the hyperparameter setup for most of the algorithms is not optimal.
However as another implementation of all algorithms in a Python script utilizing scikit-learn
with an exhaustive grid search over a given hyperparameter space achieves no better results, it
is possible that the best hyperparameter settings are already found. Nevertheless it must be
kept in mind that even an automatic grid search is not capable of finding the global optimum

155

7 Feature Based Classification

of hyperparaemters as long as the search grid is not set up properly. Because of limited
computational ressources not all parameters are examined in the given case. Moreover parameter
values for numeric parameters are discretized in a coarse grid. All this indicates there are
better hyperparameter combinations leading to higher performance of the classifiers. Apart
from this feature selection could be done differently. Instead of utilizing a decision tree which
ranks features based on information gain a wrapper method comprising the actual classfier
could perform better. To investigate this the classifier should be trained and evaluated using all
possible combinations of features and then the set leading to highest classification performance on
the test set should be selected. However this approach is computationally much more expensive
than the conducted selection by means of a decision tree, but could lead to higher performance
of the classifiers. Besides that different kinds of scaling and centering could be evaluated to
possibly achieve higher classsification performance. And finally more classification algorithms
could be fitted to the dataset. For instance neural networks and rule induction algorithms which
are not covered in this chapter.

Referring back to chapter 6 it can be said that the approach considered in this chapter lead to
development of classifiers which performed similar well as the DTW classifier which achieved
a classsification accuracy of 97 %. This accuracy is exceeded by 0.7 % by the random forest
classifier, however all other feature based classifiers perform slightly worse than the DTW
classifier. This said both approaches, the shape based and the feature based, seem to be equally
useful for the given task of classifying the 12 nominal machine states based on the acquired
measurement data. However the approach conducted in this chapter is easier to standardize, as
it complies with the common feature based pattern recognition approach. This also allows for
easy application of new machine learning algorithms as the data is presented in a very universal
form as extracted and normalized feature set. To further improve performance of the feature
based classifiers suggestions already made in chapter 6 can be applied as well. For instance
merging classes 2 and 3 respectively 4 and 5 in one virtual class each would drastically increase
classification performance as most misclassification are made on thos two pairs of classes.

Finally it can be concluded that the classifiers developed both in this chapter as well as in
chapter 6 are sufficient for classyfing machine states of the miling machine and can be used to
predict segment classes on test datasets of future measurements.

156

7 Feature Based Classification

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

4

84

0

0

0

0

0

0

0

0

0

0

92

15

0

0

0

0

0

0

0

0

35

85

0

0

0

0

0

0

0

0

0

0

65

15

4

1

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

9

99

0

0

0

0

0

0

0

0

0

0

91

1

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure 7.25: Confusion matrix for the k-nearest-neighbours classifier. Rows show true classes and
columns predicted classes of each sample within the test data set. Ideally all elements
except for the diagonal from the upper left to the lower right would be zero, meaning
class labels are predicted correctly for all samples in the test set.

157

8 Machine Fault Detection

Aim of this chapter is development of easy to understand and robust algorithms for detecting
faults of the milling machine which is subject to this work. A machine fault is hereby any
operational state which significantly deviates from the machine state taken on during acquisition
of the training data in chapter 4. Here the algorithms are required to not only detect whether
the machine is operational or not, but furthermore resolve also in which operational mode a fault
occurs. To be able to resolve machine faults to the individual components of the machine the
machine is operated in the previously developed test cycle to create a test dataset which contains
segments representing movements of individual machine axes. By finding faulty segments in the
entire measurement data faulty components can be detected. In general this task can be seen
as classsification, where the classifier has to detect for each of the 12 machine classes whether
the machine is healthy or not. Such kind of algorithm is developed in this chapter. However
rather than utilizing complex machine learning algorithms to classify between faults first a
simple similarity measurement approach is conducted to find systematic faults which apply to
all segments within the measurement data of the test cycle run and second an outlier detection
is performed to obtain faults which affect only a few segments within the entire measurement
data. To develop those two kinds of algorithms first the local outlier factor as method for finding
outliers based on estimation of the local densitiy wihtin feature space is introduced. Afterwards
the experiment layout is described in detail. Four different sets of modified test data are created
each simulating a different machine fault. Here the first three are synthetically generated by
applying mathematical functiosn to the already present test measurement data and the last one
is acquired by measurement on a the slightly modified machine. After generation of modified
test datasets two algorithms are developed and implemented in Python to find both systematic
and random machine faults. Results of the application of these two algorithms on the previously
modified test datasets are then evaluated. It turns out that the proposed algorithms are capable
of correctly detecting all of the synthetically introduced machine faults and find all significant
changes in the real test data acquired on the modified machine. Finally conclusions for the
machien fault detection are drawn and suggestions for improvement and further research are
made.

8.1 Local Outlier Factor

To detect outliers in a set of samples within feature space a large variety of different methods
has been developed. An overview of these methods can be found in [186] and [187]. In the
following experiments a densitiy based approach utilizing the local outlier factor (LOF) is used
to find outliers in feature space. The local outlier factor is a method originally proposed in [53]
which allows for detection of outliers in feature space based on estimation of the local sample
density around each sample. Advantage of this method compared to other methods which only

158

8 Machine Fault Detection

calculate the distance of a point to its nearest neighbours is the fact that samples lying within a
cluster of low density corresponding to large distances between samples are not considered as
outliers while samples which lie close but outside of a dense cluster are considered as outliers.
This is achieved by comparing the sample density of a sample with the sample density of its k
nearest neighbours. When the density around a sample is significantly lower than the density
around its neighbours the sample is an outlier, otherwise an inlier. This situtation is illustrated
in fig. 8.1. Here a dataset containing two clusters Z1 and Z2 and five outliers o1,o2, . . . ,o5 is
shown. If outliers were searched based on distance to the surrounding neighbours of a sample
only the global outliers o3, o4 and o5 would be found as they have a large distance to their
next neighbour. However the local outliers o1 and o2 would not be found as their distance
to the nearest neighbour is smaller than the distance between the samples in cluster Z2. The
density based approach however considers the local density in the surrounding region of a sample.
Samples o1 and o2 for instance lie in a region of high density and have a distance to their
nereast neighbour which is significantly larger than the average distance between samples in that
area. Therefore they are considered to be outliers. If the same samples would lie with thesame
distance to cluster Z2 they would not be labeled as outliers as the density in cluster Z2 is much
lower than in Z1. [53, 188, 189]

x(1)

x(2)

•
••

•••
••••••

•
••

•
•

•
•

•
• •

•

•

•
• •
•

•

•

•

•

•
Z1

Z2

o1

o2

o3 o4

o5

Figure 8.1: Scatterplot of data samples illustrating outlier detection based on local density estimation.
The scatterplot contains two clusters Z1 and Z2, one of high densitiy and one of lower
density. Moreover the set contains five outliers. In areas of high density as around cluster
Z1 samples which lie relatively close to the cluster, however outside of it are already
considered to be outliers, such as o1 and o2. In areas of low density outliers have a large
distance to neighbouring samples as it is the case for outliers o3, o4 and o5.

Mathematically the local outlier factor of a sample o ∈ Rp is computed the following way. First
the k-distance distk(o) is defined as distance between the sample o and its kth nearest neighbour
õ. If for instance the 2-distance dist2(o) of sample o is demanded the distance can be found
by finding the sample õ which is not closest, but second closest to sample o and computing an

159

8 Machine Fault Detection

appropiate distance measure like the manhattan distance

‖o− õ‖ =
p∑
i=1

∣∣∣o(i) − õ(i)
∣∣∣ (8.1)

between those two samples. Furthermore the k-distance-neighbourhood Nk(o) of sample o has
to be defined as

Nk(o) = {o′ |o′ ∈ D, dist(o,o′) ≤ distk(o)} . (8.2)
So the k-distance-neighbourhood contains all samples around the sample o which lie within
its k-distance. With these two defintions the reachability distance from a member o′ of the
k-distance-neighbourhood to sample o can be computed as

reachdistk(o,o′) = max {distk(o), dist(o,o′)}. (8.3)

So the reachability density is either the true distance between the two samples, but at least
the k-distance of o. This definition which is not a distance in mathematical sense as it is not
symmetric gives more stable results. By caclulating reachability distances from all samples in the
k-distance-neighbourhood of sample o to this sample enables calculation of the local reachability
density of o according to

lrdk(o) = ‖Nk(o)‖∑
o′∈Nk(o) reachdistk(o′,o) . (8.4)

This is the inverse of the average reachability distance of sample o from its neighbours o′ ∈ Nk(o).
The local outlier factor of sample o can now be computed by comparing its local reachability
density with the local reachability densities of its neighbours according to

LOFk(o) =
∑

o′∈Nk(o)
lrdk(o′)
lrdk(o)

‖Nk(o)‖ =
∑

o′∈Nk(o)
lrdk(o′) · reachdistk(o′,o). (8.5)

Whenever the local reachability density of sample o is low and the local reachability densities
of its neighbours is high the LOF is high and o considered to be an outlier. On the opposite
if local reachability density of the sample is similar to the one of its neighbours the LOF is
approximately 1, which means sample o lies within a cluster and is no outlier. So finding outliers
in a dataset is as easy and computing the LOF for all samples in the dataset and searching for
samples with high LOF values. For best performance of the outlier detection appropiate values
for the number k of considered neighbours as well as the threshold value for the LOF above
which to take a sample as outlier have to be found. In [53] a method for finding the best value
for k is proposed, however experimental tweaking of the parameter on the given dataset is also
possible. [53, 188–190]

8.2 Test Dataset Generation

As the aim of this chapter is unsupervised detection of machine faults, it is necceassary to create
test data containing faulty machine behaviour. This can be done by either replacing a healthy

160

8 Machine Fault Detection

component with a defect one or adding of an additional faulty component. Both solutions
require substantial modification of the milling machine as well as the entire segmentation and
labelling process and are therefore not easily feasible. Instead two different approaches for
creation of modified test data are conducted. First the already available test data is modified by
mathematical functions to synthetically model faulty machine behaviour and second an additional
weight is placed on the machine table which affects power consumption during movement of
the z-axis. Moreover the tool clamped into the spindle is removed which also affects current
consumption. Adding a weight on the machine table and removing the tool are of course no
machine faults, however affect power consumption of the machine similar to possible machine
failures like sluggish movement or partial deadlock of the axes and therefore can be seen as
method to simulate faulty machine behaviour. The first of the following two sections describes
the synthetic generation of modified test data in detail while the second one examines the issue
of generating a modified test dataset by adding an additional weight on the machine table.

8.2.1 Synthetic Generation of Modified Test Datasets

The first method of generating a test dataset of a faulty machine is synthetic modification of
the already available measurement data. For this purpose the measurement data from the first
test cycle run (see fig. 4.7 and fig. 4.8), which is acquired in chapter 4 is copied and modified
partially to simulate different kinds of faults. In total three different synthetic modifications are
conducted corresponding to three different experiments.

In the first experiment all 100 segments belonging to class 6 are modified. As known from
section 4.3 class 6 corresponds to the upward movement of the z-axis. To simulate a partial
deadlock of this axis during the upward movement current consumption is increased by factor
1.5 compared to the original current signal. Figure 8.2a shows a single segment of class 6 before
the modification (brown line) and after the modification (blue line). Modifications are conducted
on the already segmented measurement data, so it is possible to apply modifications only to
specific segments rather than the entire measurement signal. The modification process comprises
first finding of all segments belonging to class 6 which can easily be done by looking at the class
label of each segment. Afterwards the algorithm determines for each segment the signal offsets
at both endpoints of the segment and creates a linear function connecting both endpoints. This
offset function is then subtracted from the segment to retrieve a transformed segment. Both
endpoints of this transformed segment lie on the abscissa corresponding to a current value of
0 A. After this the transformed segment is multiplied by factor 1.5 and the linear offset function
is added again giving the signal shown in fig. 8.2a. Prior subtraction of the linear offset function
is neccessary to ensure that original and modified segment have the same ampltiude values at
the endpoints so that the modified measurement signal does not contain any discontinuities.

In the second example all 100 segments of class 6 and all 100 segments of class 7 are modified
simultaneously. This simulates a fault affecting both upward and downward movement of the
z-axis. For instance the additional weight on the machine table has such an effect on the current
signal. Computation of the modified segments is conducted according to the process described
above. Figure 8.2b compares two modified segments of classes 6 and 7 with the corresponding
segments in the original test measurement data.

161

8 Machine Fault Detection

While the first and second experiment aim to simulate a systematic fault which persists over the
entire measurement time of 7200 s the third experiment tries to emulate random machine faults
that occur only sporadically and last a short time rather than occuring constantly. This kind of
machine fault is simulated by modification of randomly sampled segments. Moreover not all
segments are modified the same way, but one individual segment of class 6 is modified differently
to emulate noisy measurements. This modified segment is depicted in fig. 8.2d. Such noise
should not be detected as machine fault by the detection algorithm, but instead be neglected
as noise. To create suitable test data for this experiment 10 segments of class 6, 5 segments of
class 7 and 2 segments of class 2 (x-axis forward movement) are randomly selected. One of the
modified segments of class 2 is shown in fig. 8.2c. As only two samples of class 2 are modified,
the algorithm should not assume any machine fault in this class as all other 98 segments of
class 2 do not contain any faulty behaviour. So similar to the noisy segment of class 6 the two
faulty segments of class 2 should be taken as noise which can be neglected. Only when the
number of segments containing the same kind of modification increases a specific threshold a
systematic machine fault shall be assumed. How this detection of machine faults is achieved will
be explained in the further course of this chapter.

After modification of the test measurement data by means of the Matlab script shown in
listing A.13 the three synthetically generated test measurement datasets are fed into the feature
extraction algorithm developed in section 7.2 which gives feature based datasets that can be
further processed by the machine fault detection algorithm.

8.2.2 Experimental Generation of a Modified Test Dataset

In addition to the synthetic modification of the measurement data a fourth experiment is
conducted which aims to experimentally produce a test dataset by partly modifying the milling
machine and acquiring a new test dataset. Looking at real measurement data helps to validate
if the synthatically modified datasets simulate machine faults appropiately. However as already
said it is an elaborate process to replace a healthy component of the milling machine by a defect
one as after replacement modifications of the measurement hardware have to be conducted and
additionally the machine has to be recalibrated. Therefore no component is exchanged, but
instead an additional weight is added to the machine table increasing static and dynamic load
of the z-axis which leads to higher current consumptions when moving this axis. This increased
current consumption simulates a machine fault. In the experiment the additional weight is
realized by bolting a heavy steel clamping unit onto the machine table. Afterwards the test
cycle program as defined in section 4.4 is executed to create the specific measurement dataset
which can then be further processed by the already developed algorithms. To process this newly
created dataset it is first extracted from the database. Subsequently autmatic segmentation
and labelling by means of the algorithm developed in section 5.3 is conducted to create specific
segments for each individual axis movement within the measurement data of the test cycle.
After segementation features can be extracted according to section 7.2 giving a feature space
representation of the modified test dataset. This dataset is the basis of the machine fault
detection algorithm. For processing the measurement data of the modified machine slightly

162

8 Machine Fault Detection

1.27 1.275 1.28

Data Sample 104

6

8

10

12

14

16

18

20
C

u
rr

e
n

t
I

/
A

Modified

Original

(a) Modified segment of class 6 as occur-
ing in the first experiment.

1.27 1.28 1.29 1.3

Data Sample 104

5

10

15

20

C
u

rr
e

n
t

I
/

A

Modified

Original

(b) Simultaneously modified segments of
class 6 and 7 as occuring in the second
experiment.

4.54 4.55 4.56

Data Sample 104

6.5

7

7.5

8

8.5

9

9.5

C
u

rr
e

n
t

I
/

A

Modified

Original

(c) Modified segment of class 2 as occur-
ing in the third experiment.

1.27 1.275 1.28

Data Sample 104

6

8

10

12

14

16

18

20

C
u

rr
e

n
t

I
/

A

Modified

Original

(d) Differently modified segment of class
6 occuring in the third experiment to
simulate a random fault (outlier).

Figure 8.2: Different kind of synthetically modified segments in the test cycle measurement data
simulating machine faults. In the first experiment all instances of class 6 are modified
according to the upper left plot. In the second experiment all instances of classes 6 and
7 are modified as shown in the upper right plot. Finally, in the third experiment 10
randomly choosen segments of class 6, 5 segments of class 7 and 2 segments of class 2 are
modified. Additionally the first segment of class 6 is modified differently as shown in the
lower right plot.

163

8 Machine Fault Detection

changed versions of the scripts developed for segmentation and feature extractions are used.
These can be found in appendix A.7.9.

Figure 8.3 shows an extract of the main line current consumption on phase L2 of the modified
machine (blue line) in comparison to the according current consumption of the non-modified
machine (brown line) which is acquired in chapter 4. Important to mention is that in the
diagram mean values of both signals are removed to better align the sequences and emphasize
the differences between them. As can be seen downward movement of the z-axis (class 7)
is significantly influenced by the additional weight on the machine table while the upward
movement (class 6) is rarely affected. Interestingly current consumption is decreased during
upward movement and increased during downward movement which seems counter intuitive as
load on the table is increased by the additional weight. Expected behaviour would be an increase
in current consumption during the upward movement and a decrease during downward movement.
Why the machine behaves differently is not clear, however important for the experiment is
only the fact that the measured current consumption of the modified machine deviates from
those of the non-modified machine. Aim of the machine fault detection is to detect this fault.
Interpreting the fault and possible reasons for it is still task of the machine operator. Apart
from this modification another modification is introduced by using an empty tool clamp instead
of the tool used during acquisition of the training set. As the empty tool clamp has a lower
moment of inertia compared to the previously used tool the measurement signal of the spindle
movement within the test data differs slightly from the training data as shown in fig. 8.4. This is
another modification which should be detected by the machine fault detection algorithm. Aside
from the modification on segments of class type 1, 6 and 7 the measured current signal of the
modified machine is very similar to the non-modified machine. Therefore the algorithm should
not predict any machine faults in other classes.

8.3 Fault Detection Algorithm

After successful generation of synthetic test data and acqusition of test data of the modified
milling machine, different algorithms for detecting faults introduced in the test datasets are
developed. This section is divided into two subsections. The first deals with systematic faults
and the second one with random faults. Systematic faults one the one hand refer to the kind
of machine fault simulated by experiments 1, 2 and 4. Here each occurance of a specific class
is modified in the same way. So the machine fault is static and affects every movement of the
same type as for example the additional weight on the machine table influences each of the 100
upward and 100 downward movements in the test cycle. Random faults one the other hand
are the kind of fault emulated by experiment 3. Here only a few segments of a specific class
are modified while the majoritiy is equivalent to the non-modified testdata. This situtation
represents a machine fault which is not static, but occurs randomly and only for a short period
of time. Both kind of faults require different approaches for detections.

The source code of the entire detection algorithm covered in the following two sections can be
found in listing A.20. It contains a subroutine for calculating the local outlier factor which is
shown in listing A.21. A more abstract representaation of the algorithm is depticed in form of a

164

8 Machine Fault Detection

1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46

Data Sample 104

-4

-2

0

2

4

6

8

C
u

rr
e

n
t

I
/

A

Modified

Original

Figure 8.3: Excerpt of the current consumption on phase L2 of the modified machine in comparison
to the non-modified machine. Shown are segments of the first subcycle of the test cycle
run which belong to classes 6 and 7 respectively upward and downward movement of the
z-axis. For better alignment of both the original and the modified sequence the signal
mean is removed. Downward movement of the z-axis (class 7) is significantly affected by
the additional weight on the machine table while its influence on the upward movement
(class 6) is hardly apparent.

1800 2000 2200 2400 2600 2800

Data Sample

0

10

20

30

40

50

C
u

rr
e

n
t

I
/

A

Modified

Original

Figure 8.4: Excerpt of the current consumption on phase L2 during spindle movement of the modified
machine in comparison to the non-modified machine. During training a drill is clamped
into the spindle. This drill is removed during acquisition of test data for the fourth
experiment leading to a slight change in the measurement data. The blue line corresponds
to the measurement data of the modified machine while the brown line represents data of
the non-modified machine. Again signal mean values are removed for better alignment of
the sequences.

165

8 Machine Fault Detection

flowchart in fig. 8.5 and fig. 8.6. Figure 8.5 contains the preprocessing part of the machien fault
detection algorithm. For preprocessing first the feature based training dataset as well as the four
test datasets belonging to the four different experiments are loaded from their CSV files. As these
datasets comprise both the 49 extracted features from section 7.2 as well as the desired class
labels of every sample, they are split into the feature matrix and the desired class labels vector.
Afterwards features are standardized by removal of the mean value and scaling to unit variance
(see section 7.3.1). Subsequently relevant features are selected to reduce the dimensionality of
the feature space representation of the measurement data. To simplify the problem of feature
selection at this point the 10 features ranked as most important in section 7.3.2 are selected.
Afterwards cluster centroids are calculated for each class within the training set as well as the
four test datasets. The cluster centroid of a class is equivalent to the mean value of all samples
belonging to that class. So given the labeled dataset

XL = (X, c) = {x1,x2, . . . ,xk, . . . ,xn} ∈ Rp × {c1, c2, . . . , ck, . . . , cn} (8.6)

with ck ∈ C and C = {1, 2, . . . , l, . . . ,m} the cluster centroid for class cl can be calculated as

zl = 1
nl

nl∑
k=1

xk ∈ cl (8.7)

where nl is the number of samples with class label cl. So for each of the experiments 12 different
cluster centroids can be calculated for the training dataset and 12 centroids for the according
test dataset. After calculation of the cluster centroids the actual fault detection takes place.
The according subroutines of the fault detection algorithm shown in fig. 8.6 are explained in
detail in the following two subsections.

8.3.1 Detection of Systematic Faults

As already mentioned the first subsections deals with detection of systematic faults. Development
goal is an algorithm that is able to predict whether the milling machine operates as desired
or whether a machine fault is present. Moreover the algorithm should be able to determine in
which class the fault occurs. So rather than only determining if the machine is fully functional
or not the algorithm should also be able to determine which component is faulty, whenever a
fault occurs.

The operational principle of the algorithm is shown in fig. 8.6a. First it takes the positions
of the previously calculated cluster centroids zl with l = {1,2, . . . , 12} for both training and
modified test datasets and then calculates the distance between clusters of the training and
test datasets for each of the 12 classes. In this case the euclidean distance is used as distance
measure, however other distance measures can be used as well. Whenever the cluster distance
between training and test cluster exceeds the threshold value dthrs = 0.2 a systematic machine
fault is predicted for the specific class. If the clusters lie closer than the threshold value, the
machine is assumed to be fully operational in the corresponding class.

To clarify this fig. 8.7 illustrates the process of detecting a systematic machine fault for a single
class. Here the red dots represent samples of the training datasets and the blue crosses samples

166

8 Machine Fault Detection

Figure 8.5: Flowchart of the preprocessing part of the machine fault detection algorithm. Training
dataset as well as all four modified test datasets are loaded and preprocessed for later
fault analysis. The fault detection subroutines can be found in fig. 8.6.

167

8 Machine Fault Detection

(a) Subroutine for machine fault detection in
experiments 1, 2 and 4.

(b) Subroutine for machine fault detection in
experiment 3.

Figure 8.6: Flowcharts of the machine fault detection subroutines. The left subroutine on the one
hand applies for experiments 1, 2 and 4 and detects machine faults based on evaluation of
cluster distances between corresponding classes in training and test datasets. The right
subroutine on the other hand counts for experiment 3 and tries to distiguish between
random noise and systematic machine faults when only a few individual segments in the
measurement data are modified.

168

8 Machine Fault Detection

of the test dataset. The black dot and cross are the cluster centroids. Whenever the sequences in
training and test dataset are very similar both the training and the test cluster lie close to each
other as the features are very similar. This situtation is shown in fig. 8.7a, where the test cluster
centroids lies close to the training cluster centroid (d < dthrs). So corresponding sequences in
the measurement data look similar and no machine fault is present. A different situtation is
shown in fig. 8.7b. Here all test samples lie far away from the training samples which means
that each segment in the measurement data is different from the corresponding segments in the
training data. The distance d between both cluster centroids exceeds the threshold value dthrs
which is why the algorithm rightly assumes a machine fault.

x(1)

x(2)

•
••

•••
••• ×××

×
×

×
×

•
×

dthrs

d
d < dthrs

Training Cluster
Test Cluster

(a) Cluster distance d is small. There is no fault in the
according class.

x(1)

x(2)

•
••

•••
•••

×××
×

×
×
×

•

×

dthrs

d > dthrs

Training Cluster

Test Cluster

d

(b) Cluster distance d is large. A systematic ma-
chine fault can be assumed in this class.

Figure 8.7: Principle of systematic machine fault detection by thresholding cluster shift. Distances d
between the cluster centroids of training and testing clusters are calculated for each class
separately and compared with a threshold value dthrs. When the test cluster centroid of a
specific class deviates from the training cluster centroid by a large distance a systematic
fault can be assumed in this class. If the distance is small, the machine operates as desired
in the according class.

The only difference between the above illustrative example for fault detection and the real
implementation of the fault detection algorithm is the fact, that the real problem comprises
not only one set of clusters, but 12 training and 12 test clusters representing one class each.
However as class labels of all samples are known it is easy to loop through each of the 12 classes
and calculate the distance between the corresponding test and training clusters. This distance is
then compared to the threshold and a report for the current class is printed. So output of the
entire algorithm is a list stating for each class whether a machine fault is present or not.

8.3.2 Detection of Random Faults

While the previous algorithm is able to detect systematic faults which are characterized by the
fact that every segment in the measurement data belonging to a specific class is modified as it
is the case with experiments 1, 2 and 4. Different from that experiment 3 simulates random

169

8 Machine Fault Detection

faults which affect only a few individual segments rather than every segment in the test cycle
run. To detect these kind of faults a different detection approach has to be developed. This
algorithm should be able to distiguish whether the randomly occuring faults correspond to a
systematic machine fault or whether they are only random noise occuring due to measurement
errors or other external or internal factors. This is done by looking at the cluster structure of
the test data and counting the number of samples representing a faulty segment. In this case
a fault event is considered only random noise whenever the number of segments modified in
the same way is smaller than 5 per class. If the number of modified segments is larger than or
equal 5 the algorithm assumes, that a systematic machine fault must be present. Despite the
plain number of modified segments in the test data the algorithm also considers in which way
the segments are modified. If for instance 10 segments are modified, but every segment in a
different way, the algorithm does not assume a systematic fault, but rather takes the modified
segments as random noise. This is illustrated in fig. 8.8. The left diagram (fig. 8.8a) shows
a situtation, where most of the test samples lie close to the training samples, so clusters are
overlapping. However there are 6 outliers in the test set, which form a separate cluster. This
cluster corresponds to 6 segments which are modified in the same way. Therefore a systematic
machine fault is likely. The algorithm first checks, whether more than 5 outliers exist, which
is true in this case. Afterwards it evaluates, whether the outliers form a cluster of size 5 or
bigger, which is also given. Therefore the fault detection algorithm assumes the machine has a
systematic fault in the specific class the outliers belong to. A different situation is shown in the
right diagram (fig. 8.8b). Here the number of outliers equals 5, which satisfies the first condition
for a systematic fault. However the outliers are distributed randomly in feature space which
means each of the outliers corresponds to a segment in the measurement data which is modified
in a different way. Therefore the algorithm does not predict a systematic fault, but rather takes
the outliers as random noise, produced by for instance a measurement error.

Analysis of the cluster structure of outliers is performed by a second search for outliers of the
subset of outliers. Consider the example test dataset shown in fig. 8.9. Here the majority
of samples belongs to the main cluster Zmain which represents the non-modified segments of
this class. Apart from this main cluster the dataset contains a subset O = {o1,o2, . . . ,o8} of
eight outliers. The first six outliers form a separate cluster ZO representing segments which are
modified in the same way. The remaining two outliers o7 and o8 do not form any cluster and
represent segments which are modified differently from the segments belonging to the samples
in the cluster. For this example the algorithm should predict a systematic machine fault as
more than 5 segments are modified in the same way. To achieve this first the entire dataset is
searched for outliers by computing the LOF for all samples and labelling samples with high
LOF as outlier. In this step the set O of outliers is found. To determine the cluster structure
of this subset of samples another outlier search is performed only on this subset. Again the
LOF is calculated, however this timeonly for the eight samples in O. The LOF for values lying
within the separate cluster ZO is low, while it is high for the two samples o7 and o8, which are
then marked as outliers of the subset O. So o7 and o8 can be seen as outliers of the outliers.
By subtracting the amount of outliers of the outliers from the size of the subset O of outliers
the cluster size of ZO can be found which is in this case 8− 2 = 6. As it is larger than 5 the
algorithm assumes the machine to have a systematic fault.

The programmatic realisation of the described algorithm is illustrated in the flowchart in fig. 8.6b.

170

8 Machine Fault Detection

x(1)

x(2)

•
••

•••
••• ×××
×

×
×
×

××××
×
×

(nl > 5)

Training +
Test Cluster

Test Set
Outliers

(a) Number of outliers in test set is larger than 5
and outliers form a cluster. This corresponds
to a systematic machine fault.

x(1)

x(2)

•
••

•••
••• ×××
×

×
×
×

×

×

××

(nl < 5)

Training +
Test Cluster

Outliers are
not clustered

(b) Number of outliers in test set is 5. However no
cluster of size 5 oor larger is formed, therefore
the outliers are considered to be random noise
and the machine is assumed to be healthy.

Figure 8.8: Principle of random machine fault detection by outlier detection. For each class outliers
are found by comparing the local outlier factor of each test sample with a threshold value.
When the numer of outliers per class is below the threshold value of 5 the outliers are
directly considered to be random noise and the machine is assumed to be healthy. When
the number of outliers is bigger than or equal 5 the algorithm determines whether the
outliers are clustered (left diagram) or not (right diagram). If the outliers are clustered a
systematic machine fault is assumed. If the outliers do not form any cluster of size 5 or
larger they are considered to be random noise and the machine is assumed to be fully
operational in the specific class.

x(1)

x(2)

•
••

•••
••••••

•
••

•
•

•
•

×× ×
×
×

×

×
×

Zmain

ZO

o1,o2, . . . ,o6
o7

o8

Figure 8.9: Determination of the cluster structure of outliers by finding outliers in the subset of outliers.
First the subset of outliers O = {o1,o2, . . . ,o8} (orange dots) is found. Afterwards another
outlier search is performed on this subset giving samples o7 and o8 as outliers of outliers
while the remaining six outliers form a cluster ZO. As the size of this cluster is larger
than 5 a systematic machine fault is assumed.

171

8 Machine Fault Detection

The displayed subroutine is executed after preprocessing of the training and test dataset as
shown in fig. 8.5. The corresponding source code is contained in the fault detection script listed
in listing A.20 and listing A.21. Output of this algorithm is a report which specifies the number
of outliers per class. When this number is larger than or equal 5 the report states how many of
these outliers are clustered and how many are randomly distributed in feature space. When the
outliers of a class form a cluster with at least 5 samples the report indicates a systematic fault
in this class.

8.4 Experiment Results

After development of suitable algorithms for machine fault detection in the situtations simulated
by experiments 1 to 4 (see section 8.2) this sections focuses on evaluation of the detection
results. Ideally any faults introduced in experiments 1, 2 and 4 should be detected securely
with the first algorithm presented in section 8.3.1 which detects machine faults based on shift
of cluster centroids. Analogous the modified test data of experiment 3 is fed into the second
algorithm introduced in section 8.3.2 which features density based outlier detection to find
random faults. Here the algorithm should predict an according machine fault as well. To
evaluate results the training dataset as well as the according modified test dataset are visualized
in a scatterplot representing feature space. As the feature space is spaned by 10 features and
therefore 10-dimensional a 2-dimensional projection is utilized. According to the results found
in section 7.3.2 the projection onto the plane spanned by the peak to peak value sp2p and the
mean absolute deviation dmean has highest information gain and is therefore choosen at this
point to visualize the datasets. In all scatterplots data samples belonging to the training data
are plotted as coloured dots and samples of the corresponding test set are plotted as coloured
crosses. In cases of experiment 1, 2 and 4 cluster centroids of the training dataset are illustrated
by black dots and cluster centroids of the test datasets as black crosses. Black lines between the
centroids show how far corresponding training and testing cluster of a class are shifted.

Starting with the first experiment where all 100 segments of class 6 within the test dataset are
modified in the same way, the fault detection algorithm finds the results illustrated in fig. 8.10.
Here only a small excerpt of the entire feature space is shown containing only classes 6, 8 and 9.
As can be seen training and test clusters of classes 8 and 9 which correspond to forward and
backward movement of the c-axis are very similar. So their centroids lie close to each other.
However the test cluster for class 6 is significantly shifted compared to the cluster of class 6 in
the training set. This is due to the fact that all segments in the test dataset are modified and
therefore have different characteristic feature values than the accoridng segments in the training
set. Apart from the three depicted classes the datasets contains 9 more classes. They are not
shown to be able to zoom further into the relevant area of class 6. Training and test clusters of
all other classes lie very close to each other similar as it is the case for classes 8 and 9. This is
reasonable as no other segments apart from the segments of classs 6 are modified in the first
experiment. So distances between training and testing clusters of all classes except for class 6
are small. Distance between the clusters of class 6 is d6 = 1.432 (manhattan distance) which
exceeds the threshold value of dthrs = 0.2. Therefore the algorithm correctly assumes a machine
fault in class 6, while it predicts the machine as healthy in all other classes.

172

8 Machine Fault Detection

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

d
mean

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

s
p

2
p

Class 6 (Training)

Class 8 (Training)

Class 9 (Training)

Class 6 (Testing)

Class 8 (Testing)

Class 9 (Testing)

Centroid (Training)

Centroid (Testing)

Figure 8.10: Result of the first experiment for machine fault detection. The scatterplot shows training
(colored dots) and testing samples (colored crosses) of classes 6, 8 and 9 in a two-
dimensional projection of feature space as well as the six centroids (black dots and
crosses). Centroids are mean values of all samples in the training and testing subsets
of the three classes. When training and testing set are very similar as it is the case for
classes 8 and 9 distance between the centroids (black lines) are small and nor fault is
detected. However if the distance is large as it is the case for class 6 (d6 = 1.432), the
test set has a systematic deviation from the training set and a machine fault can be
assumed.

As the second experiment is similar to the first one so are the results of fault detection. While in
the first experiment only segments of class 6 are modified additionally all 100 segments of class
7 occuring in the test set are modified in the second experiment. Accordingly training and test
clusters of both classes 6 and 7 show a significant shift in feature space as can be seen in fig. 8.11.
Here a bigger extract of feature space containing training and test clusters of classes 6 to 11 is
shown. As can be seen distances between training and test clusters of classses 8, 9, 10 and 11
are very small which means the corresponding segments in training and test set are very similar
which is reasonable as they are not modified during this experiment. However training and
test clusters of classes 6 and 7 are clearly separated in feature space. The manhattan distance
between the clusters of class 6 is still d6 = 1.432 while distance between the clusters of classs
7 is 1.607. Therefore both exceed the threshold value and the algorithm rightly detects the
simulated machine fault in both classes 6 and 7, while it does not assume a machine fault in any
other class.

Because the fourth experiment is more similar to experiments 1 and 2 than the third experiment,
evaluation of the results for this experiment is antedated. As described in section 8.2.2 modifica-
tions are introduced in classes 1, 6 and 7 by removing the tool clampend into the main spindle

173

8 Machine Fault Detection

-0.5 0 0.5 1 1.5 2 2.5

d
mean

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

s
p

2
p

Class 6 (Training)

Class 7 (Training)

Class 8 (Training)

Class 9 (Training)

Class 10 (Training)

Class 11 (Training)

Class 6 (Testing)

Class 7 (Testing)

Class 8 (Testing)

Class 9 (Testing)

Class 10 (Testing)

Class 11 (Testing)

Centroid (Training)

Centroid (Testing)

Figure 8.11: Result of the second experiment for machine fault detection. Meaning of the plot
elements is identical to fig. 8.10, however additional classes 7, 10 and 11 are shown.
Distance between clusters of training and testing data of classes 6 and 7 is d6 = 1.432
and d7 = 1.607. These values exceed the threshold of dthrs = 0.2, so systematic machine
fault in classes 6 and 7 is recognized.

and adding an additional weight to the machine table. However as already mentioned in this
section the influence of the additional weight on class 6 is minor and therefore could be hard to
detect by the fault detection algorithm. The effect on class 7 is significant, though, wherefore the
algorithm should detect a systematic machine fault in this class. The influence of the removed
tool on the current consumption of the main spindle drive is also small, however should be
detected by the algorithm to validate its proper functionality. The according scatterplot of both
the training and test dataset for this experiment is shown in fig. 8.12. This time the entire
feature space containing all 12 classes is shown. However the training and test cluster of class
1 is shifted from its original position around the point (2.9, 4.4) to the depicted one for more
compact plotting of the datasets. As can be seen training and testing clusters of all 12 classes lie
much closer to each other as it is the case within the two prior experiments. This is due to the
fact that the influence of the machine modifications on the measurement signal is much smaller
than the synthetic modifications introduced to the measurement signal within experiments 1
and 2. Despite that distances between each pair of clusters can be calculated and compared
with the threshold value dthrs = 0.2. It turns out that the manhattan distance between training
and test clusters of classes 1 and 7 exceed that threshold. The distance between cluster of class
1 is d1 = 0.559 and the one between clusters of class 7 is d7 = 0.232. Therefore the algorithm
correctly predicts machine faults in those two classes. However as already noticed the change
in the segments belonging to class 6 are to small to be detected. The manhattan distance of
training and test clusters of class 6 is d6 = 0.075 which is slightly higher than the distance

174

8 Machine Fault Detection

between the cluster pairs of classes 0, 2, 3, 4 and 5 and slightly lower than the distance between
cluster of classes 8, 9, 10 and 11. Therefore there is no chance to isolate a machine fault in class
6 by changing the distance threshold value. Looking back at the modified test measurement
data shown in fig. 8.3 it can be said that the difference between the training and the testing set
is so small for classs 6 that the missing detection of a fault in class 6 is unproblematic. This is
especially true when considering that machine faults in classes 1 and 7 are easily recognized by
the algorithm.

-0.5 0 0.5 1 1.5 2 2.5

d
mean

-0.4

-0.2

0

0.2

0.4

0.6

0.8

s
p

2
p

Class 1 (Training)

Class 6 (Training)

Class 7 (Training)

Class 1 (Testing)

Class 6 (Testing)

Class 7 (Testing)

Centroid (Training)

Centroid (Testing)

Figure 8.12: Result of the fourth experiment for machine fault detection. Clusters of classes 1 and 7
are significantly shifted and have a distance of d1 = 0.559 respectively d7 = 0.232 which
exceeds the distance threshold dthrs = 0.2. Therefore the algorithm detects systematic
machine faults in classes 1 and 7. Cluster shifts of all other classes lie below the threshold
and therefore no faults are assumed in these classes. For easier plotting cluster 1 is
shifted from its original position around the point (2.9, 4.4) to the depicted location.

Finally the third experiment is evaluated. As described in detail in section 8.2.1 this experiment
differs from experiments 1, 2 and 4 in the way that not all segments of a specific class are
modified, but only a few instances. This simulates random machine faults occuring not always,
but only randomly and only for a short period of time. To be precise in this experiment 10
segments of class 6, 5 segments of class 7 and 2 segments of class 2 are randomly picked out
and modified. Furthermore one additional segment of class 6 is modified, however differently
from the other segments of this class. To detect these random faults the cluster shift algorithm
is no longer applicable, but rather the outlier detection algorithm developed in section 8.3.2 is
applied to the problem. Expected outcome of using the algorithm on this test dataset would
be first detection of all 18 outliers. As class 2 contains only 2 outliers no machine fault should
be predicted in this class, but instead the outliers should be taken as random noise. Different
from that the algorithm should report systematic machine faults in both classes 6 and 7 as the

175

8 Machine Fault Detection

number of outliers in this classes is larger than or equal the threshold value 5. The algorithm
should also detect the outlier of the outlier in class 6 which means it should detect that one
of the segments of class 6 is modified differently compared to the other modified segments of
this class. As the scatterplot in fig. 8.13 shows these expectations are fullfilled. The scatterplot
shows training and testing clusters of all classes except for class 0 and 1 as these lie outside of
the plot range and are not of interest for this experiment. Found outliers in the test dataset
are surrounded by a red circle and the only outlier of outliers of class 6 is surrounded by a
red square. As can be seen all outliers are found correctly and even the outlier of outliers is
detected. Interesting baout this sample is that it lies directly within the training and testing
cluster of class 7. However this is no problem for detection of the outlier as outliers are detected
separately for each class. So when finding the outliers of class 6 this point is already found,
because samples of all other classes are not considered. When now another outlier search is
conducted within the subset of 11 outliers of class 6 the according outlier of the outliers is easily
found. So the algorithm has no problem with detecting random faults even when classes overlap
as it calculates outliers for each class separately. So all in all it can be said that performance of
the random fault detection algorithm is sufficient.

-0.5 0 0.5 1 1.5 2 2.5

d
mean

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

s
p

2
p

Class 2 (Training)

Class 6 (Training)

Class 7 (Training)

Class 2 (Testing)

Class 6 (Testing)

Class 7 (Testing)

Outlier

Outlier of Outliers

Figure 8.13: Result of the third experiment for machine fault detection. Individual outliers (red
circles) of classes 2, 6 and 7 are found by thresholding the local outlier factor of each
point. Moreover the algorithm finds an outlier within the subset of outliers of class 6 by
performing a second local outlier factor thresholding. This sample is marked with a red
square and corresponds to the individual modification of a segment of class 6 according
to fig. 8.2d. Only when the subset of outliers contains more than 5 densely lying samples
per class a systematic fault in this class is assumed. Otherwise outliers are taken to be
noise.

176

8 Machine Fault Detection

8.5 Conclusion of Machine Fault Detection

In the preceeding chapter two different algorithms were developed which were able to detect
systematic and random machine faults. Prior to this the local outlier factor as measure for
density based outlier detection was mathematically defined and explained. Afterwards four
different experiments were designed to simulate different kind of faults which might occur during
machine operation. For each experiment a modified test dataset containing one or multiple
exactly specified machine faults was generated. In case of the first three experiments this was
done by applying mathematical functions to the already present test measurement data and
in case of the last experiment measurement data was acquired directly from the machine. To
simulate a machine fault in this expeirment first the tool was removed from the main spindle
and and additional weigth was placed on the machine table. After presentation of the resulting
test datasets two different fault detection algorithms were developed. The first one was able to
detect systematic faults which affected all segments in the test datasets and therefore shifted all
samples of the training dataset by the same distance in feature space. This algorithm computed
the distance between corresponding class clusters in the training and test datasets and predicted
a machine fault in a class whenever this distance exceeded a specific threshold value. This
algorithm was applied to the test datasets of experiment 1, 2 and 4, because in these experiments
all segments of a specific class type were modified. On the opposite to that another algorithm
was developed which was able to cope with random machine faults. This kind of fault affected
only a few segments of the same class rather than all segments. The algorithm found outliers for
each class in feature space by calculating the previously introduced local outlier factor for each
sample within the test dataset and comparing it to a threshold value. The found outliers were
then counted and whenever less than five outliers occured in a class they were taken as random
noise rather than a machine fault. However when their number exceeded 5 per class another
outlier detection was performed on the subset of outliers to analyse the cluster structure of the
outliers. If all outliers of a class were found to lie within a cluster, which means all segments were
modified in the same way, a machine fault was predicted in that class. Otherwise the outliers
were again just neglected as random noise. After implmentation of the developed algorithms in
Python the generated test datasets of all four experiments were fed into the according algorithm
and detection results were evaluated. It tunred out that the fault detection algorithms found all
synthetically modified segments in the test datasets of the first three experiments. Moreover
performance on the real measurement data acquired on the modified machine was very good as
well. The algorithm detected a machine fault in classs 7 corresponding to the upward movement
of the z-axis and a fault in class 1 which was reasoned by the removed tool. Only the sligth
differences in class 6 could not be detected by the algorithm.

Despite performing as expected and classifying nearly all machine faults correctly the fault
detection algorithms still have potential for improvement. The first improvement relates to
the overall structure of the implementation of the proposed algorithms. To evaluate their
performance on the generated test datasets a simple script (see listing A.20) was sufficient.
However to make them applicable in other use cases as well they should be wrapped in a suitable
application programming interface (API) offering methods for fitting the detection algorithm
to a training dataset and classifying faults on a corresponding test dataset. This would also
comprise methods for automatically determining appropiate values for all free parameters within

177

8 Machine Fault Detection

the algorithms such as the number of neighbours cosnidered during computation of the LOF or
any of the threshold values used to distiguish between faulty and healthy condition.

Apart from this both algorithms could be merged in one bigger algorithm comprising both
detection of random faults and systematic faults. In the preceeding analysis the two different
kinds of algorithms were applied separately to the generated test datasets. This was possible,
because the datasets represetented a very controlled case of machine fault. In praxis however a
mixture of both random and systematic fault might occur. Consider a case where nearly all
segments of a class except for only a few are modified the same way. The few outliers might
for instance be measurement errors. In this case the algorithm threshdoling distances between
cluster centroids would usually be applicable. However because of the outliers in one class of the
test dataset the cluster centroid of the corresponding class would be erroneously shifted leading
to a different distance measure between the training and test cluster of the according class.
Depending on the positions of the outliers this directly affects the outcome of the prediction
algorithm. Merging both algorithms developed above could prevent this problem. If first an
outlier search would be performed and outliers removed from the test dataset the fault detection
algorithm would then be applicable again and achieve its full performance. SO in order to make
the fault detection algorithm useful for practical application further work has to be done.

A last problem relates to the present implementation of the second fault detection algorithm
utilizing outlier detection. Here a systematic fault was predicted whenever the number of outliers
exceedeed 5 and when these outliers were clustered. However analysis of the cluster structure
is performed by finding outliers in the subset of outliers. This approach works for the given
problem, however might lead to problem in different situations. If for example 8 outliers exist in a
class, of which 2 are global outliers having no close neighbours and 3 outliers form a cluster each.
The proposed algorithm would now find the two global outliers in this subset of outliers and
reduce the number of toal outliers to 6 which exceeds 5 leading to the message that a systematic
machine fault is present in the particular class. However from the six modified segments each
three are modified differently, which is likely to be only random noise. However the algorithm
assumes this to be a systematic fault. To improve this behviour a more sophisticated approach
for analysis of the cluster structure like k-means has to be utlized.

Apart from the mentioned problem further research should also focus on evaluating the next
stage of the fault detection algorithm on a bigger set of real measurement data comprising more
different kind of machine faults than the one used above. For instance it should be analyzed
whether the expected random faults really occur during operation of the machine or if they are
not existent at all. If the latter one would apply detection of machine faults could be done by
only considering shift of cluster centroids rather than by considering possible outliers in the test
dataset.

178

9 Conclusion

Summarizing the preceeding work in chapter 2 a brief overview over the theoretical concepts of
knowledge discovery in databases, machine learning, pattern recognition and anomly detection
was given. Subsequently in chapter 3 the internal structure of the milling machine DMU 100
Monoblock® which was object of this project was analyzed in detailed. Contained components
were characterized regarding their electrical characteristics as well as regarding their activation
during execution of a typical machine program. Here two different kinds of components were
identified, first controllable components such as axis, which can be fully controlled by the
machine controller and second non-controllable components which are activated automatically.
In chapter 4 measurement hardware and software neccessary for acquiring data from the main
power line of the machine was built up. Furthermore machine states were defined as possible
switching states of the contained commponents within the machine. Here some components were
neglected to reduce the problem complexity and number of different states to 96, respectively
12 when further neglecting any non-controllable components. Afterwards a specific machine
program was written which allowed for isolated observation of the impact of activating individual
components on the overall current consumptions of the machine. Running this program three
times gave two training datasets and one test dataset each comprising 2200 segments which
refered to one movement of an axis each. To enable further analysis of this datasets an algorithm
for segmentation of the measurement data was developed in chapter 5. This algorithm used
shape templates which were slid over the entire measurement sequence and by evaluating a
similarity measure between the template and the measurement data appropriate segment cuts
could be placed. Utilizing further information about the switching states of the non-controllable
components additional segment cuts were inserted at positions where non-controllable aggregats
were automatically activated. The so segmented measurement data was then labeled meaning
each segment was assigned an integer number representing one of the previously defined machine
states. This gave two labelsets for each of the three acquired datasets, one comprising only the
12 nominal state changes of the controlable components and one containing all 96 possible states
of conotrollable and non-controllable components. With the help of these labelsets and the
segmented measurement data a set of different classifiers utilizing both classical signal processing
methods as well as modern machine learning methods could be developed in the two subsequent
chapters. In chapter 6 two shape based classification approaches were developed and compared.
Fist a classifier based on the Dynamic Time Warping distance as useful distance measure between
two time sequences of different length was developed. Second a cross-correlation-based classifier
which expressed correlation between two time sequences by computing the Pearson correlation
coefficient was devised. Both algorithms utilized a previously created shape template dictionary
containing current signal patterns for each of the 12 nominal classes. So the algorithms had
to compare each segment in the test datasets with each shape template to determine which
template fit best and assign the corresponding class label of that template to the segment. The
shape template dictionary was built up utilizing the Accurate Shape Averaging algorithm which

179

9 Conclusion

created templates by averaging over all 100 segments of each class within the first training
dataset. It turned out that the dynamic time warping classsifier was able to distiguish between
classes with an accuracy of 97 % after algorithm parameters had been optimized by an exhaustive
grid search. The cross-correlation classifier only achieved an accuracy of 77.95 %. In chapter 7
modern machine learning algorithms were applied to the same problem. More precisely k-nearest-
neighbour, decision tree, random forest, AdaBoost, support vector machine, stochastic gradient
descent and naive bayes classifiers were used to predict which of the 12 nominal machine states
is present in each of the 2200 segments within the test dataset. To apply these algorithms first
the training and test data was transformed from time domain into a 49-dimensional feature
space by exctraction of statistical features. These 49 features were then ranked by means of a
decision tree that maximized information gain and the 10 most relevant features were selected
to decrease dimensionality of the datasets. Comparing results of the seven applied classsifier
models showed that the random forest classifier performed best with an overall classification
accuracy of 97.7 %. After having succesfully developed classifiers to predict machine states
based only on measurements of the overall current signal of the milling machine the problem of
detecting machine faults was addressed in chapter 8. Here four test datasets containing modified
segments were created to simulate different kinds of machine faults. The first three datasets were
created synthetically by applying mathematical functions to the already present test dataset in
the time domain. The fourth dataset was experimentally acquired after modifying the milling
machine slightly by adding an additional weight to the machine table and removing the tool
from the main spindle. After generation of the modified test datasets the ten slected features
from chapter 7 were extracted and standardized to create a feature space representation of the
modified test datasets. These were then compared to the training datasets by computing the
manhattan distance between cluster centroids of each class. Whenever this distance exceeded
a threshold value a machine fault was assumed in that particular class. So it was possible
to detect faults on component level rather than only determining if the machine is operating
properly or if there is any fault somewhere in the machine. Another algorithm developed in that
chapter addressed the problem of detecting random faults by implementing an outlier detection
by means of comparing the local outlier factor of each test sample with a threshold value. Both
developed fault detection algorithms performed well and were able to detect faults introduced in
the synthetic test sets as well as in the real measurement data of the modified machine.

Referring back to the two main goals of this work of first developing algorithms for classifying
machine states and second detecting machine faults, it can be said that the work prevailed.
However there are some limitations ragrding the project goals in general as well as their
realization in the preceeding work. The first and probably most important issue is the fact that
the developed classifiers are only capable of detecting the 12 controllable machine states rather
than all previously defined 96 machine states which also include non-controllable components. If
a predicitve health monitoring system shall be developed which is able to determine switching
states of all contained components it is insufficient to simplify the problem to only controllable
components as done here. Rather than that all components contained in the machine tool
should be considered, however as this is a very large number a new system for defining machine
states has to be developed or at least methods need to be applied to synthetically increase the
amount of training data as it is not convenient to acquire the neccessary amount of training data
experimentally. Another problem with the current state of the project is that the algorithm

180

9 Conclusion

are only applicable to the specific configuration of the DMU 100 Monoblock® as it is present at
the Institute of Machine Tools and Production Technology of the TU Brunswick. Making the
proposed algorithm work with other machine tools as well involves redefinition of machine states
and analysis of the structure of the new machine. Probably the proposed method of isolating
different the influence of different components on the current signal on the main power line
would also not work as the fact was exploited that no non-controllabel component was connected
to phase L2 of the main power line. Future research should consider developing a method which
has no need for isolated component impacts on the training data. Another problem regards
the fact that all proposed methods operate offline on a bounded datasets which was acquired
earlier. To make the algorithms useful for development of a predictive health monitoring system
which observes machine state as well as health condition continouusly they should be made
online-capable meaning they should base any predictions only on a stream of test data rather
than an entire bounded datatset. To support streaming of test data and to generate a continouus
rather than a static output of machine satates the segmentation algorithm has to be redesigned
as well. Instead of segmenting the measurement data based on context it should be segmented
into equidistant portions which are then classified by an appropiate classifiaction model giving a
continouus output of the machine state. The same applies to the fault detection algorithm which
operates also only offline at this point of the project. Finally all algorithms should be wrapped
in an appropiate application programming interface providing well documented methods for
conducting machine state predicition and fault detection. Despite those limitations the work can
be considered as success as the aim was not to build a marked-ready product for health condition
monitoring, but instead should provide a set of algorithms useful for later developing of such a
system. Moreover limitations arise from the fact that the milling machine as object of research
is a highly complex technical system containing a large amount of different components. So in
order to elaborate the basic principles of state predicition and fault detection it was necceassary
to reduce the complexity of the problem to get a better understanding of the underlying principle
and develop easy to understand methods for addressing the project goals. Finally the project
is also an accomplishment as it has shown that it is possible to detect machine states and the
machine health condition based only on measurement of the overall current consumption of the
machine. This proves feasability of a cheap and flexible predicitve health monitoring system
operating only on measurement of the main current signal.

Based on the aforementioned limitations a suggestion for a future work on the topic like a master
thesis can be made. This future work could focus on building a practically usable solution for
predicitve health monitoring of a broader range of machine tools by not focusing to heavily on
machine specific facts, but rather try to implement a more general state recognition system
based on measurement of the overall current consumption of a machine. To make this possible
at the first place the future work should look at a simpler machine tool than the one considered
in the preceeding work. This could be for example a simple grinding machine containing only a
few fully controllable internal components affecting current consumption on the main power
line. Instead of focusing on a broader range of machine tools future work could also try to
build a ready-to-use health condition monitoring solution for the DMU 100 Monoblock®. This
solution should be able to predict switching states of every internal component of the machine
online by only considering measurement data of the current consumption on the main power
line. Moreover component states as well as machine faults should be detected always regardless

181

9 Conclusion

of the kind of program being executed on the machine. For this a much more complicated
model describing the impact of different machine components on the current signal needs to be
developed. To do this future work could redefine machine states by not looking at any possible
combination of internal component states, but instead determining states of the components
independently. So each component could have a finite number of states which affect overall
current consumption in a well known manner. The state detection model than has to predict
switching states of the individual components rather than an overall machine state based on the
combination of component states. Besides that the solution developed in future worked should
also incorporate a new method for detecting machine faults which is capable of predicting the
machine health state online.

Finally it can be said that the research conducted in the preceeding work is highly relevant
as it provides solutions for predictive health monitoring which is one of the currently most
important subfields in manufacturing technology. It provides the opportunity to massively
improve machine operation in production lines as well as operation of individual machines
in smaller companies as it reduces the risk of sudden machine break down and standstill of
prodution lines. Moreover it enables gaterhing information about the machine tools within a
copany which could be further used to analyze usage of the machine and frequently occuring
problems with specific machines. This information could be used to improve quality of future
machine tools and quality of machined products as well as efficiency of the entire production.
Moreover the research follows the current trend of utilizing state of the art big data and machine
learning methods which belong to the fastest evolving technologies nowadays.

182

Bibliography

[1] Caesarendra, W., Widodo, A., Thom, P. H., et al. “Combined Probability Approach
and Indirect Data-Driven Method for Bearing Degradation Prognostics”. In: IEEE
Transactions on Reliability 60.1 (2011), pp. 14–20. issn: 0018-9529. doi: 10.1109/TR.
2011.2104716.

[2] Caesarendra, W., Widodo, A., and Yang, B.-S. “Combination of probability ap-
proach and support vector machine towards machine health prognostics”. In: Probabilistic
Engineering Mechanics 26.2 (2011), pp. 165–173. issn: 02668920. doi: 10.1016/j.
probengmech.2010.09.008.

[3] Caesarendra, W. “Vibration and acoustic emission-based condition monitoring and
prognostic methods for very low speed slew bearing”. Dissertation. University of Wol-
longong, 2015. url: http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5487&
context=theses (visited on 2017-04-19).

[4] Caesarendra, W., Kosasih, B., Tieu, A. K., et al. “Acoustic emission-based condition
monitoring methods: Review and application for low speed slew bearing”. In: Mechanical
Systems and Signal Processing 72-73 (2016), pp. 134–159. issn: 08883270. doi: 10.1016/
j.ymssp.2015.10.020.

[5] Schoen, R. R., Habetler, T. G., Kamran, F., et al. “Motor bearing damage detection
using stator current monitoring”. In: IEEE Transactions on Industry Applications 31.6
(1995), pp. 1274–1279. issn: 00939994. doi: 10.1109/28.475697.

[6] Youn, Y.-W., Hwang, D.-H., Sun, J.-H., et al. “A Method for Indentifying Broken
Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor
Using Radial Flux Sensor”. In: Journal of Electrical Engineering and Technology 6.5
(2011), pp. 666–670. issn: 1975-0102. doi: 10.5370/JEET.2011.6.5.666.

[7] Seera, M., Lim, C. P., Nahavandi, S., et al. “Condition monitoring of induction
motors: A review and an application of an ensemble of hybrid intelligent models”. In:
Expert Systems with Applications 41.10 (2014), pp. 4891–4903. issn: 09574174. doi:
10.1016/j.eswa.2014.02.028.

[8] Siddique, A., Yadava, G. S., and Singh, B. “A Review of Stator Fault Monitoring
Techniques of Induction Motors”. In: IEEE Transactions on Energy Conversion 20.1
(2005), pp. 106–114. issn: 0885-8969. doi: 10.1109/TEC.2004.837304.

[9] Singh, S., Kumar, A., and Kumar, N. “Motor Current Signature Analysis for Bearing
Fault Detection in Mechanical Systems”. In: Procedia Materials Science 6 (2014), pp. 171–
177. issn: 22118128. doi: 10.1016/j.mspro.2014.07.021.

183

https://doi.org/10.1109/TR.2011.2104716
https://doi.org/10.1109/TR.2011.2104716
https://doi.org/10.1016/j.probengmech.2010.09.008
https://doi.org/10.1016/j.probengmech.2010.09.008
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5487&context=theses
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5487&context=theses
https://doi.org/10.1016/j.ymssp.2015.10.020
https://doi.org/10.1016/j.ymssp.2015.10.020
https://doi.org/10.1109/28.475697
https://doi.org/10.5370/JEET.2011.6.5.666
https://doi.org/10.1016/j.eswa.2014.02.028
https://doi.org/10.1109/TEC.2004.837304
https://doi.org/10.1016/j.mspro.2014.07.021

Bibliography

[10] Ogidi, O. O., Barendse, P. S., and Khan, M. A. “Fault diagnosis and condition
monitoring of axial-flux permanent magnet wind generators”. In: Electric Power Systems
Research 136 (2016), pp. 1–7. issn: 03787796. doi: 10.1016/j.epsr.2016.01.018.

[11] Yang, D., Li, H., Hu, Y., et al. “Vibration condition monitoring system for wind turbine
bearings based on noise suppression with multi-point data fusion”. In: Renewable Energy
92 (2016), pp. 104–116. issn: 09601481. doi: 10.1016/j.renene.2016.01.099.

[12] Geramifard, O., Xu, J.-X., Pang, C. K., et al. “Data-driven approaches in health
condition monitoring — A comparative study”. In: 8th IEEE International Conference
on Control and Automation (ICCA), 2010. Piscataway, NJ: IEEE, 2010, pp. 1618–1622.
isbn: 978-1-4244-5195-1. doi: 10.1109/ICCA.2010.5524339.

[13] Geramifard, O., Xu, J.-X., Zhou, J. H., et al. “Continuous health assessment using a
single hidden Markov model”. In: 11th International Conference on Control, Automation,
Robotics & Vision (ICARCV), 2010. Piscataway, NJ: IEEE, 2010, pp. 1347–1352. isbn:
978-1-4244-7814-9. doi: 10.1109/ICARCV.2010.5707866.

[14] Geramifard, O., Xu, J.-X., Zhou, J.-H., et al. “A Physically Segmented Hidden
Markov Model Approach for Continuous Tool Condition Monitoring: Diagnostics and
Prognostics”. In: IEEE Transactions on Industrial Informatics 8.4 (2012), pp. 964–973.
issn: 1551-3203. doi: 10.1109/TII.2012.2205583.

[15] Geramifard, O., Xu, J.-X., Zhou, J.-H., et al. “Multimodal Hidden Markov Model-
Based Approach for Tool Wear Monitoring”. In: IEEE Transactions on Industrial Elec-
tronics 61.6 (2014), pp. 2900–2911. issn: 0278-0046. doi: 10.1109/TIE.2013.2274422.

[16] Geramifard, O. and Tung, L. “Multi-model diagnostics for various machining condi-
tions: A similarity-based approach”. In: IECON 2015 - Yokohama. Ed. by Ohishi, K. and
Hashimoto, H. Piscataway, NJ: IEEE, 2015, pp. 000333–000338. isbn: 978-1-4799-1762-4.
doi: 10.1109/IECON.2015.7392121.

[17] Leem, C. S. and Dornfeld, D. A. “Design and implementation of sensor-based tool-
wear monitoring systems”. In: Mechanical Systems and Signal Processing 10.4 (1996),
pp. 439–458. issn: 08883270. doi: 10.1006/mssp.1996.0031.

[18] El-Wardany, T. I., Gao, D., and Elbestawi, M. A. “Tool condition monitoring
in drilling using vibration signature analysis”. In: International Journal of Machine
Tools and Manufacture 36.6 (1996), pp. 687–711. issn: 08906955. doi: 10.1016/0890-
6955(95)00058-5.

[19] Abu-Mahfouz, I. “Drilling wear detection and classification using vibration signals and
artificial neural network”. In: International Journal of Machine Tools and Manufacture
43.7 (2003), pp. 707–720. issn: 08906955. doi: 10.1016/S0890-6955(03)00023-3.

[20] Li, X., Dong, S., and Venuvinod, P. K. “Hybrid Learning for Tool Wear Monitoring”.
In: The International Journal of Advanced Manufacturing Technology 16.5 (2000), pp. 303–
307. issn: 0268-3768. doi: 10.1007/s001700050161.

[21] Balazinski, M., Czogala, E., Jemielniak, K., et al. “Tool condition monitoring using
artificial intelligence methods”. In: Engineering Applications of Artificial Intelligence 15.1
(2002), pp. 73–80. issn: 09521976. doi: 10.1016/S0952-1976(02)00004-0.

184

https://doi.org/10.1016/j.epsr.2016.01.018
https://doi.org/10.1016/j.renene.2016.01.099
https://doi.org/10.1109/ICCA.2010.5524339
https://doi.org/10.1109/ICARCV.2010.5707866
https://doi.org/10.1109/TII.2012.2205583
https://doi.org/10.1109/TIE.2013.2274422
https://doi.org/10.1109/IECON.2015.7392121
https://doi.org/10.1006/mssp.1996.0031
https://doi.org/10.1016/0890-6955(95)00058-5
https://doi.org/10.1016/0890-6955(95)00058-5
https://doi.org/10.1016/S0890-6955(03)00023-3
https://doi.org/10.1007/s001700050161
https://doi.org/10.1016/S0952-1976(02)00004-0

Bibliography

[22] Doukas, C., Stavropoulos, P., Papacharalampopoulos, A., et al. “On the
Estimation of Tool-wear for Milling Operations based on Multi- Sensorial Data”. In:
Procedia CIRP 8 (2013), pp. 415–420. issn: 22128271. doi: 10.1016/j.procir.2013.
06.126.

[23] Kilundu, B., Dehombreux, P., and Chiementin, X. “Tool wear monitoring by
machine learning techniques and singular spectrum analysis”. In: Mechanical Systems
and Signal Processing 25.1 (2011), pp. 400–415. issn: 08883270. doi: 10.1016/j.ymssp.
2010.07.014.

[24] Geramifard, O., Zhi, Z. Y., Quan, C. Y., et al. “Power-signature-based Bayesian
multi-classifier for operation mode identification”. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway, NJ:
IEEE, 2016, pp. 1–6. isbn: 978-1-5090-1314-2. doi: 10.1109/ETFA.2016.7733530.

[25] Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. “From Data Mining to Knowledge
Discovery in Databases”. In: AI Magazine 17 (1996), pp. 37–54.

[26] Kohavi, R., Rothleder, N. J., and Simoudis, E. “Emerging trends in business
analytics”. In: Communications of the ACM 45.8 (2002). issn: 00010782. doi: 10.1145/
545151.545177.

[27] Tyagi, S. “Using data analytics for greater profits”. In: Journal of Business Strategy
24.3 (2003), pp. 12–14. issn: 0275-6668. doi: 10.1108/02756660310734938.

[28] Koh, H. C. and Tan, G. “Data mining applications in healthcare”. In: Journal of
healthcare information management 19.2 (2011), p. 65.

[29] Kaur, H. and Wasan, S. K. “Empirical Study on Applications of Data Mining Tech-
niques in Healthcare”. In: Journal of Computer Science 2.2 (2006), pp. 194–200. issn:
15493636. doi: 10.3844/jcssp.2006.194.200.

[30] Wang, K. “Applying data mining to manufacturing: The nature and implications”. In:
Journal of Intelligent Manufacturing 18.4 (2007), pp. 487–495. issn: 0956-5515. doi:
10.1007/s10845-007-0053-5.

[31] Choudhary, A. K., Harding, J. A., and Tiwari, M. K. “Data mining in manufactur-
ing: A review based on the kind of knowledge”. In: Journal of Intelligent Manufacturing
20.5 (2009), pp. 501–521. issn: 0956-5515. doi: 10.1007/s10845-008-0145-x.

[32] Gröger, C., Niedermann, F., and Mitschang, B. “Data Mining Driven Manufac-
turing Process Optimization”. In: Proc. of the World Congress on Engineering 3 (2012),
pp. 4–6.

[33] Bhowmik, R. “Data mining techniques in fraud detection”. In: The Journal of Digital
Forensics, Security and Law 35.2 (2008).

[34] Golmohammadi, K. and Zaiane, O. R. “Data Mining Applications for Fraud Detection
in Securities Market”. In: European Intelligence and Security Informatics Conference
(EISIC), 2012. Ed. by Memon, N. Piscataway, NJ: IEEE, 2012, pp. 107–114. isbn:
978-1-4673-2358-1. doi: 10.1109/EISIC.2012.51.

185

https://doi.org/10.1016/j.procir.2013.06.126
https://doi.org/10.1016/j.procir.2013.06.126
https://doi.org/10.1016/j.ymssp.2010.07.014
https://doi.org/10.1016/j.ymssp.2010.07.014
https://doi.org/10.1109/ETFA.2016.7733530
https://doi.org/10.1145/545151.545177
https://doi.org/10.1145/545151.545177
https://doi.org/10.1108/02756660310734938
https://doi.org/10.3844/jcssp.2006.194.200
https://doi.org/10.1007/s10845-007-0053-5
https://doi.org/10.1007/s10845-008-0145-x
https://doi.org/10.1109/EISIC.2012.51

Bibliography

[35] Bănărescu, A. “Detecting and Preventing Fraud with Data Analytics”. In: Procedia
Economics and Finance 32 (2015), pp. 1827–1836. issn: 22125671. doi: 10.1016/S2212-
5671(15)01485-9.

[36] Chen, H., Chung, W., Xu, J. J., et al. “Crime data mining: A general framework and
some examples”. In: Computer 37.4 (2004), pp. 50–56. issn: 0018-9162. doi: 10.1109/
MC.2004.1297301.

[37] Xu, J. and Chen, H. “Criminal network analysis and visualization”. In: Communications
of the ACM 48.6 (2005), pp. 100–107. issn: 00010782. doi: 10.1145/1064830.1064834.

[38] Wang, J. T. L., Zaki, M. J., Toivonen, H. T. T., et al. “Introduction to Data Mining
in Bioinformatics”. In: Data Mining in Bioinformatics. Ed. by Wu, X., Jain, L., Shasha,
D., et al. Advanced Information and Knowledge Processing. London: Springer-Verlag
London Limited, 2005, pp. 3–8. isbn: 1-85233-671-4. doi: 10.1007/1-84628-059-1_1.

[39] Raza, K. “Application of Data Mining in Bioinformatics”. In: Indian Journal of Computer
Science and Engineering 1.2 (2010), pp. 114–118.

[40] Runkler, T. A. Data Mining: Modelle und Algorithmen intelligenter Datenanalyse. 2.,
aktualisierte Auflage. Computational Intelligence. Wiesbaden: Springer Vieweg, 2015.
isbn: 978-3-8348-1694-8. doi: 10.1007/978-3-8348-2171-3. url: http://dx.doi.
org/10.1007/978-3-8348-2171-3.

[41] Lovell, M. C. “Data Mining”. In: The Review of Economics and Statistics 65.1 (1983),
p. 1. issn: 00346535. doi: 10.2307/1924403.

[42] Wikipedia. Machine learning - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Machine_learning (visited on 2017-07-07).

[43] Brownlee, J. Supervised and Unsupervised Machine Learning Algorithms. Vermont
Victoria, Australia, 2016. url: http://machinelearningmastery.com/supervised-
and-unsupervised-machine-learning-algorithms/ (visited on 2017-07-07).

[44] Fingerscheidt, T. “Lecture Notes on Pattern Recognition”. Technical University
Brunswick, 2017.

[45] Bishop, C. M. Pattern recognition and machine learning. Corrected at 8. printing 2009.
Information science and statistics. New York, NY: Springer, 2009. isbn: 978-0-387-31073-2.

[46] Aksoy, S. Introduction to Pattern Recognition. 2016. url: http://www.cs.bilkent.
edu.tr/~saksoy/courses/cs551/slides/cs551_intro.pdf (visited on 2017-07-07).

[47] Martins, L. G. Introduction to Pattern Recognition. 2011. url: https://www.slid
eshare.net/lgustavomartins/introduction-to-pattern-recognition (visited on
2017-07-07).

[48] Miclet, L. and Cornuéjols, A. What is the place of Machine Learning between Pattern
Recognition and Optimization: Presented at TML 2008 Conference: (Teaching Machine
Learning). Saint Etienne, FRA, 2008. url: https://pdfs.semanticscholar.org/fb76/
c2b3230f09bc2ffc6a268373528749ad9a9a.pdf (visited on 2017-07-07).

[49] Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. 2. Aufl. s.l.:
Wiley-Interscience, 2012. isbn: 0-471-05669-3. url: http://gbv.eblib.com/patron/
FullRecord.aspx?p=699526.

186

https://doi.org/10.1016/S2212-5671(15)01485-9
https://doi.org/10.1016/S2212-5671(15)01485-9
https://doi.org/10.1109/MC.2004.1297301
https://doi.org/10.1109/MC.2004.1297301
https://doi.org/10.1145/1064830.1064834
https://doi.org/10.1007/1-84628-059-1_1
https://doi.org/10.1007/978-3-8348-2171-3
http://dx.doi.org/10.1007/978-3-8348-2171-3
http://dx.doi.org/10.1007/978-3-8348-2171-3
https://doi.org/10.2307/1924403
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/slides/cs551_intro.pdf
http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/slides/cs551_intro.pdf
https://www.slideshare.net/lgustavomartins/introduction-to-pattern-recognition
https://www.slideshare.net/lgustavomartins/introduction-to-pattern-recognition
https://pdfs.semanticscholar.org/fb76/c2b3230f09bc2ffc6a268373528749ad9a9a.pdf
https://pdfs.semanticscholar.org/fb76/c2b3230f09bc2ffc6a268373528749ad9a9a.pdf
http://gbv.eblib.com/patron/FullRecord.aspx?p=699526
http://gbv.eblib.com/patron/FullRecord.aspx?p=699526

Bibliography

[50] Wikipedia. Pattern recognition - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Pattern_recognition (visited on 2017-07-07).

[51] Dokas, P., Ertoz, L., Kumar, V., et al. “Data Mining for Network Intrusion Detection”.
In: Proceedings NSF Workshop on Next Generation Data Mining (2002).

[52] Knorr, E. M. and Ng, R. T. “Algorithms for Mining Distance-Based Outliers in Large
Datasets”. In: Proceedings of the 24rd International Conference on Very Large Data Bases.
Ed. by Morgan Kaufmann Publishers Inc. VLDB ’98. San Francisco, CA, USA, 1998,
pp. 392–403. isbn: 1-55860-566-5. url: http://www.vldb.org/conf/1998/p392.pdf
(visited on 2017-07-10).

[53] Breunig, M. M., Kriegel, H.-P., Ng, R. T., et al. “LOF: Identifying Density-Based
Local Outliers”. In: ACM SIGMOD Record 29.2 (2000), pp. 93–104. issn: 01635808. doi:
10.1145/335191.335388.

[54] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., et al. “Estimating the support of a
high-dimensional distribution”. In: Neural computation 13.7 (2001), pp. 1443–1471. issn:
0899-7667. doi: 10.1162/089976601750264965.

[55] He, Z., Xu, X., and Deng, S. “Discovering cluster-based local outliers”. In: Pattern
Recognition Letters 24.9-10 (2003), pp. 1641–1650. issn: 01678655. doi: 10.1016/S0167-
8655(03)00003-5.

[56] Campello, R. J. G. B., Moulavi, D., Zimek, A., et al. “Hierarchical Density Estimates
for Data Clustering, Visualization, and Outlier Detection”. In: ACM Transactions on
Knowledge Discovery from Data 10.1 (2015), pp. 1–51. issn: 15564681. doi: 10.1145/
2733381.

[57] Wikipedia. Anomaly detection - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Anomaly_detection (visited on 2017-07-10).

[58] Choudhary, P. Introduction to Anomaly Detection. 2017. url: https://www.datas
cience.com/blog/intro-to-anomaly-detection-learn-data-science-tutorials
(visited on 2017-07-10).

[59] Deckel Maho Pfronten GmbH. “User Manual DMU 80/100T2”. Pfronten, 2006.
[60] DMG / MORI SEIKI Deutschland GmbH. DMU 60 / 80 / 100 Monoblock Brochure.

2011. url: http://www.bewema.com/sites/default/files/DMU%2080T.pdf (visited
on 2017-03-29).

[61] Deckel Maho Pfronten GmbH. “Circuit Diagram DMU 80/100T2”. Pfronten, 2006.
[62] Gilgen, Müller & Weigert (GMW) GmbH & Co. KG. GMW ASK 412.4 Current

Transformer Documentation. 2017. url: http://www.g- mw.de/fileadmin/PDFs/
Nieder-Mittelspannungs-Stromwandler/Stromwandler_DE.pdf (visited on 2017-04-
12).

[63] Howard Butler LTD. HOBUT Molded Case Current Transformers 13 Series Datasheet.
2017. url: http://docs-europe.electrocomponents.com/webdocs/151e/0900766b
8151e916.pdf (visited on 2017-04-11).

187

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
http://www.vldb.org/conf/1998/p392.pdf
https://doi.org/10.1145/335191.335388
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1016/S0167-8655(03)00003-5
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Anomaly_detection
https://www.datascience.com/blog/intro-to-anomaly-detection-learn-data-science-tutorials
https://www.datascience.com/blog/intro-to-anomaly-detection-learn-data-science-tutorials
http://www.bewema.com/sites/default/files/DMU%2080T.pdf
http://www.g-mw.de/fileadmin/PDFs/Nieder-Mittelspannungs-Stromwandler/Stromwandler_DE.pdf
http://www.g-mw.de/fileadmin/PDFs/Nieder-Mittelspannungs-Stromwandler/Stromwandler_DE.pdf
http://docs-europe.electrocomponents.com/webdocs/151e/0900766b8151e916.pdf
http://docs-europe.electrocomponents.com/webdocs/151e/0900766b8151e916.pdf

Bibliography

[64] Beckhoff Automation GmbH & Co. KG. Documentation EL3403 3-Phase power
Measuring Terminal. 2017. url: https://download.beckhoff.com/download/documen
t/io/ethercat-terminals/el3403de.pdf (visited on 2017-04-03).

[65] Beckhoff Automation GmbH & Co. KG. Documentation EK110x, EK15xx EtherCAT-
Coupler. 2017. url: https://download.beckhoff.com/download/document/io/
ethercat-terminals/ek110x_ek15xxde.pdf (visited on 2017-04-03).

[66] Beckhoff Automation GmbH & Co. KG. Documentation EL30xx Analog Input
Terminal. 2017. url: https://download.beckhoff.com/download/document/io/
ethercat-terminals/el30xxde.pdf (visited on 2017-04-03).

[67] Becker, A. HeidiSQL SQL Client. 2017. url: https://www.heidisql.com/ (visited
on 2017-04-10).

[68] Čihař, M., Jayaratne, M., Bennetch, I., et al. phpMyAdmin SQL Webclient. 2017.
url: https://www.phpmyadmin.net/ (visited on 2017-04-10).

[69] Ron, A. Introduction to Numerical Analysis. 2010. url: http://pages.cs.wisc.edu/
~amos/412/lecture-notes/lecture14.pdf (visited on 2017-05-15).

[70] Keogh, E. and Smyth, P. A Probabilistic Approach to Fast Pattern Matching in
Time Series Databases. Ed. by AAAI Press. Newport Beach, CA, 1997. url: http:
//www.aaai.org/Papers/KDD/1997/KDD97-004.pdf (visited on 2017-05-25).

[71] Frank, J., Mannor, S., Pineau, J., et al. “Time Series Analysis Using Geometric
Template Matching”. In: IEEE transactions on pattern analysis and machine intelligence
35.3 (2013), pp. 740–754. issn: 0098-5589. doi: 10.1109/TPAMI.2012.121.

[72] Agrawal, R., Lin, K.-i., Sawhney, H. S., et al. “Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases”. In: In VLDB
(1995), pp. 490–501. (Visited on 2017-05-25).

[73] Kocyan, T., Martinovic, J., Drazdilova, P., et al. Searching Time Series Based On
Pattern Extraction Using Dynamic Time Warping. 2013. url: http://ceur-ws.org/Vol-
971/poster5.pdf (visited on 2017-05-25).

[74] Chen, Y., Nascimento, M. A., Ooi, B. C., et al. “SpADe: On Shape-based Pattern
Detection in Streaming Time Series”. In: IEEE 23rd International Conference on Data
Engineering, 2007. Piscataway, NJ: IEEE Service Center, 2007, pp. 786–795. isbn: 1-
4244-0802-4. doi: 10.1109/ICDE.2007.367924.

[75] Ge, X. and Smyth, P. “Deformable Markov model templates for time-series pattern
matching”. In: Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining. Ed. by Ramakrishnan, R. New York, NY: ACM,
2000, pp. 81–90. isbn: 1581132336. doi: 10.1145/347090.347109.

[76] Agrawal, R., Faloutsos, C., and Swami, A. N. “Efficient Similarity Search In
Sequence Databases”. In: Proceedings of the 4th International Conference on Foundations
of Data Organization and Algorithms (1993), pp. 69–84. (Visited on 2017-05-25).

188

https://download.beckhoff.com/download/document/io/ethercat-terminals/el3403de.pdf
https://download.beckhoff.com/download/document/io/ethercat-terminals/el3403de.pdf
https://download.beckhoff.com/download/document/io/ethercat-terminals/ek110x_ek15xxde.pdf
https://download.beckhoff.com/download/document/io/ethercat-terminals/ek110x_ek15xxde.pdf
https://download.beckhoff.com/download/document/io/ethercat-terminals/el30xxde.pdf
https://download.beckhoff.com/download/document/io/ethercat-terminals/el30xxde.pdf
https://www.heidisql.com/
https://www.phpmyadmin.net/
http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture14.pdf
http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture14.pdf
http://www.aaai.org/Papers/KDD/1997/KDD97-004.pdf
http://www.aaai.org/Papers/KDD/1997/KDD97-004.pdf
https://doi.org/10.1109/TPAMI.2012.121
http://ceur-ws.org/Vol-971/poster5.pdf
http://ceur-ws.org/Vol-971/poster5.pdf
https://doi.org/10.1109/ICDE.2007.367924
https://doi.org/10.1145/347090.347109

Bibliography

[77] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. “Fast subsequence
matching in time-series databases”. In: Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data - SIGMOD ’94. Ed. by Snodgrass, R. T.
and Winslett, M. SIGMOD record. New York, NY: ACM Press, 1994, pp. 419–429.
isbn: 0897916395. doi: 10.1145/191839.191925.

[78] Briechle, K. and Hanebeck, U. D. “Template matching using fast normalized cross
correlation”. In: Proceedings of SPIE - The International Society for Optical Engineering
4387. Ed. by Casasent, D. P. and Chao, T.-H. SPIE Proceedings. SPIE, 2001, pp. 95–
102. doi: 10.1117/12.421129.

[79] Kleist, C. Time Series Data Mining Methods: A Review. 2015. url: http://edoc.hu-
berlin.de/master/kleist- caroline- 2015- 03- 25/PDF/kleist.pdf (visited on
2017-06-08).

[80] Esling, P. and Agon, C. “Time-series data mining”. In: ACM Comput. Surv. 45.1
(2012), pp. 1–34. doi: 10.1145/2379776.2379788.

[81] Berndt, D. J. and Clifford, J. “Using Dynamic Time Warping to Find Patterns in
Time Series”. In: AAAI Press 1994 (1994), pp. 359–370.

[82] Meesrikamolkul, W., Niennattrakul, V., and Ratanamahatana, C. A. “Shape-
Based Clustering for Time Series Data”. In: Advances in knowledge discovery and data
mining. Ed. by Tan, P.-N., Chawla, S., Ho, C. K., et al. Vol. 7301. Lecture notes in
computer science Lecture notes in artificial intelligence. Berlin: Springer, 2012, pp. 530–
541. isbn: 978-3-642-30216-9. doi: 10.1007/978-3-642-30217-6_44.

[83] Srisai, D. and Ratanamahatana, C. A. “Efficient Time Series Classification under
Template Matching Using Time Warping Alignment”. In: 2009 Fourth International
Conference on Computer Sciences and Convergence Information Technology, pp. 685–690.
doi: 10.1109/ICCIT.2009.291.

[84] The MathWorks Inc. MATLAB Signal Processing Toolbox Documentation. Natik
Massachusetts, 2017. url: https://de.mathworks.com/help/matlab/ (visited on
2017-04-19).

[85] Keogh, E. and Ratanamahatana, C. A. “Exact indexing of dynamic time warping”.
In: Knowledge and Information Systems 7.3 (2005), pp. 358–386. issn: 0219-1377. doi:
10.1007/s10115-004-0154-9.

[86] Niennattrakul, V., Ruengronghirunya, P., and Ratanamahatana, C. A. “Exact
indexing for massive time series databases under time warping distance”. In: Data Mining
and Knowledge Discovery 21.3 (2010), pp. 509–541. issn: 1384-5810. doi: 10.1007/
s10618-010-0165-y.

[87] Ratanamahatana, C. A. and Keogh, E. “Three Myths about Dynamic Time Warping
Data Mining”. In: Proceedings of the 2005 SIAM International Conference on Data Mining.
Ed. by Kargupta, H., Srivastava, J., Kamath, C., et al. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2005, pp. 506–510. isbn: 978-0-89871-593-4. doi:
10.1137/1.9781611972757.50.

189

https://doi.org/10.1145/191839.191925
https://doi.org/10.1117/12.421129
http://edoc.hu-berlin.de/master/kleist-caroline-2015-03-25/PDF/kleist.pdf
http://edoc.hu-berlin.de/master/kleist-caroline-2015-03-25/PDF/kleist.pdf
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1007/978-3-642-30217-6_44
https://doi.org/10.1109/ICCIT.2009.291
https://de.mathworks.com/help/matlab/
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1007/s10618-010-0165-y
https://doi.org/10.1007/s10618-010-0165-y
https://doi.org/10.1137/1.9781611972757.50

Bibliography

[88] Müller, M. Information retrieval for music and motion. Berlin u.a.: Springer, 2007.
isbn: 978-3-540-74047-6.

[89] Kordik, P. Lecture Notes on Feature extraction from time series. 2012. url: https:
//edux.fit.cvut.cz/oppa/MI-PDD/prednasky/l8-signal-extraction.pdf (visited
on 2017-06-08).

[90] Tarango, J., Keogh, E., and Brisk, P. “Accelerating the dynamic time warping
distance measure using logarithmetic arithmetic”. In: 2014 48th Asilomar Conference on
Signals, Systems and Computers, pp. 404–408. doi: 10.1109/ACSSC.2014.7094472.

[91] The MathWorks Inc. MATLAB Documentation. Natik Massachusetts, 2017. url:
https://de.mathworks.com/help/matlab/ (visited on 2017-04-19).

[92] Eric W., W. Cross-Correlation. 2016. url: http://mathworld.wolfram.com/Cross-
Correlation.html (visited on 2017-06-08).

[93] Wikipedia. Cross-Correlation - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Cross-correlation (visited on 2017-06-08).

[94] Wikipedia. Autocorrelation - Wikipedia: The Free Ecyclopedia. 2017. url: https :
//en.wikipedia.org/wiki/Autocorrelation (visited on 2017-06-08).

[95] Wikipedia. Pearson correlation coefficient - Wikipedia: The Free Ecyclopedia. 2017. url:
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient (visited on
2017-06-08).

[96] Wikipedia. Multivariate random variable - Wikipedia: The Free Ecyclopedia. 2017.
url: https://en.wikipedia.org/wiki/Multivariate_random_variable (visited on
2017-06-08).

[97] Brighton, H. and Mellish, C. “Advances in Instance Selection for Instance-Based
Learning Algorithms”. In: Data Mining and Knowledge Discovery 6.2 (2002), pp. 153–172.
issn: 13845810. doi: 10.1023/A:1014043630878.

[98] Wilson, D. R. and Martinez, T. R. “Reduction Techniques for Instance-Based
Learning Algorithms”. In: Machine Learning 38.3 (2000), pp. 257–286. issn: 08856125.
doi: 10.1023/A:1007626913721.

[99] Pękalska, E., Duin, R. P., and Paclík, P. “Prototype selection for dissimilarity-
based classifiers”. In: Pattern Recognition 39.2 (2006), pp. 189–208. issn: 00313203. doi:
10.1016/j.patcog.2005.06.012.

[100] Boudaoud, S., Rix, H., and Meste, O. “Integral shape averaging and structural
average estimation: A comparative study”. In: IEEE Transactions on Signal Processing
53.10 (2005), pp. 3644–3650. issn: 1053-587X. doi: 10.1109/TSP.2005.855106.

[101] Boudaoud, S., Rix, H., Meste, O., et al. “Corrected Integral Shape Averaging Applied
to Obstructive Sleep Apnea Detection from the Electrocardiogram”. In: EURASIP
Journal on Advances in Signal Processing 2007.1 (2007), p. 032570. issn: 1687-6180. doi:
10.1155/2007/32570.

[102] Gupta, L., Molfese, D. L., Tammana, R., et al. “Nonlinear alignment and averaging
for estimating the evoked potential”. In: IEEE transactions on bio-medical engineering
43.4 (1996), pp. 348–356. issn: 0018-9294. doi: 10.1109/10.486255.

190

https://edux.fit.cvut.cz/oppa/MI-PDD/prednasky/l8-signal-extraction.pdf
https://edux.fit.cvut.cz/oppa/MI-PDD/prednasky/l8-signal-extraction.pdf
https://doi.org/10.1109/ACSSC.2014.7094472
https://de.mathworks.com/help/matlab/
http://mathworld.wolfram.com/Cross-Correlation.html
http://mathworld.wolfram.com/Cross-Correlation.html
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Multivariate_random_variable
https://doi.org/10.1023/A:1014043630878
https://doi.org/10.1023/A:1007626913721
https://doi.org/10.1016/j.patcog.2005.06.012
https://doi.org/10.1109/TSP.2005.855106
https://doi.org/10.1155/2007/32570
https://doi.org/10.1109/10.486255

Bibliography

[103] Wang, K., Begleiter, H., and Porjesz, B. “Warp-averaging event-related potentials”.
In: Clinical Neurophysiology 112.10 (2001), pp. 1917–1924. issn: 13882457. doi: 10.1016/
S1388-2457(01)00640-X.

[104] Petitjean, F. and Gançarski, P. “Summarizing a set of time series by averaging:
From Steiner sequence to compact multiple alignment”. In: Theoretical Computer Science
414.1 (2012), pp. 76–91. issn: 03043975. doi: 10.1016/j.tcs.2011.09.029.

[105] Soheily-Khah, S., Douzal-Chouakria, A., and Gaussier, E. Progressive and
Iterative Approaches for Time Series Averaging. Porto, Portugal, 2015. url: https:
//hal.archives-ouvertes.fr/hal-01208451 (visited on 2017-05-23).

[106] Niennattrakul, V. and Ratanamahatana, C. A. “Shape averaging under Time
Warping”. In: 2009 6th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (ECTI-CON), pp. 626–629.
doi: 10.1109/ECTICON.2009.5137128.

[107] Skalak, D. B. Prototype and Feature Selection by Sampling and Random Mutation
Hill Climbing Algorithms. 1994. url: https://pdfs.semanticscholar.org/0df0/
13671e9e901a9126deb4957e22e3d937b1a5.pdf (visited on 2017-05-23).

[108] Wilson, D. R. and Martinez, T. R. Instance Pruning Techniques. San Francisco, CA,
USA, 1997. url: https://pdfs.semanticscholar.org/100d/35e18a98d1714a33b97e
cc2df0c94847d9a8.pdf (visited on 2017-05-23).

[109] Xi, X., Keogh, E., Shelton, C., et al. “Fast time series classification using numerosity
reduction”. In: Proceedings of the 23rd international conference on Machine learning.
Ed. by Cohen, W. New York, NY: ACM, 2006, pp. 1033–1040. isbn: 1595933832. doi:
10.1145/1143844.1143974.

[110] Niennattrakul, V., Srisai, D., and Ratanamahatana, C. A. “Shape-based template
matching for time series data”. In: Knowledge-Based Systems 26 (2012), pp. 1–8. issn:
09507051. doi: 10.1016/j.knosys.2011.04.015.

[111] Sathianwiriyakhun, P., Janyalikit, T., and Ratanamahatana, C. A. “Fast and
accurate template averaging for time series classification”. In: The 2016 - 8th International
Conference on Knowledge and Smart Technology (KST). Piscataway, NJ: IEEE, 2016,
pp. 49–54. isbn: 978-1-4673-8137-6. doi: 10.1109/KST.2016.7440530.

[112] McKinley, S. and Levine, M. Cubic Spline Interpolation. 2009. url: https://web.
archive.org/web/20090408054627/http://online.redwoods.cc.ca.us/instruct/
darnold/laproj/Fall98/SkyMeg/Proj.PDF (visited on 2017-05-24).

[113] Thearling, K. An Introduction to Data Mining. 2006. url: http://www.thearling.
com/ (visited on 2017-06-08).

[114] Domingos, P. “A few useful things to know about machine learning”. In: Communications
of the ACM 55.10 (2012), p. 78. issn: 00010782. doi: 10.1145/2347736.2347755.

[115] Demsar, J., Curk, T., Erjavec, A., et al. “Orange: Data Mining Tolbox in Python”.
In: Journal of Machine Learning Research 14 (2013), pp. 2349–2353.

191

https://doi.org/10.1016/S1388-2457(01)00640-X
https://doi.org/10.1016/S1388-2457(01)00640-X
https://doi.org/10.1016/j.tcs.2011.09.029
https://hal.archives-ouvertes.fr/hal-01208451
https://hal.archives-ouvertes.fr/hal-01208451
https://doi.org/10.1109/ECTICON.2009.5137128
https://pdfs.semanticscholar.org/0df0/13671e9e901a9126deb4957e22e3d937b1a5.pdf
https://pdfs.semanticscholar.org/0df0/13671e9e901a9126deb4957e22e3d937b1a5.pdf
https://pdfs.semanticscholar.org/100d/35e18a98d1714a33b97ecc2df0c94847d9a8.pdf
https://pdfs.semanticscholar.org/100d/35e18a98d1714a33b97ecc2df0c94847d9a8.pdf
https://doi.org/10.1145/1143844.1143974
https://doi.org/10.1016/j.knosys.2011.04.015
https://doi.org/10.1109/KST.2016.7440530
https://web.archive.org/web/20090408054627/http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall98/SkyMeg/Proj.PDF
https://web.archive.org/web/20090408054627/http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall98/SkyMeg/Proj.PDF
https://web.archive.org/web/20090408054627/http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall98/SkyMeg/Proj.PDF
http://www.thearling.com/
http://www.thearling.com/
https://doi.org/10.1145/2347736.2347755

Bibliography

[116] Demsar, J. and Zupan, B. Orange: Data Mining Fruitful and Fun. 2012. url: http:
//ailab.ijs.si/dunja/TuringSLAIS-2012/Papers/Demsar_Orange.pdf (visited on
2017-06-16).

[117] Shaulsky, G., Borondics, F., and Bellazzi, R. Documentation of Orange Visual
Programming. 2015. url: https://docs.orange.biolab.si/3/visual-programming/
index.html (visited on 2017-06-09).

[118] Brownlee, J. A Tour of Machine Learning Algorithms. Vermont Victoria, Australia,
2013. url: http://machinelearningmastery.com/a-tour-of-machine-learning-
algorithms/ (visited on 2017-06-15).

[119] Kramer, O. Machine Learning for Evolution Strategies. Vol. 20. Cham: Springer Inter-
national Publishing, 2016. isbn: 978-3-319-33381-6. doi: 10.1007/978-3-319-33383-0.

[120] Settles, B. H. Lecture Notes on Feature Spaces. 2003. url: http://pages.cs.wisc.
edu/~bsettles/cs540/lectures/16_feature_spaces.pdf (visited on 2017-06-08).

[121] Niemann, H. Klassifikation von Mustern. Berlin, Heidelberg: Springer Berlin Heidelberg,
1983. isbn: 978-3-540-12642-3. doi: 10.1007/978-3-642-47517-7.

[122] Nilsson, N. J. Introduction to Machine Learning. Stanford, 1998. url: https://ai.
stanford.edu/~nilsson/MLBOOK.pdf (visited on 2017-06-23).

[123] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. “Scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830. (Visited
on 2017-06-09).

[124] Breiman, L., Friedman, J. H., Olsen, R. A., et al. Classification and Regression
Trees. New York, 1984.

[125] Kass, G. V. “Significance Testing in Automatic Interaction Detection (A.I.D.)” In:
Applied Statistics 24.2 (1975), p. 178. issn: 00359254. doi: 10.2307/2346565.

[126] Quinlan, J. R. “Induction of decision trees”. In: Machine Learning 1.1 (1986), pp. 81–
106. issn: 08856125. doi: 10.1007/BF00116251.

[127] Wu, X., Kumar, V., Ross Quinlan, J., et al. “Top 10 algorithms in data mining”.
In: Knowledge and Information Systems 14.1 (2008), pp. 1–37. issn: 0219-1377. doi:
10.1007/s10115-007-0114-2.

[128] Pandya, R. and Pandya, J. “C5. 0 Algorithm to Improved Decision Tree with Feature
Selection and Reduced Error Pruning”. In: International Journal of Computer Applications
117.16 (2015), pp. 18–21. issn: 09758887. doi: 10.5120/20639-3318.

[129] Loh, W.-Y. “Classification and regression trees”. In: Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (2011), pp. 14–23. issn: 19424787. doi:
10.1002/widm.8.

[130] Markham, K. Comparing supervised learning algorithms. 2015. url: http://www.
dataschool.io/comparing-supervised-learning-algorithms/ (visited on 2017-06-
09).

192

http://ailab.ijs.si/dunja/TuringSLAIS-2012/Papers/Demsar_Orange.pdf
http://ailab.ijs.si/dunja/TuringSLAIS-2012/Papers/Demsar_Orange.pdf
https://docs.orange.biolab.si/3/visual-programming/index.html
https://docs.orange.biolab.si/3/visual-programming/index.html
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://doi.org/10.1007/978-3-319-33383-0
http://pages.cs.wisc.edu/~bsettles/cs540/lectures/16_feature_spaces.pdf
http://pages.cs.wisc.edu/~bsettles/cs540/lectures/16_feature_spaces.pdf
https://doi.org/10.1007/978-3-642-47517-7
https://ai.stanford.edu/~nilsson/MLBOOK.pdf
https://ai.stanford.edu/~nilsson/MLBOOK.pdf
https://doi.org/10.2307/2346565
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.5120/20639-3318
https://doi.org/10.1002/widm.8
http://www.dataschool.io/comparing-supervised-learning-algorithms/
http://www.dataschool.io/comparing-supervised-learning-algorithms/

Bibliography

[131] Ho, T. K. “Random decision forests”. In: Proceedings of the Third International Confer-
ence on Document Analysis and Recognition. Los Alamitos, Calif.: IEEE Computer Society
Press, 1995, pp. 278–282. isbn: 0-8186-7128-9. doi: 10.1109/ICDAR.1995.598994.

[132] Breiman, L. “Bagging Predictors”. In: Machine Learning 24.2 (1996), pp. 123–140. issn:
08856125. doi: 10.1023/A:1018054314350.

[133] Breiman, L. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32. issn:
08856125. doi: 10.1023/A:1010933404324.

[134] Ho, T. K. “The random subspace method for constructing decision forests”. In: IEEE
transactions on pattern analysis and machine intelligence 20.8 (1998), pp. 832–844. issn:
01628828. doi: 10.1109/34.709601.

[135] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical learning:
Data mining, inference, and prediction. 10. [print.], (corr. as of 4. print.) Springer series
in statistics. New York, NY: Springer, 2008. isbn: 0-387-95284-5.

[136] Dietterich, T. G. “An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting, and Randomization”. In: Machine
Learning 40.2 (2000), pp. 139–157. issn: 08856125. doi: 10.1023/A:1007607513941.

[137] Freund, Y. and Schapire, R. E. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting”. In: Journal of Computer and System Sciences
55.1 (1997), pp. 119–139. issn: 00220000. doi: 10.1006/jcss.1997.1504.

[138] Joglekar, S. A small introduction to Boosting. 2016. url: https://codesachin.
wordpress.com/tag/adaboost/ (visited on 2017-06-12).

[139] Iba, W. and Langley, P. “Induction of One-Level Decision Trees”. In: Proceedings of
the Ninth International Workshop on Machine Learning. Ed. by Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1992, pp. 233–240. isbn: 1-55860-247-X.

[140] Schapire, R. E. “Explaining AdaBoost”. In: Empirical Inference. Ed. by Schölkopf,
B., Luo, Z., and Vovk, V. Berlin, Heidelberg and s.l.: Springer Berlin Heidelberg, 2013,
pp. 37–52. isbn: 978-3-642-41135-9. doi: 10.1007/978-3-642-41136-6_5.

[141] Schapire, R. E. “A Brief Introduction to Boosting”. In: Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence. Ed. by Morgan Kaufmann
Publishers Inc. Vol. 2. San Francisco, CA, USA, 1999, pp. 1401–1406.

[142] McCormick, C. AdaBoost Tutorial. 2013. url: http://mccormickml.com/2013/12/
13/adaboost-tutorial/ (visited on 2017-06-12).

[143] Sochman, J. and Matas, J. Lecture Notes on AdaBoost. 2016. url: http://cmp.felk.
cvut.cz/~sochmj1/adaboost_talk.pdf (visited on 2017-06-12).

[144] Kadeous, W. What is AdaBoost? 2014. url: https://www.quora.com/What-is-
AdaBoost/answer/Waleed-Kadous (visited on 2017-06-12).

[145] Kegl, B. The return of AdaBoost.MH: multi-class Hamming trees. 2013. url: https:
//arxiv.org/pdf/1312.6086.pdf (visited on 2017-06-12).

[146] Cortes, C. and Vapnik, V. “Support-Vector Networks”. In: Machine Learning 20.3
(1995), pp. 273–297. issn: 08856125. doi: 10.1007/BF00994018.

193

https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/34.709601
https://doi.org/10.1023/A:1007607513941
https://doi.org/10.1006/jcss.1997.1504
https://codesachin.wordpress.com/tag/adaboost/
https://codesachin.wordpress.com/tag/adaboost/
https://doi.org/10.1007/978-3-642-41136-6_5
http://mccormickml.com/2013/12/13/adaboost-tutorial/
http://mccormickml.com/2013/12/13/adaboost-tutorial/
http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf
http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf
https://www.quora.com/What-is-AdaBoost/answer/Waleed-Kadous
https://www.quora.com/What-is-AdaBoost/answer/Waleed-Kadous
https://arxiv.org/pdf/1312.6086.pdf
https://arxiv.org/pdf/1312.6086.pdf
https://doi.org/10.1007/BF00994018

Bibliography

[147] James, G. An introduction to statistical learning: With applications in R. corr. at 6. print.
Springer texts in statistics. New York NY u.a.: Springer, 2015. isbn: 978-1-4614-7138-7.

[148] Kowalczyk, A. SVM Tutorial - Understanding the math - the optimal hyperplane. 2014.
url: https://www.svm-tutorial.com/2015/06/svm-understanding-math-part-3/
(visited on 2017-06-13).

[149] Zielesny, A. From Curve Fitting to Machine Learning. Vol. 109. Cham: Springer
International Publishing, 2016. isbn: 978-3-319-32544-6. doi: 10.1007/978-3-319-
32545-3.

[150] Itseez. The OpenCV Reference Manual - Introduction to SVM. 2017. url: http :
//docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_
to_svm.html (visited on 2017-06-13).

[151] Snyman, J. A. Practical Mathematical Optimization: An Introduction to Basic Optimiza-
tion Theory and Classical and New Gradient-Based Algorithms. Vol. 97. Applied Opti-
mization. Boston, MA: Springer Science+Business Media Inc, 2005. isbn: 9780387243481.
doi: 10.1007/b105200. url: http://site.ebrary.com/lib/alltitles/docDetail.
action?docID=10133687.

[152] Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., et al. Numerical optimization:
Theoretical and practical aspects. Springer Berlin Heidelberg, 2006. isbn: 978-3-540-35445-
1. doi: 10.1007/978-3-540-35447-5.

[153] Vapnyarskii, I. B. “Lagrange multipliers”. In: Encyclopaedia of mathematics. Ed. by
Hazewinkel, M. Berlin and New York: Springer-Verlag, 2002. isbn: 9781402006098.

[154] Aizerman, M. A., Braverman, E. A., and Rozonoer, L. “Theoretical foundations
of the potential function method in pattern recognition learning”. In: Automation and
Remote Control. Vol. 25. Automation and Remote Control. 1964, pp. 821–837.

[155] Mercer, J. “Functions of Positive and Negative Type, and their Connection with the
Theory of Integral Equations”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 209.441-458 (1909), pp. 415–446. issn:
1364-503X. doi: 10.1098/rsta.1909.0016.

[156] Powell, M. J. D. “Radial Basis Functions for Multivariable Interpolation: A Review”.
In: Algorithms for Approximation. Ed. by Mason, J. C. and Cox, M. G. New York,
NY, USA: Clarendon Press, 1987, pp. 143–167. isbn: 0-19-853612-7.

[157] Duan, K.-B. and Keerthi, S. S. “Which Is the Best Multiclass SVM Method? An
Empirical Study”. In: Multiple Classifier Systems. Ed. by Hutchison, D., Kanade, T.,
Kittler, J., et al. Vol. 3541. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 278–285. isbn: 978-3-540-26306-7. doi: 10.1007/
11494683_28.

[158] Hsu, C.-W. and Lin, C.-J. “A comparison of methods for multiclass support vector
machines”. In: IEEE transactions on neural networks 13.2 (2002), pp. 415–425. issn:
1045-9227. doi: 10.1109/72.991427.

194

https://www.svm-tutorial.com/2015/06/svm-understanding-math-part-3/
https://doi.org/10.1007/978-3-319-32545-3
https://doi.org/10.1007/978-3-319-32545-3
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://doi.org/10.1007/b105200
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10133687
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10133687
https://doi.org/10.1007/978-3-540-35447-5
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1007/11494683_28
https://doi.org/10.1007/11494683_28
https://doi.org/10.1109/72.991427

Bibliography

[159] Zhang, T. “Solving large scale linear prediction problems using stochastic gradient
descent algorithms”. In: Proceedings of the 41st annual Design Automation Conference.
Ed. by Brodley, C. New York, NY: ACM, 2004, p. 116. isbn: 1-58113-828-8. doi:
10.1145/1015330.1015332.

[160] Wikipedia. Stochastic gradient descent - Wikipedia: The Free Ecyclopedia. 2017. url:
https://en.wikipedia.org/wiki/Stochastic_gradient_descent (visited on 2017-
06-14).

[161] Kiwiel, K. C. “Convergence and efficiency of subgradient methods for quasiconvex
minimization”. In: Mathematical Programming 90.1 (2001), pp. 1–25. issn: 0025-5610.
doi: 10.1007/PL00011414.

[162] Bottou, L. Online Algorithms and Stochastic Approximations. Ed. by Saad, D. Cam-
bridge, UK, 1998. url: https://pdfs.semanticscholar.org/e861/7e0970802fce
2506b703877b5459c72611c7.pdf (visited on 2017-06-14).

[163] Brownlee, J. Gradient Descent For Machine Learning. 2016. url: http://machi
nelearningmastery.com/gradient- descent- for- machine- learning/ (visited on
2017-06-14).

[164] Bayes and Price. “An Essay towards Solving a Problem in the Doctrine of Chances.
By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John
Canton, A. M. F. R. S”. In: Philosophical Transactions of the Royal Society of London
53.0 (1763), pp. 370–418. issn: 0261-0523. doi: 10.1098/rstl.1763.0053.

[165] Rish, I. An empirical study of the naive bayes classifier. Yorktown Heights, NY, 2001.
url: http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf (visited
on 2017-06-14).

[166] Rennie, J. D. M., Shih, L., Teevan, J., et al. “Tackling the Poor Assumptions of
Naive Bayes Text Classifiers”. In: Proceedings of the Twentieth International Conference
on International Conference on Machine Learning. ICML’03. Washington, DC, USA:
AAAI Press, 2003, pp. 616–623. isbn: 1-57735-189-4.

[167] Barber, D. Bayesian Reasoning and Machine Learning. 2017. url: http://web4.cs.
ucl.ac.uk/staff/D.Barber/textbook/090310.pdf (visited on 2017-06-23).

[168] Ray, S. 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python). 2015.
url: https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/
(visited on 2017-06-15).

[169] Fernandez-Temprano, M., Gardel-Sotomayor, P. E., Duque-Perez, O., et al.
“Broken bar condition monitoring of an induction motor under different supplies using a
linear discriminant analysis”. In: 9th IEEE International Symposium on Diagnostics for
Electric Machines, Power Electronics and Drives (SDEMPED), 2013. Piscataway, NJ:
IEEE, 2013, pp. 162–168. isbn: 978-1-4799-0025-1. doi: 10.1109/DEMPED.2013.6645712.

195

https://doi.org/10.1145/1015330.1015332
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://doi.org/10.1007/PL00011414
https://pdfs.semanticscholar.org/e861/7e0970802fce2506b703877b5459c72611c7.pdf
https://pdfs.semanticscholar.org/e861/7e0970802fce2506b703877b5459c72611c7.pdf
http://machinelearningmastery.com/gradient-descent-for-machine-learning/
http://machinelearningmastery.com/gradient-descent-for-machine-learning/
https://doi.org/10.1098/rstl.1763.0053
http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/
https://doi.org/10.1109/DEMPED.2013.6645712

Bibliography

[170] Jie, S., Hong, G. S., Rahman, M., et al. “Feature Extraction and Selection in Tool
Condition Monitoring System”. In: AI 2002: Advances in Artificial Intelligence. Ed. by
McKay, B. and Slaney, J. Vol. 2557. Lecture Notes in Computer Science. Berlin and
Heidelberg: Springer, 2002, pp. 487–497. isbn: 978-3-540-00197-3. doi: 10.1007/3-540-
36187-1_43.

[171] Zhou, J.-H., Pang, C. K., Lewis, F. L., et al. “Intelligent Diagnosis and Prognosis of
Tool Wear Using Dominant Feature Identification”. In: IEEE Transactions on Industrial
Informatics 5.4 (2009), pp. 454–464. issn: 1551-3203. doi: 10.1109/TII.2009.2023318.

[172] Zhou, J.-H., Pang, C. K., Zhong, Z.-W., et al. “Tool Wear Monitoring Using
Acoustic Emissions by Dominant-Feature Identification”. In: IEEE Transactions on
Instrumentation and Measurement 60.2 (2011), pp. 547–559. issn: 0018-9456. doi: 10.
1109/TIM.2010.2050974.

[173] Zhang, C., Yao, X., Zhang, J., et al. “Tool Condition Monitoring and Remaining
Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations”. In: Sensors
(Basel, Switzerland) 16.6 (2016). issn: 1424-8220. doi: 10.3390/s16060795.

[174] Wikipedia. Orange (software) - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Orange_(software) (visited on 2017-06-16).

[175] Unpingco, J. Python for Probability, Statistics, and Machine Learning. Cham: Springer
International Publishing, 2016. isbn: 978-3-319-30715-2. doi: 10.1007/978-3-319-
30717-6.

[176] Spruyt, V. The Curse of Dimensionality in Classification. 2014. url: http://www.vi
siondummy.com/2014/04/curse-dimensionality-affect-classification/ (visited
on 2017-06-19).

[177] Jebara, T. Machine Learning. Boston, MA: Springer US, 2004. isbn: 978-1-4613-4756-9.
doi: 10.1007/978-1-4419-9011-2.

[178] Shapiro, L. Lecture Notes on Information Gain. 2010. url: https://courses.cs.
washington.edu/courses/cse455/10au/notes/InfoGain.pdf (visited on 2017-06-19).

[179] Amro. What is entropy and information gain? - Stackoverflow. 2016. url: https:
//stackoverflow.com/a/1859910 (visited on 2017-06-19).

[180] Bergstra, J., Bardenet, R., Bengio, Y., et al. “Algorithms for Hyper-parameter
Optimization”. In: Proceedings of the 24th International Conference on Neural Information
Processing Systems. Ed. by Curran Associates Inc. NIPS’11. Granada, Spain, 2011,
pp. 2546–2554. isbn: 978-1-61839-599-3. url: http://papers.nips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization.pdf (visited on 2017-06-22).

[181] Bergstra, J. and Bengio, Y. “Random Search for Hyper-parameter Optimization”.
In: Journal of Machine Learning Research 13 (2012), pp. 281–305. url: http://www.
jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf (visited on 2017-06-22).

[182] Sokolova, M. and Lapalme, G. “A systematic analysis of performance measures for
classification tasks”. In: Information Processing & Management 45.4 (2009), pp. 427–437.
issn: 03064573. doi: 10.1016/j.ipm.2009.03.002.

196

https://doi.org/10.1007/3-540-36187-1_43
https://doi.org/10.1007/3-540-36187-1_43
https://doi.org/10.1109/TII.2009.2023318
https://doi.org/10.1109/TIM.2010.2050974
https://doi.org/10.1109/TIM.2010.2050974
https://doi.org/10.3390/s16060795
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/Orange_(software)
https://doi.org/10.1007/978-3-319-30717-6
https://doi.org/10.1007/978-3-319-30717-6
http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://doi.org/10.1007/978-1-4419-9011-2
https://courses.cs.washington.edu/courses/cse455/10au/notes/InfoGain.pdf
https://courses.cs.washington.edu/courses/cse455/10au/notes/InfoGain.pdf
https://stackoverflow.com/a/1859910
https://stackoverflow.com/a/1859910
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://doi.org/10.1016/j.ipm.2009.03.002

Bibliography

[183] Ganesan, K. Computing Precision and Recall for Multi-Class Classification Problems.
2014. url: http://text-analytics101.rxnlp.com/2014/10/computing-precision-
and-recall-for.html (visited on 2017-06-22).

[184] Fawcett, T. “An introduction to ROC analysis”. In: Pattern Recognition Letters 27.8
(2006), pp. 861–874. issn: 01678655. doi: 10.1016/j.patrec.2005.10.010.

[185] Powers, D. M. W. “Evaluation: From precision, recall and f-measure to roc., in-
formedness, markedness & correlation”. In: Journal of Machine Learning Technologies.
Vol. 2. 2011, pp. 37–63. url: https://csem.flinders.edu.au/research/techreps/
SIE07001.pdf (visited on 2017-06-22).

[186] Chandola, V., Banerjee, A., and Kumar, V. “Anomaly detection: A Survey”. In:
ACM Comput. Surv. 41.3 (2009), pp. 1–58. doi: 10.1145/1541880.1541882.

[187] Hodge, V. J. and Austin, J. “A Survey of Outlier Detection Methodologies”. In:
Artificial Intelligence Review 22.2 (2004), pp. 85–126. issn: 0269-2821. doi: 10.1007/
s10462-004-4304-y.

[188] Wikipedia. Local outlier factor - Wikipedia: The Free Ecyclopedia. 2017. url: https:
//en.wikipedia.org/wiki/Local_outlier_factor (visited on 2017-07-03).

[189] Chen, L. Lecture Notes on Density-Based Outlier Detection. 2016. url: http://www.
cse.ust.hk/~leichen/courses/comp5331/lectures/LOF_Example.pdf (visited on
2017-07-03).

[190] Shahram. My first attempt with Local Outlier Factor(LOF): Identifying Density Based
Local Outliers. 2015. url: http://shahramabyari.com/ 2015/12/30/my- first-
attempt- with- local- outlier- factorlof- identifying- density- based- local-
outliers/ (visited on 2017-07-03).

[191] TU München. Declaration of Authorship. 2017. url: https://www.ent.wi.tum.de/
fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf
(visited on 2017-05-11).

197

http://text-analytics101.rxnlp.com/2014/10/computing-precision-and-recall-for.html
http://text-analytics101.rxnlp.com/2014/10/computing-precision-and-recall-for.html
https://doi.org/10.1016/j.patrec.2005.10.010
https://csem.flinders.edu.au/research/techreps/SIE07001.pdf
https://csem.flinders.edu.au/research/techreps/SIE07001.pdf
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1007/s10462-004-4304-y
https://doi.org/10.1007/s10462-004-4304-y
https://en.wikipedia.org/wiki/Local_outlier_factor
https://en.wikipedia.org/wiki/Local_outlier_factor
http://www.cse.ust.hk/~leichen/courses/comp5331/lectures/LOF_Example.pdf
http://www.cse.ust.hk/~leichen/courses/comp5331/lectures/LOF_Example.pdf
http://shahramabyari.com/2015/12/30/my-first-attempt-with-local-outlier-factorlof-identifying-density-based-local-outliers/
http://shahramabyari.com/2015/12/30/my-first-attempt-with-local-outlier-factorlof-identifying-density-based-local-outliers/
http://shahramabyari.com/2015/12/30/my-first-attempt-with-local-outlier-factorlof-identifying-density-based-local-outliers/
https://www.ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf
https://www.ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf

A Appendix

A.1 Full Machine State Definition Table

198

A Appendix

Table A.1: Full set of possible machine states.

Controllable Non-Controllable

M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 1 0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 1 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 1 0 0 0 0 0 9
0 0 0 0 0 0 0 0 0 1 0 0 0 0 10
0 0 0 0 0 0 0 0 0 0 1 0 0 0 11

0 0 0 0 0 0 0 0 0 0 0 0 0 1 12
1 0 0 0 0 0 0 0 0 0 0 0 0 1 13
0 1 0 0 0 0 0 0 0 0 0 0 0 1 14
0 0 1 0 0 0 0 0 0 0 0 0 0 1 15
0 0 0 1 0 0 0 0 0 0 0 0 0 1 16
0 0 0 0 1 0 0 0 0 0 0 0 0 1 17
0 0 0 0 0 1 0 0 0 0 0 0 0 1 18
0 0 0 0 0 0 1 0 0 0 0 0 0 1 19
0 0 0 0 0 0 0 1 0 0 0 0 0 1 20
0 0 0 0 0 0 0 0 1 0 0 0 0 1 21
0 0 0 0 0 0 0 0 0 1 0 0 0 1 22
0 0 0 0 0 0 0 0 0 0 1 0 0 1 23

199

A Appendix

Table A.1 (continuation) : Full set of possible machine states.

Controllable Non-Controllable

M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

0 0 0 0 0 0 0 0 0 0 0 0 1 0 24
1 0 0 0 0 0 0 0 0 0 0 0 1 0 25
0 1 0 0 0 0 0 0 0 0 0 0 1 0 26
0 0 1 0 0 0 0 0 0 0 0 0 1 0 27
0 0 0 1 0 0 0 0 0 0 0 0 1 0 28
0 0 0 0 1 0 0 0 0 0 0 0 1 0 29
0 0 0 0 0 1 0 0 0 0 0 0 1 0 30
0 0 0 0 0 0 1 0 0 0 0 0 1 0 31
0 0 0 0 0 0 0 1 0 0 0 0 1 0 32
0 0 0 0 0 0 0 0 1 0 0 0 1 0 33
0 0 0 0 0 0 0 0 0 1 0 0 1 0 34
0 0 0 0 0 0 0 0 0 0 1 0 1 0 35

0 0 0 0 0 0 0 0 0 0 0 0 1 1 36
1 0 0 0 0 0 0 0 0 0 0 0 1 1 37
0 1 0 0 0 0 0 0 0 0 0 0 1 1 38
0 0 1 0 0 0 0 0 0 0 0 0 1 1 39
0 0 0 1 0 0 0 0 0 0 0 0 1 1 40
0 0 0 0 1 0 0 0 0 0 0 0 1 1 41
0 0 0 0 0 1 0 0 0 0 0 0 1 1 42
0 0 0 0 0 0 1 0 0 0 0 0 1 1 43
0 0 0 0 0 0 0 1 0 0 0 0 1 1 44
0 0 0 0 0 0 0 0 1 0 0 0 1 1 45
0 0 0 0 0 0 0 0 0 1 0 0 1 1 46
0 0 0 0 0 0 0 0 0 0 1 0 1 1 47

200

A Appendix

Table A.1 (continuation) : Full set of possible machine states.

Controllable Non-Controllable

M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

0 0 0 0 0 0 0 0 0 0 0 1 0 0 48
1 0 0 0 0 0 0 0 0 0 0 1 0 0 49
0 1 0 0 0 0 0 0 0 0 0 1 0 0 50
0 0 1 0 0 0 0 0 0 0 0 1 0 0 51
0 0 0 1 0 0 0 0 0 0 0 1 0 0 52
0 0 0 0 1 0 0 0 0 0 0 1 0 0 53
0 0 0 0 0 1 0 0 0 0 0 1 0 0 54
0 0 0 0 0 0 1 0 0 0 0 1 0 0 55
0 0 0 0 0 0 0 1 0 0 0 1 0 0 56
0 0 0 0 0 0 0 0 1 0 0 1 0 0 57
0 0 0 0 0 0 0 0 0 1 0 1 0 0 58
0 0 0 0 0 0 0 0 0 0 1 1 0 0 59

0 0 0 0 0 0 0 0 0 0 0 1 0 1 60
1 0 0 0 0 0 0 0 0 0 0 1 0 1 61
0 1 0 0 0 0 0 0 0 0 0 1 0 1 62
0 0 1 0 0 0 0 0 0 0 0 1 0 1 63
0 0 0 1 0 0 0 0 0 0 0 1 0 1 64
0 0 0 0 1 0 0 0 0 0 0 1 0 1 65
0 0 0 0 0 1 0 0 0 0 0 1 0 1 66
0 0 0 0 0 0 1 0 0 0 0 1 0 1 67
0 0 0 0 0 0 0 1 0 0 0 1 0 1 68
0 0 0 0 0 0 0 0 1 0 0 1 0 1 69
0 0 0 0 0 0 0 0 0 1 0 1 0 1 70
0 0 0 0 0 0 0 0 0 0 1 1 0 1 71

201

A Appendix

Table A.1 (continuation) : Full set of possible machine states.

Controllable Non-Controllable

M
ai
n
Sp

in
dl
e

X
-A

xi
s
fo
rw

ar
d

X
-A

xi
s
ba

ck
wa

rd

Y
-A

xi
s
fo
rw

ar
d

Y
-A

xi
s
ba

ck
wa

rd

Z-
A
xi
s
fo
rw

ar
d

Z-
A
xi
s
ba

ck
wa

rd

C
-A

xi
s
fo
rw

ar
d

C
-A

xi
s
ba

ck
wa

rd

B-
A
xi
s
fo
rw

ar
d

B-
A
xi
s
ba

ck
wa

rd

M
ac
hi
ne

Lu
br
i-

ca
tio

n
Pu

m
p

O
il-
A
ir

Lu
br
i-

ca
tio

n
Pu

m
p

C
on

tr
ol

C
ab

in
et

H
ea
t
Ex

ch
an

ge
r

M
ac
hi
ne

St
at
e

0 0 0 0 0 0 0 0 0 0 0 1 1 0 72
1 0 0 0 0 0 0 0 0 0 0 1 1 0 73
0 1 0 0 0 0 0 0 0 0 0 1 1 0 74
0 0 1 0 0 0 0 0 0 0 0 1 1 0 75
0 0 0 1 0 0 0 0 0 0 0 1 1 0 76
0 0 0 0 1 0 0 0 0 0 0 1 1 0 77
0 0 0 0 0 1 0 0 0 0 0 1 1 0 78
0 0 0 0 0 0 1 0 0 0 0 1 1 0 79
0 0 0 0 0 0 0 1 0 0 0 1 1 0 80
0 0 0 0 0 0 0 0 1 0 0 1 1 0 81
0 0 0 0 0 0 0 0 0 1 0 1 1 0 82
0 0 0 0 0 0 0 0 0 0 1 1 1 0 83

0 0 0 0 0 0 0 0 0 0 0 1 1 1 84
1 0 0 0 0 0 0 0 0 0 0 1 1 1 85
0 1 0 0 0 0 0 0 0 0 0 1 1 1 86
0 0 1 0 0 0 0 0 0 0 0 1 1 1 87
0 0 0 1 0 0 0 0 0 0 0 1 1 1 88
0 0 0 0 1 0 0 0 0 0 0 1 1 1 89
0 0 0 0 0 1 0 0 0 0 0 1 1 1 90
0 0 0 0 0 0 1 0 0 0 0 1 1 1 91
0 0 0 0 0 0 0 1 0 0 0 1 1 1 92
0 0 0 0 0 0 0 0 1 0 0 1 1 1 93
0 0 0 0 0 0 0 0 0 1 0 1 1 1 94
0 0 0 0 0 0 0 0 0 0 1 1 1 1 95

202

A Appendix

A.2 Test Cycle Code for Heidenhain iTNC 530

Listing A.1: Program code of the test cycle for the DMU 100 Monoblock® without activation of
additional components.

0 BEGIN PGM Testzyklus3 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z+0
2 BLK FORM 0.2 X+0 Y+0 Z+0
3 TOOL CALL 70 Z S10000 F12000
4 L Z−1 F AUTO M91
5 L X+0 Y+0
6 M47
7 CALL LBL "Gesamt"
8 CALL LBL "Gesamt"
9 CALL LBL "Gesamt"
10 CALL LBL "Gesamt"
11 CALL LBL "Gesamt"
12 CALL LBL "Gesamt"
13 CALL LBL "Gesamt"
14 CALL LBL "Gesamt"
15 CALL LBL "Gesamt"
16 CALL LBL "Gesamt"
17 CALL LBL "Gesamt"
18 CALL LBL "Gesamt"
19 CALL LBL "Gesamt"
20 CALL LBL "Gesamt"
21 CALL LBL "Gesamt"
22 CALL LBL "Gesamt"
23 CALL LBL "Gesamt"
24 CALL LBL "Gesamt"
25 CALL LBL "Gesamt"
26 CALL LBL "Gesamt"
27 M48
28 M30
29 LBL "Gesamt"
30 CYCL DEF 9.0 VERWEILZEIT
31 CYCL DEF 9.1 V.ZEIT10
32 CALL LBL "spindle"
33 CALL LBL "spindle"
34 CALL LBL "spindle"
35 CALL LBL "spindle"
36 CALL LBL "spindle"
37 CALL LBL "xaxis"
38 CALL LBL "xaxis"
39 CALL LBL "xaxis"
40 CALL LBL "xaxis"
41 CALL LBL "xaxis"
42 CALL LBL "yaxis"
43 CALL LBL "yaxis"
44 CALL LBL "yaxis"
45 CALL LBL "yaxis"
46 CALL LBL "yaxis"
47 CALL LBL "zaxis"

203

A Appendix

48 CALL LBL "zaxis"
49 CALL LBL "zaxis"
50 CALL LBL "zaxis"
51 CALL LBL "zaxis"
52 CALL LBL "caxis"
53 CALL LBL "caxis"
54 CALL LBL "caxis"
55 CALL LBL "caxis"
56 CALL LBL "caxis"
57 CALL LBL "baxis"
58 CALL LBL "baxis"
59 CALL LBL "baxis"
60 CALL LBL "baxis"
61 CALL LBL "baxis"
62 LBL "w1"
63 CYCL DEF 9.0 VERWEILZEIT
64 CYCL DEF 9.1 V.ZEIT2
65 LBL 0
66 LBL "w2"
67 CYCL DEF 9.0 VERWEILZEIT
68 CYCL DEF 9.1 V.ZEIT20
69 LBL 0
70 LBL "spindle"
71 CALL LBL "w1"
72 M3
73 CALL LBL "w2"
74 M5
75 LBL 0
76 LBL "xaxis"
77 CALL LBL "w1"
78 L X+900 R0 F AUTO
79 CALL LBL "w1"
80 L X+0 F AUTO
81 LBL 0
82 LBL "yaxis"
83 CALL LBL "w1"
84 L Y−600 F AUTO
85 CALL LBL "w1"
86 L Y+0 F AUTO
87 LBL 0
88 LBL "zaxis"
89 CALL LBL "w1"
90 L Z+250 F AUTO
91 CALL LBL "w1"
92 L Z−1 F AUTO M91
93 LBL 0
94 LBL "caxis"
95 CALL LBL "w1"
96 L C+180 F AUTO
97 CALL LBL "w1"
98 L C+0 F AUTO
99 LBL 0
100 LBL "baxis"
101 CALL LBL "w1"

204

A Appendix

102 L B−120 F AUTO
103 CALL LBL "w1"
104 L B+0 F AUTO
105 LBL 0
106 END PGM Testzyklus3 MM

Listing A.2: Program code of the test cycle for the DMU 100 Monoblock® with activation of additional
components like the Fume Separator Motor, both Coolant Pumps and the Chip Conveyor
Drive Motor.

0 BEGIN PGM Testzyklus3 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z+0
2 BLK FORM 0.2 X+0 Y+0 Z+0
3 TOOL CALL 70 Z S10000 F12000
4 L Z−1 F AUTO M91
5 L X+0 Y+0
6 M47
7 CALL LBL "Gesamt"
8 CALL LBL "Gesamt"
9 CALL LBL "Gesamt"
10 CALL LBL "Gesamt"
11 CALL LBL "Gesamt"
12 CALL LBL "Gesamt"
13 CALL LBL "Gesamt"
14 CALL LBL "Gesamt"
15 CALL LBL "Gesamt"
16 CALL LBL "Gesamt"
17 CALL LBL "Gesamt"
18 CALL LBL "Gesamt"
19 CALL LBL "Gesamt"
20 CALL LBL "Gesamt"
21 CALL LBL "Gesamt"
22 CALL LBL "Gesamt"
23 CALL LBL "Gesamt"
24 CALL LBL "Gesamt"
25 CALL LBL "Gesamt"
26 CALL LBL "Gesamt"
27 M8
28 CALL LBL "w2"
29 M9
30 CALL LBL "w1"
31 M7
32 CALL LBL "w2"
33 M9
34 CALL LBL "w1"
35 M324
36 CALL LBL "w2"
37 M325
38 CALL LBL "w1"
39 M70
40 CALL LBL "w2"
41 M71
42 CALL LBL "w1"

205

A Appendix

43 M48
44 M30
45 LBL "Gesamt"
46 CYCL DEF 9.0 VERWEILZEIT
47 CYCL DEF 9.1 V.ZEIT10
48 CALL LBL "spindle"
49 CALL LBL "spindle"
50 CALL LBL "spindle"
51 CALL LBL "spindle"
52 CALL LBL "spindle"
53 CALL LBL "xaxis"
54 CALL LBL "xaxis"
55 CALL LBL "xaxis"
56 CALL LBL "xaxis"
57 CALL LBL "xaxis"
58 CALL LBL "yaxis"
59 CALL LBL "yaxis"
60 CALL LBL "yaxis"
61 CALL LBL "yaxis"
62 CALL LBL "yaxis"
63 CALL LBL "zaxis"
64 CALL LBL "zaxis"
65 CALL LBL "zaxis"
66 CALL LBL "zaxis"
67 CALL LBL "zaxis"
68 CALL LBL "caxis"
69 CALL LBL "caxis"
70 CALL LBL "caxis"
71 CALL LBL "caxis"
72 CALL LBL "caxis"
73 CALL LBL "baxis"
74 CALL LBL "baxis"
75 CALL LBL "baxis"
76 CALL LBL "baxis"
77 CALL LBL "baxis"
78 LBL "w1"
79 CYCL DEF 9.0 VERWEILZEIT
80 CYCL DEF 9.1 V.ZEIT2
81 LBL 0
82 LBL "w2"
83 CYCL DEF 9.0 VERWEILZEIT
84 CYCL DEF 9.1 V.ZEIT20
85 LBL 0
86 LBL "spindle"
87 CALL LBL "w1"
88 M3
89 CALL LBL "w2"
90 M5
91 LBL 0
92 LBL "xaxis"
93 CALL LBL "w1"
94 L X+900 R0 F AUTO
95 CALL LBL "w1"
96 L X+0 F AUTO

206

A Appendix

97 LBL 0
98 LBL "yaxis"
99 CALL LBL "w1"
100 L Y−600 F AUTO
101 CALL LBL "w1"
102 L Y+0 F AUTO
103 LBL 0
104 LBL "zaxis"
105 CALL LBL "w1"
106 L Z+250 F AUTO
107 CALL LBL "w1"
108 L Z−1 F AUTO M91
109 LBL 0
110 LBL "caxis"
111 CALL LBL "w1"
112 L C+180 F AUTO
113 CALL LBL "w1"
114 L C+0 F AUTO
115 LBL 0
116 LBL "baxis"
117 CALL LBL "w1"
118 L B−120 F AUTO
119 CALL LBL "w1"
120 L B+0 F AUTO
121 LBL 0
122 END PGM Testzyklus3 MM

207

A Appendix

A.3 Results of Test Cycle Runs 1 and 2

A.3.1 Test Cycle Run 1

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

20

40

60

C
u
rr

e
n

t
I

/
A

L1

L2

L3

Figure A.1: Measured signal of the current flow within the three phases of the DMU main power line
during the complete first test cycle run.

208

A Appendix

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

C
u
rr

e
n

t
I

/
A

L1

L2

L3

(a) Current consumption of the cooling unit.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

10

12

C
u

rr
e

n
t

I
/

A

L1

(b) Current consumption of the control cabinet heat exchanger.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

0.1

0.2

0.3

0.4

0.5

C
u
rr

e
n

t
I

/
A

Lubrication Pumps

Blower Air

Oil-Air

Machine

(c) Current consumption of the blower air lubraction pump (L1), the oil-air lubrication pump (L2) and
the machine lubrication pump (L3).

Figure A.2: Measured current consumptions of the different machine components during the first test
cycle run.

209

A Appendix

A.3.2 Test Cycle Run 2

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

20

40

60

C
u
rr

e
n

t
I

/
A

L1

L2

L3

Figure A.3: Measured signal of the current flow within the three phases of the DMU main power line
during the complete second test cycle run.

210

A Appendix

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

C
u
rr

e
n

t
I

/
A

L1

L2

L3

(a) Current consumption of the cooling unit.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

2

4

6

8

10

12

C
u

rr
e

n
t

I
/

A

L1

(b) Current consumption of the control cabinet heat exchanger.

0.5 1 1.5 2 2.5 3 3.5

Data Sample 105

0

0.1

0.2

0.3

0.4

0.5

C
u

rr
e

n
t

I
/

A

Blower Air

Oil-Air

Machine

(c) Current consumption of the blower air lubraction pump (L1), the oil-air lubrication pump (L2) and
the machine lubrication pump (L3).

Figure A.4: Measured current consumptions of the different machine components during the second
test cycle run.

211

A Appendix

A.4 Distance Measures of Templates for Automatic Segmentation

212

A Appendix

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n
c
e

 M
e
a

s
u
re

(a) Distance measure of the Y-axis forward and backward templates.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n

c
e

 M
e
a

s
u

re

(b) Distance measure of the Z-axis forward template.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n

c
e

 M
e

a
s
u
re

(c) Distance measure of the Z-axis backward template.

Figure A.5: Distance measures of different patterns as function of shifting lag expressed in data
samples of measurement data.

213

A Appendix

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n
c
e

 M
e
a

s
u
re

(a) Distance measure of the C-axis forward and backward templates.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n

c
e

 M
e
a

s
u

re

(b) Distance measure of the B-axis forward template.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Data Sample

0

10

20

30

40

50

D
is

ta
n

c
e

 M
e

a
s
u
re

(c) Distance measure of the B-axis backward template.

Figure A.5 (continuation) : Distance measures of different patterns as function of shifting lag
expressed in data samples of measurement data.

214

A Appendix

A.5 Resulting Averaged Templates from Accurate Shape Averaging

215

A Appendix

100 200 300 400 500 600 700 800 900 1000 1100

Data Sample

0

10

20

30

40

50

60

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 1.

100 200 300 400 500 600 700 800 900 1000 1100

Data Sample

8

8.5

9

9.5

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Close up of averaged template for class 1.

Figure A.6: Resulting averaged template of the accurate shape averaging algorithm for sequences of
class 1, in which the main spindle is activated. Gray lines represent all 100 individual
sequences from the second test cycle run, which were used for calculating the averaged
sequence, shown as green and red lines with cross markers. The red line corresponds to
the averaging result of a DTW with a Sakoe-Chiba band as global constrained for the
warping path.

216

A Appendix

20 40 60 80 100 120 140 160 180 200 220

Data Sample

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 2, the X-axis forward movement.

20 40 60 80 100 120 140 160 180 200 220

Data Sample

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Averaged template for class 3, the X-axis backward movement.

Figure A.7: Resulting averaged templates of the accurate shape averaging algorithm for sequences of
classes 2 and 3, in which the X-axis moves forward and backward. Gray lines represent all
100 individual sequences from the second test cycle run, which were used for calculating
the averaged sequence, shown as green and red lines with cross markers. The red
line corresponds to the averaging result of a DTW with a Sakoe-Chiba band as global
constrained for the warping path.

217

A Appendix

20 40 60 80 100 120

Data Sample

7

8

9

10

11

12

13

14

15

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 6, the Z-axis forward movement.

20 40 60 80 100 120

Data Sample

4.5

5

5.5

6

6.5

7

7.5

8

8.5

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Averaged template for class 7, the Z-axis backward movement.

Figure A.8: Resulting averaged templates of the accurate shape averaging algorithm for sequences of
classes 6 and 7, in which the Z-axis moves forward and backward. Gray lines represent all
100 individual sequences from the second test cycle run, which were used for calculating
the averaged sequence, shown as green and red lines with cross markers. The red
line corresponds to the averaging result of a DTW with a Sakoe-Chiba band as global
constrained for the warping path.

218

A Appendix

10 20 30 40 50 60 70 80

Data Sample

6

7

8

9

10

11

12

13

14

15

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 8, the C-axis forward movement.

10 20 30 40 50 60 70 80

Data Sample

6

7

8

9

10

11

12

13

14

15

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Averaged template for class 9, the C-axis forward movement.

Figure A.9: Resulting averaged templates of the accurate shape averaging algorithm for sequences of
classes 8 and 9, in which the C-axis moves forward and backward. Gray lines represent all
100 individual sequences from the second test cycle run, which were used for calculating
the averaged sequence, shown as green and red lines with cross markers. The red
line corresponds to the averaging result of a DTW with a Sakoe-Chiba band as global
constrained for the warping path.

219

A Appendix

5 10 15 20 25 30 35 40 45 50 55 60

Data Sample

6

7

8

9

10

11

12

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(a) Averaged template for class 10, the B-axis forward movement.

5 10 15 20 25 30 35 40 45 50 55

Data Sample

6

7

8

9

10

11

12

13

C
u

rr
e

n
t

I
/

A

Average Template (Unbounded DTW)

Average Template (Bounded DTW)

Individual Segments

(b) Averaged template for class 11, the B-axis forward movement.

Figure A.10: Resulting averaged templates of the accurate shape averaging algorithm for sequences
of classes 10 and 11, in which the B-axis moves forward and backward. Gray lines
represent all 100 individual sequences from the second test cycle run, which were used
for calculating the averaged sequence, shown as green and red lines with cross markers.
The red line corresponds to the averaging result of a DTW with a Sakoe-Chiba band
as global constrained for the warping path. Remarkable in this case is the fact that
bounding of DTW has no effect on the averaging result.

220

A Appendix

A.6 Confusion Matrices for Feature-Based Classifiers

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

7

86

0

0

0

0

0

0

0

0

0

0

93

14

0

0

0

0

0

0

0

0

14

72

0

0

0

0

0

0

0

0

0

0

86

28

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

98

0

0

0

0

0

0

0

0

0

8

100

0

0

0

0

0

0

0

0

0

0

92

0

0

0

0

0

0

0

0

0

0

100

0

0

2

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.11: Confusion matrix for the decision tree classifier.

221

A Appendix

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

2

91

0

0

0

0

0

0

0

0

0

0

97

8

0

0

0

0

0

0

0

0

18

84

0

0

0

0

0

0

0

0

0

0

82

16

1

1

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

3

99

0

0

0

0

0

0

0

0

0

0

97

1

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.12: Confusion matrix for the random forest classifier.

222

A Appendix

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

3

67

0

0

0

0

0

0

0

0

3

0

90

31

0

0

0

0

0

0

0

0

34

71

0

2

0

0

0

0

0

0

0

0

63

29

7

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

6

95

0

0

0

0

0

0

0

0

0

0

94

5

0

0

0

0

0

0

0

0

2

100

0

0

0

0

0

0

0

0

0

0

98

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.13: Confusion matrix for the AdaBoost classifier.

223

A Appendix

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

3

86

0

0

0

0

0

0

0

0

4

0

96

13

0

0

0

0

0

0

0

0

17

82

0

0

0

0

0

0

0

0

0

0

79

18

1

1

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

43

99

0

0

0

0

0

0

0

0

0

0

57

1

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.14: Confusion matrix for the support vector machine.

224

A Appendix

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

34

95

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

100

66

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

5

49

0

0

0

0

0

0

0

0

0

0

95

51

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.15: Confusion matrix for the stochastic gradient descent classifier.

225

A Appendix

0

0

0

0

0

0

0

0

0

0

0

1100

0

0

84

100

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

16

53

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

100

84

47

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

0

0

0

93

0

0

0

0

0

0

0

0

0

0

100

7

0

0

0

0

0

0

0

0

0

0

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Classes

Tr
ue

C
la
ss
es

Figure A.16: Confusion matrix for the naive bayes classifier.

226

A Appendix

A.7 Matlab Source Codes

A.7.1 Label Assistant GUI

Listing A.3: Matlab source code of the graphical user interface for the assistant software used for
manual measurement data segmentation and labelling.

1 function varargout = label_assistant_gui(varargin)
2 % LABEL_ASSISTANT_GUI MATLAB code for label_assistant_gui.fig
3 % LABEL_ASSISTANT_GUI, by itself, creates a new LABEL_ASSISTANT_GUI or raises the existing
4 % singleton*.
5 %
6 % H = LABEL_ASSISTANT_GUI returns the handle to a new LABEL_ASSISTANT_GUI or the handle to
7 % the existing singleton*.
8 %
9 % LABEL_ASSISTANT_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
10 % function named CALLBACK in LABEL_ASSISTANT_GUI.M with the given input arguments.
11 %
12 % LABEL_ASSISTANT_GUI('Property','Value',...) creates a new LABEL_ASSISTANT_GUI or raises

the
13 % existing singleton*. Starting from the left, property value pairs are
14 % applied to the GUI before label_assistant_gui_OpeningFcn gets called. An
15 % unrecognized property name or invalid value makes property application
16 % stop. All inputs are passed to label_assistant_gui_OpeningFcn via varargin.
17 %
18 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
19 % instance to run (singleton)".
20 %
21 % See also: GUIDE, GUIDATA, GUIHANDLES
22
23 % Edit the above text to modify the response to help label_assistant_gui
24
25 % Last Modified by GUIDE v2.5 16−Apr−2017 13:52:33
26
27 % Begin initialization code − DO NOT EDIT
28 gui_Singleton = 1;
29 gui_State = struct('gui_Name', mfilename, ...
30 'gui_Singleton', gui_Singleton, ...
31 'gui_OpeningFcn', @label_assistant_gui_OpeningFcn, ...
32 'gui_OutputFcn', @label_assistant_gui_OutputFcn, ...
33 'gui_LayoutFcn', [] , ...
34 'gui_Callback', []);
35 if nargin ischar(varargin{1})
36 gui_State.gui_Callback = str2func(varargin{1});
37 end
38
39 if nargout
40 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
41 else
42 gui_mainfcn(gui_State, varargin{:});
43 end
44 % End initialization code − DO NOT EDIT
45

227

A Appendix

46
47 % −−− Executes just before label_assistant_gui is made visible.
48 function label_assistant_gui_OpeningFcn(hObject, eventdata, handles, varargin)
49 % This function has no output args, see OutputFcn.
50 % hObject handle to figure
51 % eventdata reserved − to be defined in a future version of MATLAB
52 % handles structure with handles and user data (see GUIDATA)
53 % varargin command line arguments to label_assistant_gui (see VARARGIN)
54
55 % counter variable
56 handles.numcuts = 1;
57
58 % cuts
59 handles.cuts = [];
60
61 % line object handle for lines indicating cuts
62 handles.cutLines1 = −1;
63
64 % inital content of the click history listbox
65 handles.clickedHistory = {};
66
67 % clear table data
68 handles.dataset = [];
69 set(handles.OutputTable,'Data',handles.dataset);
70
71 % read data from csv files
72 handles.dataset_dmu_strom_l1 = csvread('../dataset_dmu_strom_l1.csv');
73 handles.dataset_dmu_strom_l2 = csvread('../dataset_dmu_strom_l2.csv');
74 handles.dataset_dmu_strom_l3 = csvread('../dataset_dmu_strom_l3.csv');
75 handles.dataset_schaltschrank_kuehlung_strom_l1 = csvread('../

dataset_schaltschrank_kuehlung_strom_l1.csv');
76 handles.dataset_schmieroelpumpe_blasluft_strom_l1 = csvread('../

dataset_schmieroelpumpe_blasluft_strom_l1.csv');
77 handles.dataset_schmieroelpumpe_oel_luft_strom_l1 = csvread('../

dataset_schmieroelpumpe_oel_luft_strom_l1.csv');
78 handles.dataset_schmieroelpumpe_maschine_strom_l1 = csvread('../

dataset_schmieroelpumpe_maschine_strom_l1.csv');
79
80 % drop last samples (only one or two) of too long vector
81 lmin = min([length(handles.dataset_dmu_strom_l1(:,2)),...
82 length(handles.dataset_dmu_strom_l2(:,2)),...
83 length(handles.dataset_dmu_strom_l3(:,2)),...
84 length(handles.dataset_schaltschrank_kuehlung_strom_l1(:,2)),...
85 length(handles.dataset_schmieroelpumpe_blasluft_strom_l1(:,2)),...
86 length(handles.dataset_schmieroelpumpe_oel_luft_strom_l1(:,2)),...
87 length(handles.dataset_schmieroelpumpe_maschine_strom_l1(:,2))]);
88
89 handles.dataset_dmu_strom_l1 = handles.dataset_dmu_strom_l1(1:lmin,2);
90 handles.dataset_dmu_strom_l2 = handles.dataset_dmu_strom_l2(1:lmin,2);
91 handles.dataset_dmu_strom_l3 = handles.dataset_dmu_strom_l3(1:lmin,2);
92 handles.dataset_schaltschrank_kuehlung_strom_l1 = handles.

dataset_schaltschrank_kuehlung_strom_l1(1:lmin,2);
93 handles.dataset_schmieroelpumpe_blasluft_strom_l1 = handles.

dataset_schmieroelpumpe_blasluft_strom_l1(1:lmin,2);

228

A Appendix

94 handles.dataset_schmieroelpumpe_oel_luft_strom_l1 = handles.
dataset_schmieroelpumpe_oel_luft_strom_l1(1:lmin,2);

95 handles.dataset_schmieroelpumpe_maschine_strom_l1 = handles.
dataset_schmieroelpumpe_maschine_strom_l1(1:lmin,2);

96
97 % plot dmu main
98 axes(handles.axes1);
99 plot(handles.dataset_dmu_strom_l1);
100 hold on;
101 plot(handles.dataset_dmu_strom_l2);
102 plot(handles.dataset_dmu_strom_l3);
103 title('DMU Main');
104 legend('L1','L2','L3');
105 grid on;
106 %ylim([−inf, inf]);
107 ylim([0, 12]);
108
109 % plot control cabinet heat exchanger
110 axes(handles.axes2);
111 plot(handles.dataset_schaltschrank_kuehlung_strom_l1);
112 hold on;
113 title('Control Cabinet Heat Exchanger');
114 legend('L1');
115 grid on;
116 %ylim([−inf, inf]);
117 ylim([0, 3]);
118
119 % plot lubrication pumps
120 axes(handles.axes3);
121 plot(handles.dataset_schmieroelpumpe_blasluft_strom_l1);
122 hold on;
123 plot(handles.dataset_schmieroelpumpe_oel_luft_strom_l1);
124 plot(handles.dataset_schmieroelpumpe_maschine_strom_l1);
125 title('Lubrication Pumps');
126 legend('Blower Air','Oil−Air','Machine');
127 grid on;
128 %ylim([−inf, inf]);
129 ylim([0, 0.5]);
130
131 % link axes
132 linkaxes([handles.axes1,handles.axes2,handles.axes3],'x');
133 xlim([0, 3000]);
134
135 % set text update function for data cursor
136 handles.dcm = datacursormode(handles.figure1);
137 handles.dcm.UpdateFcn = {@TextCursorCallback,handles};
138
139 % define machine states
140 handles.classes = (0:95)';
141 handles.component_states = [...
142 0,0,0,0,0,0,0,0,0,0,0,0,0,0;...
143 1,0,0,0,0,0,0,0,0,0,0,0,0,0;...
144 0,1,0,0,0,0,0,0,0,0,0,0,0,0;...
145 0,0,1,0,0,0,0,0,0,0,0,0,0,0;...

229

A Appendix

146 0,0,0,1,0,0,0,0,0,0,0,0,0,0;...
147 0,0,0,0,1,0,0,0,0,0,0,0,0,0;...
148 0,0,0,0,0,1,0,0,0,0,0,0,0,0;...
149 0,0,0,0,0,0,1,0,0,0,0,0,0,0;...
150 0,0,0,0,0,0,0,1,0,0,0,0,0,0;...
151 0,0,0,0,0,0,0,0,1,0,0,0,0,0;...
152 0,0,0,0,0,0,0,0,0,1,0,0,0,0;...
153 0,0,0,0,0,0,0,0,0,0,1,0,0,0;...
154 0,0,0,0,0,0,0,0,0,0,0,0,0,1;...
155 1,0,0,0,0,0,0,0,0,0,0,0,0,1;...
156 0,1,0,0,0,0,0,0,0,0,0,0,0,1;...
157 0,0,1,0,0,0,0,0,0,0,0,0,0,1;...
158 0,0,0,1,0,0,0,0,0,0,0,0,0,1;...
159 0,0,0,0,1,0,0,0,0,0,0,0,0,1;...
160 0,0,0,0,0,1,0,0,0,0,0,0,0,1;...
161 0,0,0,0,0,0,1,0,0,0,0,0,0,1;...
162 0,0,0,0,0,0,0,1,0,0,0,0,0,1;...
163 0,0,0,0,0,0,0,0,1,0,0,0,0,1;...
164 0,0,0,0,0,0,0,0,0,1,0,0,0,1;...
165 0,0,0,0,0,0,0,0,0,0,1,0,0,1;...
166 0,0,0,0,0,0,0,0,0,0,0,0,1,0;...
167 1,0,0,0,0,0,0,0,0,0,0,0,1,0;...
168 0,1,0,0,0,0,0,0,0,0,0,0,1,0;...
169 0,0,1,0,0,0,0,0,0,0,0,0,1,0;...
170 0,0,0,1,0,0,0,0,0,0,0,0,1,0;...
171 0,0,0,0,1,0,0,0,0,0,0,0,1,0;...
172 0,0,0,0,0,1,0,0,0,0,0,0,1,0;...
173 0,0,0,0,0,0,1,0,0,0,0,0,1,0;...
174 0,0,0,0,0,0,0,1,0,0,0,0,1,0;...
175 0,0,0,0,0,0,0,0,1,0,0,0,1,0;...
176 0,0,0,0,0,0,0,0,0,1,0,0,1,0;...
177 0,0,0,0,0,0,0,0,0,0,1,0,1,0;...
178 0,0,0,0,0,0,0,0,0,0,0,0,1,1;...
179 1,0,0,0,0,0,0,0,0,0,0,0,1,1;...
180 0,1,0,0,0,0,0,0,0,0,0,0,1,1;...
181 0,0,1,0,0,0,0,0,0,0,0,0,1,1;...
182 0,0,0,1,0,0,0,0,0,0,0,0,1,1;...
183 0,0,0,0,1,0,0,0,0,0,0,0,1,1;...
184 0,0,0,0,0,1,0,0,0,0,0,0,1,1;...
185 0,0,0,0,0,0,1,0,0,0,0,0,1,1;...
186 0,0,0,0,0,0,0,1,0,0,0,0,1,1;...
187 0,0,0,0,0,0,0,0,1,0,0,0,1,1;...
188 0,0,0,0,0,0,0,0,0,1,0,0,1,1;...
189 0,0,0,0,0,0,0,0,0,0,1,0,1,1;...
190 0,0,0,0,0,0,0,0,0,0,0,1,0,0;...
191 1,0,0,0,0,0,0,0,0,0,0,1,0,0;...
192 0,1,0,0,0,0,0,0,0,0,0,1,0,0;...
193 0,0,1,0,0,0,0,0,0,0,0,1,0,0;...
194 0,0,0,1,0,0,0,0,0,0,0,1,0,0;...
195 0,0,0,0,1,0,0,0,0,0,0,1,0,0;...
196 0,0,0,0,0,1,0,0,0,0,0,1,0,0;...
197 0,0,0,0,0,0,1,0,0,0,0,1,0,0;...
198 0,0,0,0,0,0,0,1,0,0,0,1,0,0;...
199 0,0,0,0,0,0,0,0,1,0,0,1,0,0;...

230

A Appendix

200 0,0,0,0,0,0,0,0,0,1,0,1,0,0;...
201 0,0,0,0,0,0,0,0,0,0,1,1,0,0;...
202 0,0,0,0,0,0,0,0,0,0,0,1,0,1;...
203 1,0,0,0,0,0,0,0,0,0,0,1,0,1;...
204 0,1,0,0,0,0,0,0,0,0,0,1,0,1;...
205 0,0,1,0,0,0,0,0,0,0,0,1,0,1;...
206 0,0,0,1,0,0,0,0,0,0,0,1,0,1;...
207 0,0,0,0,1,0,0,0,0,0,0,1,0,1;...
208 0,0,0,0,0,1,0,0,0,0,0,1,0,1;...
209 0,0,0,0,0,0,1,0,0,0,0,1,0,1;...
210 0,0,0,0,0,0,0,1,0,0,0,1,0,1;...
211 0,0,0,0,0,0,0,0,1,0,0,1,0,1;...
212 0,0,0,0,0,0,0,0,0,1,0,1,0,1;...
213 0,0,0,0,0,0,0,0,0,0,1,1,0,1;...
214 0,0,0,0,0,0,0,0,0,0,0,1,1,0;...
215 1,0,0,0,0,0,0,0,0,0,0,1,1,0;...
216 0,1,0,0,0,0,0,0,0,0,0,1,1,0;...
217 0,0,1,0,0,0,0,0,0,0,0,1,1,0;...
218 0,0,0,1,0,0,0,0,0,0,0,1,1,0;...
219 0,0,0,0,1,0,0,0,0,0,0,1,1,0;...
220 0,0,0,0,0,1,0,0,0,0,0,1,1,0;...
221 0,0,0,0,0,0,1,0,0,0,0,1,1,0;...
222 0,0,0,0,0,0,0,1,0,0,0,1,1,0;...
223 0,0,0,0,0,0,0,0,1,0,0,1,1,0;...
224 0,0,0,0,0,0,0,0,0,1,0,1,1,0;...
225 0,0,0,0,0,0,0,0,0,0,1,1,1,0;...
226 0,0,0,0,0,0,0,0,0,0,0,1,1,1;...
227 1,0,0,0,0,0,0,0,0,0,0,1,1,1;...
228 0,1,0,0,0,0,0,0,0,0,0,1,1,1;...
229 0,0,1,0,0,0,0,0,0,0,0,1,1,1;...
230 0,0,0,1,0,0,0,0,0,0,0,1,1,1;...
231 0,0,0,0,1,0,0,0,0,0,0,1,1,1;...
232 0,0,0,0,0,1,0,0,0,0,0,1,1,1;...
233 0,0,0,0,0,0,1,0,0,0,0,1,1,1;...
234 0,0,0,0,0,0,0,1,0,0,0,1,1,1;...
235 0,0,0,0,0,0,0,0,1,0,0,1,1,1;...
236 0,0,0,0,0,0,0,0,0,1,0,1,1,1;...
237 0,0,0,0,0,0,0,0,0,0,1,1,1,1
238];
239
240 % Choose default command line output for label_assistant_gui
241 handles.output = hObject;
242
243 % Update handles structure
244 guidata(hObject, handles);
245
246 % UIWAIT makes label_assistant_gui wait for user response (see UIRESUME)
247 % uiwait(handles.figure1);
248
249
250 % −−− Outputs from this function are returned to the command line.
251 function varargout = label_assistant_gui_OutputFcn(hObject, eventdata, handles)
252 % varargout cell array for returning output args (see VARARGOUT);
253 % hObject handle to figure

231

A Appendix

254 % eventdata reserved − to be defined in a future version of MATLAB
255 % handles structure with handles and user data (see GUIDATA)
256
257 % Get default command line output from handles structure
258 varargout{1} = handles.output;
259
260
261 % −−− Executes on button press in getCutIndex.
262 function getCutIndex_Callback(hObject, eventdata, handles)
263 % hObject handle to getCutIndex (see GCBO)
264 % eventdata reserved − to be defined in a future version of MATLAB
265 % handles structure with handles and user data (see GUIDATA)
266
267 % get data from data cursor
268 handles.infoStruct = getCursorInfo(handles.dcm);
269
270 % store data into dataset array
271 if ~isempty(handles.infoStruct)
272
273 % get data from nominal checkbox
274 handles.nominalCut = get(handles.nominalCheckBox,'Value');
275
276 % store data into cuts array
277 handles.cuts(handles.numcuts,:) = [handles.infoStruct.DataIndex, handles.nominalCut];
278
279 % reset nominal checkbox after each click
280 set(handles.nominalCheckBox,'Value',1);
281
282 % get current class from selection of state selection checkboxes and radios
283 labelset = zeros(1,14);
284 labelset(1) = get(handles.MainSpindleRadiobutton,'Value');
285 labelset(2) = get(handles.XAxisForwardRadiobutton,'Value');
286 labelset(3) = get(handles.XAxisBackwardRadiobutton,'Value');
287 labelset(4) = get(handles.YAxisForwardRadiobutton,'Value');
288 labelset(5) = get(handles.YAxisBackwardRadiobutton,'Value');
289 labelset(6) = get(handles.ZAxisForwardRadiobutton,'Value');
290 labelset(7) = get(handles.ZAxisBackwardRadiobutton,'Value');
291 labelset(8) = get(handles.BAxisForwardRadiobutton,'Value');
292 labelset(9) = get(handles.BAxisBackwardRadiobutton,'Value');
293 labelset(10) = get(handles.CAxisForwardRadiobutton,'Value');
294 labelset(11) = get(handles.CAxisBackwardRadiobutton,'Value');
295 labelset(12) = get(handles.MachineLubricationPumpCheckbox,'Value');
296 labelset(13) = get(handles.OilAirLubricationPumpCheckbox,'Value');
297 labelset(14) = get(handles.ControlCabinetHeatExchangerCheckbox,'Value');
298
299 % caculate classs for each sample via table lookup
300 for i = 1:length(handles.classes(:,1))
301 if labelset(1,:) == handles.component_states(i,:)
302 handles.targets(handles.numcuts,1) = handles.classes(i);
303 end
304 end
305
306 % increment iteration variable
307 handles.numcuts = handles.numcuts + 1;

232

A Appendix

308
309 % update dataset
310 handles.dataset = [handles.cuts, handles.targets];
311
312 % sort data automatically
313 [~,ind] = sort(handles.dataset(:,1),'descend');
314 handles.dataset = handles.dataset(ind,:);
315
316 % update table and scroll to table bottom
317 set(handles.OutputTable,'Data',handles.dataset);
318
319 % add lines to plots
320 xl = xlim(handles.axes1);
321 if handles.cutLines1 ~= −1
322 delete(handles.cutLines1);
323 delete(handles.cutLines2);
324 delete(handles.cutLines3);
325 end
326 yl1 = ylim(handles.axes1);
327 yl2 = ylim(handles.axes2);
328 yl3 = ylim(handles.axes3);
329 tx = [handles.cuts(:,1).';handles.cuts(:,1).';nan(1,length(handles.cuts(:,1)))];
330 ty1 = [repmat(yl1(1),length(handles.cuts(:,1)),1).';repmat(yl1(2),length(handles.cuts(:,1))

,1).';nan(1,length(handles.cuts(:,1)))];
331 ty2 = [repmat(yl2(1),length(handles.cuts(:,1)),1).';repmat(yl2(2),length(handles.cuts(:,1))

,1).';nan(1,length(handles.cuts(:,1)))];
332 ty3 = [repmat(yl3(1),length(handles.cuts(:,1)),1).';repmat(yl3(2),length(handles.cuts(:,1))

,1).';nan(1,length(handles.cuts(:,1)))];
333 handles.cutLines1 = plot(handles.axes1,tx(:),ty1(:),'k:');
334 handles.cutLines2 = plot(handles.axes2,tx(:),ty2(:),'k:');
335 handles.cutLines3 = plot(handles.axes3,tx(:),ty3(:),'k:');
336 xlim(handles.axes1,xl);
337 xlim(handles.axes2,xl);
338 xlim(handles.axes3,xl);
339
340 % move viewport to right (shift x axis left) so that latest cursor is on left axes border
341 xl = xlim(handles.axes1);
342 xl_dif = xl(2)−xl(1);
343 xl = [handles.dataset(1,1)−200, handles.dataset(1,1)−200+xl_dif];
344 xlim(handles.axes1,xl);
345 xlim(handles.axes2,xl);
346 xlim(handles.axes3,xl);
347
348 % disable get sample button
349 set(handles.getCutIndex,'Enable','off');
350
351 % update click history
352 clicked_index = find(labelset(1:11));
353 if isempty(clicked_index)
354 clicked_index = −1;
355 end
356 clickHistoryOld = handles.clickedHistory;
357 if length(handles.clickedHistory) > 1
358 handles.clickedHistory{2} = clickHistoryOld{1};

233

A Appendix

359 handles.clickedHistory{3} = clickHistoryOld{2};
360 elseif length(handles.clickedHistory) == 1
361 handles.clickedHistory{2} = clickHistoryOld{1};
362 end
363 switch clicked_index
364 case 1
365 handles.clickedHistory{1} = 'Main Spindle';
366 case 2
367 handles.clickedHistory{1} = 'X Axis Forward';
368 case 3
369 handles.clickedHistory{1} = 'X Axis Backward';
370 case 4
371 handles.clickedHistory{1} = 'Y Axis Forward';
372 case 5
373 handles.clickedHistory{1} = 'Y Axis Backward';
374 case 6
375 handles.clickedHistory{1} = 'Z Axis Forward';
376 case 7
377 handles.clickedHistory{1} = 'Z Axis Backward';
378 case 8
379 handles.clickedHistory{1} = 'B Axis Forward';
380 case 9
381 handles.clickedHistory{1} = 'B Axis Backward';
382 case 10
383 handles.clickedHistory{1} = 'C Axis Forward';
384 case 11
385 handles.clickedHistory{1} = 'C Axis Backward';
386 case −1
387 handles.clickedHistory{1} = 'None';
388 end
389 set(handles.listbox3,'String',handles.clickedHistory);
390
391 end
392
393 % Update handles structure
394 guidata(hObject, handles);
395
396
397 % −−− Executes when entered data in editable cell(s) in OutputTable.
398 function OutputTable_CellEditCallback(hObject, eventdata, handles)
399 % hObject handle to OutputTable (see GCBO)
400 % eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE)
401 % Indices: row and column indices of the cell(s) edited
402 % PreviousData: previous data for the cell(s) edited
403 % EditData: string(s) entered by the user
404 % NewData: EditData or its converted form set on the Data property. Empty if Data was not

changed
405 % Error: error string when failed to convert EditData to appropriate value for Data
406 % handles structure with handles and user data (see GUIDATA)
407
408 % get dataset from table whenever user makes an edit
409 handles.dataset = get(handles.OutputTable,'data');
410
411 % update individual data vectors

234

A Appendix

412 handles.cuts = handles.dataset(:,1:2);
413 handles.targets = handles.dataset(:,3);
414
415 % redraw lines on plots
416 xl = xlim(handles.axes1);
417 if handles.cutLines1 ~= −1
418 delete(handles.cutLines1);
419 delete(handles.cutLines2);
420 delete(handles.cutLines3);
421 end
422 yl1 = ylim(handles.axes1);
423 yl2 = ylim(handles.axes2);
424 yl3 = ylim(handles.axes3);
425 tx = [handles.cuts(:,1).';handles.cuts(:,1).';nan(1,length(handles.cuts(:,1)))];
426 ty1 = [repmat(yl1(1),length(handles.cuts(:,1)),1).';repmat(yl1(2),length(handles.cuts(:,1)),1)

.';nan(1,length(handles.cuts(:,1)))];
427 ty2 = [repmat(yl2(1),length(handles.cuts(:,1)),1).';repmat(yl2(2),length(handles.cuts(:,1)),1)

.';nan(1,length(handles.cuts(:,1)))];
428 ty3 = [repmat(yl3(1),length(handles.cuts(:,1)),1).';repmat(yl3(2),length(handles.cuts(:,1)),1)

.';nan(1,length(handles.cuts(:,1)))];
429 handles.cutLines1 = plot(handles.axes1,tx(:),ty1(:),'k:');
430 handles.cutLines2 = plot(handles.axes2,tx(:),ty2(:),'k:');
431 handles.cutLines3 = plot(handles.axes3,tx(:),ty3(:),'k:');
432 xlim(handles.axes1,xl);
433 xlim(handles.axes2,xl);
434 xlim(handles.axes3,xl);
435
436 % Update handles structure
437 guidata(hObject, handles);
438
439
440 % −−− Executes on button press in ClearDatasetButton.
441 function ClearDatasetButton_Callback(hObject, eventdata, handles)
442 % hObject handle to ClearDatasetButton (see GCBO)
443 % eventdata reserved − to be defined in a future version of MATLAB
444 % handles structure with handles and user data (see GUIDATA)
445
446 % show question box for asking the user if he is sure to delete dataset
447 dlgTitle = 'Delete Dataset';
448 dlgQuestion = 'Do you really want to delete the entire dataset? The dataset can not be restored

.';
449 choice = questdlg(dlgQuestion,dlgTitle,'Yes','No','No');
450
451 % if choice was yes, delete entire dataset
452 if strcmp(choice,'Yes')
453 handles.dataset = [];
454 handles.cuts = [];
455 handles.targets = [];
456 end
457
458 % counter variable
459 handles.numcuts = 1;
460
461 % clear table

235

A Appendix

462 set(handles.OutputTable,'Data',handles.dataset);
463
464 % delete cut lines from plots
465 if handles.cutLines1 ~= −1
466 delete(handles.cutLines1);
467 delete(handles.cutLines2);
468 delete(handles.cutLines3);
469 end
470
471 % delete entries in click history listbox
472 handles.clickedHistory = {};
473 set(handles.listbox3,'String',handles.clickedHistory);
474
475 % Update handles structure
476 guidata(hObject, handles);
477
478
479 % −−− Executes on button press in DeleteRowButton.
480 function DeleteRowButton_Callback(hObject, eventdata, handles)
481 % hObject handle to DeleteRowButton (see GCBO)
482 % eventdata reserved − to be defined in a future version of MATLAB
483 % handles structure with handles and user data (see GUIDATA)
484
485 % show question box for asking the user if he is sure to delete selected rows
486 dlgTitle = 'Delete Selected Rows';
487 dlgQuestion = 'Do you really want to delete any selected rows? The rows can not be restored.';
488 choice = questdlg(dlgQuestion,dlgTitle,'Yes','No','No');
489
490 % if choice was yes, delete selected rows
491 if strcmp(choice,'Yes')
492 % delete rows
493 handles.dataset(handles.rows,:) = [];
494
495 % update counter variable
496 handles.numcuts = handles.numcuts−length(handles.rows);
497
498 % update individual data vectors
499 handles.cuts = handles.dataset(:,1:2);
500 handles.targets = handles.dataset(:,3);
501
502 % update table
503 set(handles.OutputTable,'Data',handles.dataset);
504
505 % redraw lines on plots
506 xl = xlim(handles.axes1);
507 if handles.cutLines1 ~= −1
508 delete(handles.cutLines1);
509 delete(handles.cutLines2);
510 delete(handles.cutLines3);
511 end
512 yl1 = ylim(handles.axes1);
513 yl2 = ylim(handles.axes2);
514 yl3 = ylim(handles.axes3);
515 tx = [handles.cuts(:,1).';handles.cuts(:,1).';nan(1,length(handles.cuts(:,1)))];

236

A Appendix

516 ty1 = [repmat(yl1(1),length(handles.cuts(:,1)),1).';repmat(yl1(2),length(handles.cuts(:,1))
,1).';nan(1,length(handles.cuts(:,1)))];

517 ty2 = [repmat(yl2(1),length(handles.cuts(:,1)),1).';repmat(yl2(2),length(handles.cuts(:,1))
,1).';nan(1,length(handles.cuts(:,1)))];

518 ty3 = [repmat(yl3(1),length(handles.cuts(:,1)),1).';repmat(yl3(2),length(handles.cuts(:,1))
,1).';nan(1,length(handles.cuts(:,1)))];

519 handles.cutLines1 = plot(handles.axes1,tx(:),ty1(:),'k:');
520 handles.cutLines2 = plot(handles.axes2,tx(:),ty2(:),'k:');
521 handles.cutLines3 = plot(handles.axes3,tx(:),ty3(:),'k:');
522 xlim(handles.axes1,xl);
523 xlim(handles.axes2,xl);
524 xlim(handles.axes3,xl);
525
526 % check if dataset is not empty now
527 if ~isempty(handles.dataset)
528 % move viewport to right (shift x axis left) so that latest cursor is on left axes

border
529 xl = xlim(handles.axes1);
530 xl_dif = xl(2)−xl(1);
531 xl = [handles.dataset(1,1)−200, handles.dataset(1,1)−200+xl_dif];
532 xlim(handles.axes1,xl);
533 xlim(handles.axes2,xl);
534 xlim(handles.axes3,xl);
535 end
536
537 % disable delete rows button
538 set(handles.DeleteRowButton,'Enable','off');
539 end
540
541 % Update handles structure
542 guidata(hObject, handles);
543
544
545 % −−− Executes when selected cell(s) is changed in OutputTable.
546 function OutputTable_CellSelectionCallback(hObject, eventdata, handles)
547 % hObject handle to OutputTable (see GCBO)
548 % eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE)
549 % Indices: row and column indices of the cell(s) currently selecteds
550 % handles structure with handles and user data (see GUIDATA)
551
552 % activate delete rows button
553 set(handles.DeleteRowButton,'Enable','on');
554
555 % get indices of selected rows
556 index = eventdata.Indices;
557 if any(index) %loop necessary to surpress unimportant errors.
558 handles.rows = index(:,1);
559 end
560
561 % Update handles structure
562 guidata(hObject, handles);
563
564
565 % −−− Executes when selected object is changed in uibuttongroup1.

237

A Appendix

566 function uibuttongroup1_SelectionChangedFcn(hObject, eventdata, handles)
567 % hObject handle to the selected object in uibuttongroup1
568 % eventdata reserved − to be defined in a future version of MATLAB
569 % handles structure with handles and user data (see GUIDATA)
570
571 % if button group has been changed, enable get sample button
572 set(handles.getCutIndex,'Enable','on');
573
574 % Update handles structure
575 guidata(hObject, handles);
576
577
578 % −−
579 function uipushtool2_ClickedCallback(hObject, eventdata, handles)
580 % hObject handle to uipushtool2 (see GCBO)
581 % eventdata reserved − to be defined in a future version of MATLAB
582 % handles structure with handles and user data (see GUIDATA)
583
584 % show open dialog
585 [fileName,pathName] = uigetfile('*.csv','Select existing dataset.','dataset.csv');
586 fullPath = strcat(pathName,fileName);
587
588 % try catch block for preventing empty files to be loaded
589 try
590 % read file
591 readFile = csvread(fullPath);
592 readFile = flipud(readFile);
593
594 % check if dataset has three rows
595 if size(readFile,2) == 3
596
597 % update counter variable
598 handles.numcuts = length(readFile(:,1));
599
600 % update dataset
601 handles.dataset = readFile;
602
603 % update individual data vectors
604 handles.cuts = handles.dataset(:,1:2);
605 handles.targets = handles.dataset(:,3);
606
607 % update table
608 set(handles.OutputTable,'Data',handles.dataset);
609
610 % redraw lines on plots
611 xl = xlim(handles.axes1);
612 if handles.cutLines1 ~= −1
613 delete(handles.cutLines1);
614 delete(handles.cutLines2);
615 delete(handles.cutLines3);
616 end
617 yl1 = ylim(handles.axes1);
618 yl2 = ylim(handles.axes2);
619 yl3 = ylim(handles.axes3);

238

A Appendix

620 tx = [handles.cuts(:,1).';handles.cuts(:,1).';nan(1,length(handles.cuts(:,1)))];
621 ty1 = [repmat(yl1(1),length(handles.cuts(:,1)),1).';repmat(yl1(2),length(handles.cuts

(:,1)),1).';nan(1,length(handles.cuts(:,1)))];
622 ty2 = [repmat(yl2(1),length(handles.cuts(:,1)),1).';repmat(yl2(2),length(handles.cuts

(:,1)),1).';nan(1,length(handles.cuts(:,1)))];
623 ty3 = [repmat(yl3(1),length(handles.cuts(:,1)),1).';repmat(yl3(2),length(handles.cuts

(:,1)),1).';nan(1,length(handles.cuts(:,1)))];
624 handles.cutLines1 = plot(handles.axes1,tx(:),ty1(:),'k:');
625 handles.cutLines2 = plot(handles.axes2,tx(:),ty2(:),'k:');
626 handles.cutLines3 = plot(handles.axes3,tx(:),ty3(:),'k:');
627 xlim(handles.axes1,xl);
628 xlim(handles.axes2,xl);
629 xlim(handles.axes3,xl);
630
631 % move viewport to right (shift x axis left) so that latest cursor is on left axes

border
632 xl = xlim(handles.axes1);
633 xl_dif = xl(2)−xl(1);
634 xl = [handles.dataset(1,1)−200, handles.dataset(1,1)−200+xl_dif];
635 xlim(handles.axes1,xl);
636 xlim(handles.axes2,xl);
637 xlim(handles.axes3,xl);
638 end
639 catch
640 msgTitle = 'Import Error';
641 msgText = 'Imported dataset is empty.';
642 msgbox(msgText,msgTitle,'error');
643 end
644
645 % Update handles structure
646 guidata(hObject, handles);
647
648
649 % −−
650 function uipushtool3_ClickedCallback(hObject, eventdata, handles)
651 % hObject handle to uipushtool3 (see GCBO)
652 % eventdata reserved − to be defined in a future version of MATLAB
653 % handles structure with handles and user data (see GUIDATA)
654
655 % show save dialog
656 [fileName,pathName] = uiputfile('dataset.csv','Save Dataset');
657 fullPath = strcat(pathName,fileName);
658
659 try
660 if isempty(handles.dataset)
661 % show error message
662 msgTitle = 'Save Error';
663 msgText = 'Dataset is empty. No file has been written';
664 msgbox(msgText,msgTitle,'error');
665 else
666 % flip dataset upside down
667 dataset_flipped = flipud(handles.dataset);
668
669 % save datatset to csv file

239

A Appendix

670 dlmwrite(fullPath,dataset_flipped,'precision',9);
671
672 % show error message
673 msgTitle = 'Save Dataset';
674 msgText = strcat('Dataset sucessfully saved to file " ',fileName,'".');
675 msgbox(msgText,msgTitle,'warn');
676 end
677 catch
678 msgTitle = 'Save Error';
679 msgText = 'Could not open file.';
680 msgbox(msgText,msgTitle,'error');
681 end

Listing A.4: Matlab source code of the text cursor callback function used in the segmentation GUI
script.

1 function output_txt = myfunction(obj,event_obj,handles)
2 % Display the position of the data cursor
3 % obj Currently not used (empty)
4 % event_obj Handle to event object
5 % output_txt Data cursor text string (string or cell array of strings).
6
7 pos = get(event_obj,'Position');
8 output_txt = {['X: ',num2str(pos(1),10)],...
9 ['Y: ',num2str(pos(2),10)]};
10
11 % If there is a Z−coordinate in the position, display it as well
12 if length(pos) > 2
13 output_txt{end+1} = ['Z: ',num2str(pos(3),10)];
14 end

240

A Appendix

A.7.2 Measurement Data Plotting Script

Listing A.5: Matlab source code of the plotting script for all measurement data.

1 %% Script for plotting of measurement data
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 28.04.2017
5 clear all, clc, close all;
6 format short;
7
8 %% select subfolder of dataset to analyse
9 dataset_subfolder = 'Data_Run_1';
10
11 %% read csv files
12 [main_line_l1,...
13 main_line_l2,...
14 main_line_l3,...
15 chip_conveyor_lifting_pump_l1,...
16 chip_conveyor_lifting_pump_l2,...
17 chip_conveyor_lifting_pump_l3,...
18 hydraulic_pump_l1,...
19 hydraulic_pump_l2,...
20 hydraulic_pump_l3,...
21 cooling_unit_l1,...
22 cooling_unit_l2,...
23 cooling_unit_l3,...
24 control_cabinet_heat_exchanger_l1,...
25 blower_air_lubrication_pump_l1,...
26 oil_air_lubrication_pump_l1,...
27 machine_lubrication_pump_l1] = get_data(dataset_subfolder);
28
29 %% plot raw data
30 % DMU Main
31 fmain = figure;
32 clf;
33 plot(main_line_l1);
34 hold on;
35 plot(main_line_l2);
36 plot(main_line_l3);
37 title('DMU Main');
38 xlabel('Data Sample');
39 ylabel('Current I / A');
40 legend('L1','L2','L3');
41 grid on;
42 axis tight;
43 ylim([0, 60]);
44
45 % Chip Conveyor Lifting Pump
46 figure;
47 clf;
48 plot(chip_conveyor_lifting_pump_l1);
49 hold on;

241

A Appendix

50 plot(chip_conveyor_lifting_pump_l2);
51 plot(chip_conveyor_lifting_pump_l3);
52 title('Chip Conveyor Lifting Pump');
53 xlabel('Data Sample');
54 ylabel('Current I / A');
55 legend('L1','L2','L3');
56 grid on;
57 axis tight;
58 ylim([0, 0.5]);
59
60 % Hydraulic Pump
61 figure;
62 clf;
63 plot(hydraulic_pump_l1);
64 hold on;
65 plot(hydraulic_pump_l2);
66 plot(hydraulic_pump_l3);
67 title('Hydraulic Pump');
68 xlabel('Data Sample');
69 ylabel('Current I / A');
70 legend('L1','L2','L3');
71 grid on;
72 axis tight;
73 ylim([0, 0.5]);
74
75 % Cooling Unit
76 figure;
77 clf;
78 plot(cooling_unit_l1);
79 hold on;
80 plot(cooling_unit_l2);
81 plot(cooling_unit_l3);
82 title('Cooling Unit');
83 xlabel('Data Sample');
84 ylabel('Current I / A');
85 legend('L1','L2','L3');
86 grid on;
87 axis tight;
88 ylim([0, 8]);
89
90 % Control Cabinet Heat Exchanger
91 figure;
92 clf;
93 plot(control_cabinet_heat_exchanger_l1);
94 title('Control Cabinet Heat Exchanger');
95 xlabel('Data Sample');
96 ylabel('Current I / A');
97 legend('L1');
98 grid on;
99 axis tight;
100 ylim([0, 12]);
101
102 % Lubrication Pumps
103 figure;

242

A Appendix

104 clf;
105 plot(blower_air_lubrication_pump_l1);
106 hold on;
107 plot(oil_air_lubrication_pump_l1);
108 plot(machine_lubrication_pump_l1);
109 title('Lubrication Pumps');
110 xlabel('Data Sample');
111 ylabel('Current I / A');
112 legend('Blower Air','Oil−Air','Machine');
113 grid on;
114 axis tight;
115 ylim([0, 0.5]);

Listing A.6: Matlab source code of the function used to read out the CSV files containing measurement
data.

1 function [main_line_l1,...
2 main_line_l2,...
3 main_line_l3,...
4 chip_conveyor_lifting_pump_l1,...
5 chip_conveyor_lifting_pump_l2,...
6 chip_conveyor_lifting_pump_l3,...
7 hydraulic_pump_l1,...
8 hydraulic_pump_l2,...
9 hydraulic_pump_l3,...
10 cooling_unit_l1,...
11 cooling_unit_l2,...
12 cooling_unit_l3,...
13 control_cabinet_heat_exchanger_l1,...
14 blower_air_lubrication_pump_l1,...
15 oil_air_lubrication_pump_l1,...
16 machine_lubrication_pump_l1] = get_data(dataset_subfolder)
17 main_line_l1 = csvread([dataset_subfolder,'/main_line_l1.csv']);
18 main_line_l2 = csvread([dataset_subfolder,'/main_line_l2.csv']);
19 main_line_l3 = csvread([dataset_subfolder,'/main_line_l3.csv']);
20 chip_conveyor_lifting_pump_l1 = csvread([dataset_subfolder,'/chip_conveyor_lifting_pump_l1.csv'

]);
21 chip_conveyor_lifting_pump_l2 = csvread([dataset_subfolder,'/chip_conveyor_lifting_pump_l2.csv'

]);
22 chip_conveyor_lifting_pump_l3 = csvread([dataset_subfolder,'/chip_conveyor_lifting_pump_l3.csv'

]);
23 hydraulic_pump_l1 = csvread([dataset_subfolder,'/hydraulic_pump_l1.csv']);
24 hydraulic_pump_l2 = csvread([dataset_subfolder,'/hydraulic_pump_l2.csv']);
25 hydraulic_pump_l3 = csvread([dataset_subfolder,'/hydraulic_pump_l3.csv']);
26 cooling_unit_l1 = csvread([dataset_subfolder,'/cooling_unit_l1.csv']);
27 cooling_unit_l2 = csvread([dataset_subfolder,'/cooling_unit_l2.csv']);
28 cooling_unit_l3 = csvread([dataset_subfolder,'/cooling_unit_l3.csv']);
29 control_cabinet_heat_exchanger_l1 = csvread([dataset_subfolder,'/

control_cabinet_heat_exchanger_l1.csv']);
30 blower_air_lubrication_pump_l1 = csvread([dataset_subfolder,'/blower_air_lubrication_pump_l1.

csv']);
31 oil_air_lubrication_pump_l1 = csvread([dataset_subfolder,'/oil_air_lubrication_pump_l1.csv']);
32 machine_lubrication_pump_l1 = csvread([dataset_subfolder,'/machine_lubrication_pump_l1.csv']);

243

A Appendix

33
34 %% drop last samples (only one or two) of too long vector
35 lmin = min([length(main_line_l1(:,2)),...
36 length(main_line_l2(:,2)),...
37 length(main_line_l3(:,2)),...
38 length(chip_conveyor_lifting_pump_l1(:,2)),...
39 length(chip_conveyor_lifting_pump_l2(:,2)),...
40 length(chip_conveyor_lifting_pump_l3(:,2)),...
41 length(hydraulic_pump_l1(:,2)),...
42 length(hydraulic_pump_l2(:,2)),...
43 length(hydraulic_pump_l3(:,2)),...
44 length(cooling_unit_l1(:,2)),...
45 length(cooling_unit_l2(:,2)),...
46 length(cooling_unit_l3(:,2)),...
47 length(control_cabinet_heat_exchanger_l1(:,2)),...
48 length(blower_air_lubrication_pump_l1(:,2)),...
49 length(oil_air_lubrication_pump_l1(:,2)),...
50 length(machine_lubrication_pump_l1(:,2))]);
51
52 main_line_l1 = main_line_l1(1:lmin,2);
53 main_line_l2 = main_line_l2(1:lmin,2);
54 main_line_l3 = main_line_l3(1:lmin,2);
55 chip_conveyor_lifting_pump_l1 = chip_conveyor_lifting_pump_l1(1:lmin,2);
56 chip_conveyor_lifting_pump_l2 = chip_conveyor_lifting_pump_l2(1:lmin,2);
57 chip_conveyor_lifting_pump_l3 = chip_conveyor_lifting_pump_l3(1:lmin,2);
58 hydraulic_pump_l1 = hydraulic_pump_l1(1:lmin,2);
59 hydraulic_pump_l2 = hydraulic_pump_l2(1:lmin,2);
60 hydraulic_pump_l3 = hydraulic_pump_l3(1:lmin,2);
61 cooling_unit_l1 = cooling_unit_l1(1:lmin,2);
62 cooling_unit_l2 = cooling_unit_l2(1:lmin,2);
63 cooling_unit_l3 = cooling_unit_l3(1:lmin,2);
64 control_cabinet_heat_exchanger_l1 = control_cabinet_heat_exchanger_l1(1:lmin,2);
65 blower_air_lubrication_pump_l1 = blower_air_lubrication_pump_l1(1:lmin,2);
66 oil_air_lubrication_pump_l1 = oil_air_lubrication_pump_l1(1:lmin,2);
67 machine_lubrication_pump_l1 = machine_lubrication_pump_l1(1:lmin,2);
68 end

244

A Appendix

A.7.3 Automatic Segmentation and Labeling Algorithm

Listing A.7: Matlab source code of the automatic segmentation and labeling algorithm.

1 %% Script for shape−based automatic cutting
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 08.05.2017
5 % !!Run N01_Plotting.m first!!
6
7 %% create shape dicitionary from first subcycle of second testcycle run
8 [~,main_line_l2_2,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_2');
9 c{1} = main_line_l2_2(880:2020); % spindle
10 c{2} = main_line_l2_2(7084:7320); % x−axis forward
11 c{3} = main_line_l2_2(7423:7660); % x−axis backward
12 c{4} = main_line_l2_2(10465:10626); % y−axis forward
13 c{5} = main_line_l2_2(10727:10887); % y−axis backward
14 c{6} = main_line_l2_2(13088:13215); % z−axis forward
15 c{7} = main_line_l2_2(13305:13432); % z−axis backward
16 c{8} = main_line_l2_2(15212:15290); % c−axis forward
17 c{9} = main_line_l2_2(15374:15457); % c−axis backward
18 c{10} = main_line_l2_2(16850:16908); % b−axis forward
19 c{11} = main_line_l2_2(16992:17047); % b−axis backward
20
21 %% match templates to find positions
22 % number of subcycles in one testcycle (normally 20)
23 num_of_runs = 20;
24 % variable holds positions of cuts
25 peak_pos = 0;
26
27 % repeat for every template
28 for k = 1:11
29 % Determine, how many peaks to find for the current type of template.
30 if(ismember(k,[1,6,7,10,11]))
31 num_of_peaks = 5*num_of_runs;
32 else
33 num_of_peaks = 10*num_of_runs;
34 end
35
36 % slide template indexwise over dataset_dmu_strom_l2
37 % calculate for each window position a distance measure (e.g. inf norm)
38 % find local minima in similarity measure over lag
39 templ = c{k};
40 tmplen = length(templ);
41 len = length(main_line_l2)−tmplen;
42 dist = zeros(len,1);
43 for i = 1:len
44 dist(i) = norm(main_line_l2(i:i+tmplen−1)−templ,Inf);
45 end
46
47 % invert distance to make it usable for findpeaks function
48 dist = −dist;
49

245

A Appendix

50 % find peaks in the signal and append to peak_pos
51 len = nnz(peak_pos);
52 [~, pp] = findpeaks(dist,'SortStr','descend','NPeaks',num_of_peaks);
53
54 % combine cutting points and endpoints of templates to cutting vector
55 peak_pos(len+1:len+2*num_of_peaks,1) = [pp; pp+tmplen];
56
57 % create variable which contains class numbers, but combines classes,
58 % which can't be distiguished by the algorithm, to a single classs
59 switch(k)
60 case {1,6,7,10,11}
61 r = k;
62 case {2,3}
63 r = 2;
64 case {4,5}
65 r = 4;
66 case {8,9}
67 r = 8;
68 end
69
70 % append current class as well as endpoint class (0) to the segment
71 classes(len+1:len+2*num_of_peaks,1) = ...
72 [repmat(r,num_of_peaks,1); zeros(num_of_peaks,1)];
73 end
74
75 % sort peak_pos in ascending order and sort classes accordingly
76 [peak_pos, sortidx] = sort(peak_pos);
77 classes = classes(sortidx);
78
79 % check, if there are approximative duplicates in the peak vector and
80 % remove them. Approximative duplicates are values, that are closer than
81 % 50 samples to each other. Remove from classes vector accordingly.
82 peak_pos_diff = diff(peak_pos);
83 idx = find(peak_pos_diff<50);
84 peak_pos(idx) = [];
85 classes(idx) = [];
86
87 % search for classes 2, 4 and 8 and replace every second one by the
88 % corresponding class 3, 5 or 9 (backward movements of x−, y− and z−axis)
89 for i = 1:length(classes)−2
90 if isequal(classes(i:i+2),[2;0;2])
91 classes(i:i+2) = [2;0;3];
92 elseif isequal(classes(i:i+2),[4;0;4])
93 classes(i:i+2) = [4;0;5];
94 elseif isequal(classes(i:i+2),[8;0;8])
95 classes(i:i+2) = [8;0;9];
96 end
97 end
98
99 % add inital cut on first sample of the dataset, where the state of the
100 % corresponding first segment must be idle (0)
101 peak_pos = [1; peak_pos];
102 classes = [0; classes];
103

246

A Appendix

104 %% check if class sequence is nominal
105 seq = [1,0,1,0,1,0,1,0,1,0,2,0,3,0,2,0,3,0,2,0,3,0,2,0,3,0,2,0,3,0,...
106 4,0,5,0,4,0,5,0,4,0,5,0,4,0,5,0,4,0,5,0,6,0,7,0,6,0,7,0,6,0,...
107 7,0,6,0,7,0,6,0,7,0,8,0,9,0,8,0,9,0,8,0,9,0,8,0,9,0,8,0,9,0,...
108 10,0,11,0,10,0,11,0,10,0,11,0,10,0,11,0,10,0,11,0];
109 seq = repmat(seq,1,num_of_runs);
110 seq = [0, seq];
111 if isequal(seq',classes)
112 disp('Class sequence is valid!');
113 else
114 disp('Class sequence is invalid! Check manually for any faults.');
115 end
116
117 %% create labelset csv file containing nominal cuts and base classes
118 labelset = [peak_pos ones(size(peak_pos)) classes];
119 dlmwrite('Labelsets/labelset_nominal.csv',labelset,'precision',10);
120
121 %% get state changes under considertation of non−controllable components
122 % transform signals of non−controllable components in binary sequence by
123 % thresholding
124 cche = (control_cabinet_heat_exchanger_l1 >= 0.6);
125 mlp = (machine_lubrication_pump_l1 >= 0.1);
126 olp = (oil_air_lubrication_pump_l1 >= 0.1);
127
128 % differentiate to find all state changes in the signal
129 cche_stchg = find(diff(cche));
130 mlp_stchg = find(diff(mlp));
131 olp_stchg = find(diff(olp));
132
133 % merge all non−controllable state changes into one vector, sort and
134 % add state change at first sample
135 nc_stchg = [mlp_stchg; olp_stchg; cche_stchg];
136 nc_stchg = sort(nc_stchg);
137 nc_stchg = [1; nc_stchg];
138
139 % get class of controlled state prior to each non−nominal cut
140 prior_class = zeros(length(nc_stchg),1);
141 for i = 1:length(nc_stchg)
142 prior_cut = find(peak_pos<=nc_stchg(i),1,'last');
143 prior_class(i) = classes(prior_cut);
144 end
145
146 % merge non_controllable and controllable state changes into one vector
147 % and merge classes accordingly, additionally add nominality tag
148 stchg = [peak_pos; nc_stchg];
149 nominality = [ones(size(classes)); zeros(size(prior_class))];
150 classes = [classes; prior_class];
151 [stchg, stchg_idx] = sort(stchg);
152 nominality = nominality(stchg_idx);
153 classes = classes(stchg_idx);
154
155 % for each state change get states of non−controllable objects
156 nc_states = [mlp(stchg+1), olp(stchg+1), cche(stchg+1)];
157

247

A Appendix

158 % mark segments as nominality −1 with very small lengths, which occur due
159 % to cuts that are very close to each other
160 stchg_diff = diff(stchg);
161 idx = find(stchg_diff<20);
162 nominality(idx) = −1;
163
164 % recalculate class for each controllable and non−controllable state change
165 for i = 1:length(stchg)
166 if isequal(nc_states(i,:), [0 0 1])
167 classes(i) = classes(i)+12;
168 elseif isequal(nc_states(i,:), [0 1 0])
169 classes(i) = classes(i)+24;
170 elseif isequal(nc_states(i,:), [0 1 1])
171 classes(i) = classes(i)+36;
172 elseif isequal(nc_states(i,:), [1 0 0])
173 classes(i) = classes(i)+48;
174 elseif isequal(nc_states(i,:), [1 0 1])
175 classes(i) = classes(i)+60;
176 elseif isequal(nc_states(i,:), [1 1 0])
177 classes(i) = classes(i)+72;
178 elseif isequal(nc_states(i,:), [1 1 1])
179 classes(i) = classes(i)+84;
180 end
181 end
182
183 %% plot found positions into data
184 if 1
185 figure;
186 clf;
187 ax1 = subplot(3,1,1);
188 plot(main_line_l1);
189 hold on;
190 plot(main_line_l2);
191 plot(main_line_l3);
192 hold on;
193 title('DMU Main');
194 xlabel('Data Sample');
195 ylabel('Current I / A');
196 legend('L2');
197 grid on;
198 axis tight;
199 ylim([0, 60]);
200
201 ax2 = subplot(3,1,2);
202 plot(control_cabinet_heat_exchanger_l1);
203 hold on;
204 title('Control Cabinet Heat Exchanger');
205 xlabel('Data Sample');
206 ylabel('Current I / A');
207 legend('L1');
208 grid on;
209 axis tight;
210 ylim([0, 12]);
211

248

A Appendix

212 ax3 = subplot(3,1,3);
213 plot(blower_air_lubrication_pump_l1);
214 hold on;
215 plot(oil_air_lubrication_pump_l1);
216 plot(machine_lubrication_pump_l1);
217 title('Lubrication Pumps');
218 xlabel('Data Sample');
219 ylabel('Current I / A');
220 legend('Blower Air','Oil−Air','Machine');
221 grid on;
222 axis tight;
223 ylim([0, 0.5]);
224
225 % plot cut positions
226 for i = 1:length(stchg)
227 if nominality(i) == 1
228 plot(ax1,[stchg(i), stchg(i)],[0, 60],'r:');
229 elseif nominality(i) == 0
230 plot(ax1,[stchg(i), stchg(i)],[0, 60],'g−');
231 plot(ax2,[stchg(i), stchg(i)],[0, 60],'g−');
232 plot(ax3,[stchg(i), stchg(i)],[0, 60],'g−');
233 else
234 plot(ax1,[stchg(i), stchg(i)],[0, 60],'k*');
235 plot(ax2,[stchg(i), stchg(i)],[0, 60],'k*');
236 plot(ax3,[stchg(i), stchg(i)],[0, 60],'k*');
237 end
238 end
239
240 linkaxes([ax1, ax2, ax3],'x');
241
242 for i = 1:length(stchg)
243 text(ax1,stchg(i),10,num2str(classes(i)));
244 end
245 end
246
247 %% create labelset csv file containing all cuts
248 labelset = [stchg nominality classes];
249 dlmwrite('Labelsets/labelset.csv',labelset,'precision',10);

249

A Appendix

A.7.4 Template Averaging Algorithm

Listing A.8: Matlab source code of the template creation via accurate shape averaging.

1 %% Script for template creation via ASA shape averaging
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 18.05.2017
5
6 %% select option for lower bounding of dtw
7 enable_lower_bounding = 1; % 1 − enable, 0 − disable
8
9 %% load labeled training data from second testcycle run
10 [~,main_line_l2_2,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_2');
11 labelset = csvread('Labelsets/labelset_nominal_run2.csv');
12 cuts = labelset(:,1);
13 class_labels = labelset(:,3);
14
15 %% loop through all 12 classes of templates
16 ts_avg = cell(12,1);
17 xq = cell(12,1);
18 ts_copy = cell(12,1);
19 for t_class = 1:12
20 %% find all cut indices for specific kind of template
21 % idle class
22 if t_class == 12
23 t_ind = find(class_labels == 0,100);
24 t_cuts = cuts(t_ind(1:end−1));
25 t_cuts_end = cuts(t_ind(1:end−1)+1);
26 % remove sequences at beginning, end and in between of subcycles
27 t_cuts(1) = [];
28 t_cuts_end(1) = [];
29 t_cuts(55) = [];
30 t_cuts_end(55) = [];
31 t_cuts(end) = [];
32 t_cuts_end(end) = [];
33 % all other classes
34 else
35 t_ind = find(class_labels == t_class);
36 t_cuts = cuts(t_ind);
37 t_cuts_end = cuts(t_ind+1);
38 end
39
40 %% store according sequences in cell array
41 len = length(t_cuts);
42 ts = cell(len, 1);
43 for i = 1:len
44 ts{i} = main_line_l2_2(t_cuts(i):t_cuts_end(i));
45 end
46
47 %% for idle class shorten all segments to length of smallest segment
48 if t_class == 12
49 len = zeros(length(ts),1);

250

A Appendix

50 for i = 1:length(ts)
51 len(i) = min(length(ts{i}));
52 end
53 min_len = min(len);
54 for i = 1:length(ts)
55 ts_new = ts{i};
56 ts{i} = ts_new(1:min_len);
57 end
58 end
59
60 % make a copy for later plotting
61 ts_copy{t_class} = ts;
62
63 % start timer
64 tic
65
66 %% run this loop until there is only one final averaged sequence left
67 len_ts = length(ts);
68 while(len_ts > 1)
69 %% calculate dtw distance matrix between each pair of segments
70 d_prior = inf(len_ts);
71 for i = 1:len_ts
72 for j = 1:i
73 [d_prior(j,i),~,~] = dtw(ts{i},ts{j});
74 end
75 end
76
77 %% find pair of segments with minimum distance within distance matrix
78 % replace diagonal elements with inf
79 d_prior(d_prior == 0) = inf;
80 % then find location of minimum value
81 [min_dist,idx] = min(d_prior(:));
82 [opt_row,opt_col] = ind2sub(size(d_prior),idx);
83
84 %% calculate average sequence for this pair of segments via dtw
85 ts1 = ts{opt_row};
86 ts2 = ts{opt_col};
87
88 % calculate sequence alignment via dtw
89 if enable_lower_bounding
90 [d,its1,its2] = dtw(ts1,ts2,10);
91 else
92 [d,its1,its2] = dtw(ts1,ts2);
93 end
94
95 % calculate average sequence
96 S = [((its1+its2)./2)', ((ts1(its1)+ts2(its2))./2)];
97
98 % resample averaged sequence by cubic spline interploation
99 xq{t_class} = 1:length(ts1);
100 S_res = spline(S(:,1),S(:,2),xq{t_class});
101
102 %% remove pair of segments from segment array and insert average
103 ts{opt_row} = S_res';

251

A Appendix

104 ts(opt_col) = [];
105
106 % update length of segment array
107 len_ts = len_ts − 1;
108 end
109
110 %% store calculated average sequence for later analysis
111 ts_avg{t_class} = ts{1};
112
113 % output time
114 toc
115 end
116
117 %% store results in csv files
118 for k = 1:length(ts_avg)
119 if enable_lower_bounding
120 filename = ['AverageTemplates/Template_Class_LB_',num2str(k),'.csv'];
121 else
122 filename = ['AverageTemplates/Template_Class_',num2str(k),'.csv'];
123 end
124 csvwrite(filename,ts_avg{k});
125 end
126
127 %% store sequences for later plotting in mat file
128 if enable_lower_bounding
129 filename = 'AverageTemplates/Variables_LB.mat';
130 else
131 filename = 'AverageTemplates/Variables.mat';
132 end
133 save(filename,'ts_copy','xq','ts_avg');
134
135 %% plot results
136 for k = 1:length(ts_avg)
137 figure;
138 clf;
139 for i = 1:length(ts_copy{k})
140 plot(ts_copy{k}{i})
141 hold on;
142 end
143 plot(xq{k},ts_avg{k},'Marker','o','MarkerSize',12,'Color','g');
144 title('ASA Averaged Segment');
145 xlabel('Data Sample');
146 ylabel('Current I / A');
147 grid on;
148 end

252

A Appendix

A.7.5 Shape-Based Template Matching Algorithm

Listing A.9: Matlab source code of the shape-based template matching algorithm.

1 %% Script for shape−based template matching
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 16.04.2017
5 % !!Run N01_Plotting.m first!!
6
7 %% load averaged templates
8 c = cell(12,1);
9 for k = 1:12
10 filename = ['AverageTemplates/Template_Class_LB_',num2str(k),'.csv'];
11 c{k} = csvread(filename);
12 end
13
14 %% load labelset of test data (testcycle run 1) to get cut positions
15 labelset = csvread('Labelsets/labelset_nominal_run1.csv');
16 cuts = labelset(:,1);
17 desired_classes = labelset(:,3);
18
19 %% For each segment decide which class template fits best
20 len = length(cuts)−1;
21 %len = 111;
22 predicted_classes = zeros(len,7);
23 % loop through samples
24 for i = 1:len
25 % get sample
26 ts = main_line_l2(cuts(i):cuts(i+1));
27 % loop through class templates
28 coef = zeros(length(c),1);
29 d = zeros(length(c),1);
30 infnorm = zeros(length(c),1);
31 for j = 1:length(c)
32 ct = c{j};
33 % remove signal mean
34 ts = ts − mean(ts);
35 ct = ct − mean(ct);
36 % align signals and calculate distance via DTW
37 [d(j),its,ict] = dtw(ts,ct,1,'squared');
38 tsw = ts(its);
39 ctw = ct(ict);
40 % calculate cross correlation coefficient
41 coef1 = corrcoef(tsw,ctw);
42 coef(j) = coef1(2,1);
43 end
44
45 % find template with maximum fit
46 [maxcoef,predicted_class_xcor] = max(coef);
47 [maxd,predicted_class_dtw] = min(d);
48 % change label of idle class from 12 to 0 to meet class definition
49 if predicted_class_xcor == 12

253

A Appendix

50 predicted_class_xcor = 0;
51 end
52 if predicted_class_dtw == 12
53 predicted_class_dtw = 0;
54 end
55 % create output dataset
56 predicted_classes(i,:) = [i, cuts(i), cuts(i+1), maxcoef,...
57 predicted_class_xcor, maxd, predicted_class_dtw];
58 end
59
60 %% calculate score
61 score_dtw = 0;
62 score_xcor = 0;
63 for i = 1:length(predicted_classes)
64 if predicted_classes(i,7) == desired_classes(i)
65 score_dtw = score_dtw+1;
66 end
67 if predicted_classes(i,5) == desired_classes(i)
68 score_xcor = score_xcor+1;
69 end
70 end
71 score_dtw = score_dtw/length(predicted_classes);
72 score_xcor = score_xcor/length(predicted_classes);
73 disp(['Score for DTW classifier is: ',...
74 num2str(score_dtw*100), ' %']);
75 disp(['Score for cross corellation classifier is: ',...
76 num2str(score_xcor*100), ' %']);
77
78 %% write output to CSV file
79 filename = 'PredictionOutput/predicted_classes.csv';
80 dlmwrite(filename,predicted_classes,'precision',10);

254

A Appendix

A.7.6 Parameter Studies for the Template Matching Algorithm

Listing A.10: Matlab source code of the parameter studies for the template matching algorithm.

1 %% Script for shape−based template matching
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 16.04.2017
5 % !!Run N01_Plotting.m first!!
6
7 %% load averaged templates
8 c = cell(12,1);
9 for k = 1:12
10 filename = ['AverageTemplates/Template_Class_LB_',num2str(k),'.csv'];
11 c{k} = csvread(filename);
12 end
13
14 %% load labelset of test data (testcycle run 1) to get cut positions
15 labelset = csvread('Labelsets/labelset_nominal_run1.csv');
16 cuts = labelset(:,1);
17 desired_classes = labelset(:,3);
18
19 %% Iterate over different kinds of parameters
20 score_dtw = zeros(3,3,2);
21 score_xcor = zeros(3,3,2);
22 for p1 = 1:2 % with/without removal of signal mean
23 for p2 = 1:3 % distance measure
24 for p3 = 1:60 % width of Sakoe−Chiba band to contraint warping path
25 %% For each segment decide which class template fits best
26 len = length(cuts)−1;
27 %len = 111;
28 predicted_classes = zeros(len,7);
29 % loop through samples
30 for i = 1:len
31 % get sample
32 ts = main_line_l2(cuts(i):cuts(i+1));
33 % loop through class templates
34 coef = zeros(length(c),1);
35 d = zeros(length(c),1);
36 infnorm = zeros(length(c),1);
37 for j = 1:length(c)
38 ct = c{j};
39 % remove signal mean
40 if (p1 == 1) (p2 ~= 3)
41 ts = ts − mean(ts);
42 ct = ct − mean(ct);
43 end
44 % align signals and calculate distance via DTW
45 switch(p2)
46 case 1 % euclidean
47 [d(j),its,ict] = dtw(ts,ct,p3,'euclidean');
48 case 2 % squared
49 [d(j),its,ict] = dtw(ts,ct,p3,'squared');

255

A Appendix

50 case 3 % symkl
51 [d(j),its,ict] = dtw(ts,ct,p3,'symmkl');
52 end
53 tsw = ts(its);
54 ctw = ct(ict);
55 % calculate cross correlation coefficient
56 coef1 = corrcoef(tsw,ctw);
57 coef(j) = coef1(2,1);
58 end
59
60 % find template with maximum fit
61 [maxcoef,predicted_class_xcor] = max(coef);
62 [maxd,predicted_class_dtw] = min(d);
63 % change label of idle class 12 to 0 to meet class definition
64 if predicted_class_xcor == 12
65 predicted_class_xcor = 0;
66 end
67 if predicted_class_dtw == 12
68 predicted_class_dtw = 0;
69 end
70 % create output dataset
71 predicted_classes(i,:) = [i, cuts(i), cuts(i+1), maxcoef,...
72 predicted_class_xcor, maxd, predicted_class_dtw];
73 end
74
75 %% calculate score
76 score_dtw(p3,p2,p1) = 0;
77 score_xcor(p3,p2,p1) = 0;
78 for i = 1:length(predicted_classes)
79 if predicted_classes(i,7) == desired_classes(i)
80 score_dtw(p3,p2,p1) = score_dtw(p3,p2,p1)+1;
81 end
82 if predicted_classes(i,5) == desired_classes(i)
83 score_xcor(p3,p2,p1) = score_xcor(p3,p2,p1)+1;
84 end
85 end
86 score_dtw(p3,p2,p1) = score_dtw(p3,p2,p1)/length(predicted_classes);
87 score_xcor(p3,p2,p1) = score_xcor(p3,p2,p1)/length(predicted_classes);
88 disp(['mean (p1) = ', num2str(p1),...
89 ', measure (p2) = ', num2str(p2),...
90 ', constraint (p3) = ', num2str(p3)]);
91 disp(['Score for DTW classifier is: ',...
92 num2str(score_dtw(p3,p2,p1)*100), ' %']);
93 disp(['Score for cross correlation classifier is: ',...
94 num2str(score_xcor(p3,p2,p1)*100), ' %']);
95 end
96 end
97 end
98
99 %% plot results
100 if 1
101 % DTW mean removed
102 figure;
103 clf;

256

A Appendix

104 plot(1:length(score_dtw(:,1,1)),score_dtw(:,1,1));
105 hold on;
106 plot(1:length(score_dtw(:,2,1)),score_dtw(:,2,1));
107 title('DTW Classifier (mean removed)');
108 xlabel('Sakoe−Chiba Band Width b');
109 ylabel('Classification Accuracy \eta');
110 legend('euclidean','squared');
111 grid on;
112 axis tight;
113
114 % DTW mean not removed
115 figure;
116 clf;
117 plot(1:length(score_dtw(:,1,2)),score_dtw(:,1,2));
118 hold on;
119 plot(1:length(score_dtw(:,2,2)),score_dtw(:,2,2));
120 plot(1:length(score_dtw(:,3,2)),score_dtw(:,3,2));
121 title('DTW Classifier (mean not removed)');
122 xlabel('Sakoe−Chiba Band Width b');
123 ylabel('Classification Accuracy \eta');
124 legend('euclidean','squared','symmetric kullback−leibler');
125 grid on;
126 axis tight;
127
128 % Cross−Correlation mean removed
129 figure;
130 clf;
131 plot(1:length(score_xcor(:,1,1)),score_xcor(:,1,1));
132 hold on;
133 plot(1:length(score_xcor(:,2,1)),score_xcor(:,2,1));
134 title('Cross−Correlation Classifier (mean removed)');
135 xlabel('Sakoe−Chiba Band Width b');
136 ylabel('Classification Accuracy \eta');
137 legend('euclidean','squared');
138 grid on;
139 axis tight;
140
141 % Cross−Correlation mean not removed
142 figure;
143 clf;
144 plot(1:length(score_xcor(:,1,2)),score_xcor(:,1,2));
145 hold on;
146 plot(1:length(score_xcor(:,2,2)),score_xcor(:,2,2));
147 plot(1:length(score_xcor(:,3,2)),score_xcor(:,3,2));
148 title('Cross−Correlation Classifier (mean not removed)');
149 xlabel('Sakoe−Chiba Band Width b');
150 ylabel('Classification Accuracy \eta');
151 legend('euclidean','squared','symmetric kullback−leibler');
152 grid on;
153 axis tight;
154 end
155
156 %% save important variables to workspace
157 filename = 'PredictionOutput/score_vars/scores.mat';

257

A Appendix

158 save(filename,'score_dtw','score_xcor');
159
160 %% write output files for parameter studies
161 filename1 = 'PredictionOutput/ps/score_dtw_with_mean.csv';
162 filename2 = 'PredictionOutput/ps/score_xcor_with_mean.csv';
163 filename3 = 'PredictionOutput/ps/score_dtw_without_mean.csv';
164 filename4 = 'PredictionOutput/ps/score_xcor_without_mean.csv';
165
166 csvwrite(filename1,score_dtw(:,:,1));
167 csvwrite(filename2,score_xcor(:,:,1));
168 csvwrite(filename3,score_dtw(:,:,2));
169 csvwrite(filename4,score_xcor(:,:,2));

258

A Appendix

A.7.7 Feature Extraction Algorithm

Listing A.11: Matlab source code of the feature extraction algorithm.

1 %% Script for feature extraction from measurement data (simplified task)
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 07.06.2017
5 clear all, clc, close all;
6
7 %% load measurement data
8 [~,main_line_l2_run1,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_1');
9 [~,main_line_l2_run2,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_2');
10 [~,main_line_l2_run3,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_3');
11
12 %% load labels and cut positions from labelsets
13 labelset_run1 = csvread('Labelsets/labelset_nominal_run1.csv');
14 labelset_run2 = csvread('Labelsets/labelset_nominal_run2.csv');
15 labelset_run3 = csvread('Labelsets/labelset_nominal_run3.csv');
16 cuts_run1 = labelset_run1(:,1);
17 cuts_run2 = labelset_run2(:,1);
18 cuts_run3 = labelset_run3(:,1);
19 desired_classes_run1 = labelset_run1(:,3);
20 desired_classes_run2 = labelset_run2(:,3);
21 desired_classes_run3 = labelset_run3(:,3);
22
23 %% create cell arrays containing all segments for each testcycle run
24 cuts_main_line_l2_run1 = cell(length(cuts_run1)−1,1);
25 cuts_main_line_l2_run2 = cell(length(cuts_run2)−1,1);
26 cuts_main_line_l2_run3 = cell(length(cuts_run3)−1,1);
27 for i = 1:length(cuts_run1)−1
28 cuts_main_line_l2_run1(i,1) = ...
29 {main_line_l2_run1(cuts_run1(i):cuts_run1(i+1))'};
30 end
31 for i = 1:length(cuts_run2)−1
32 cuts_main_line_l2_run2(i,1) = ...
33 {main_line_l2_run2(cuts_run2(i):cuts_run2(i+1))'};
34 end
35 for i = 1:length(cuts_run3)−1
36 cuts_main_line_l2_run3(i,1) = ...
37 {main_line_l2_run3(cuts_run3(i):cuts_run3(i+1))'};
38 end
39
40 %% loop through each row of the cell arrays and calculate features
41 num_of_features = 49;
42 dataset_run1 = zeros(length(cuts_run1)−1,num_of_features);
43 dataset_run2 = zeros(length(cuts_run2)−1,num_of_features);
44 dataset_run3 = zeros(length(cuts_run3)−1,num_of_features);
45 for i = 1:length(cuts_run1)−1
46 dataset_run1(i,1:num_of_features) = ...
47 calc_features(cuts_main_line_l2_run1{i});
48 end
49 for i = 1:length(cuts_run2)−1

259

A Appendix

50 dataset_run2(i,1:num_of_features) = ...
51 calc_features(cuts_main_line_l2_run2{i});
52 end
53 for i = 1:length(cuts_run3)−1
54 dataset_run3(i,1:num_of_features) = ...
55 calc_features(cuts_main_line_l2_run3{i});
56 end
57
58 %% replace every NaN, inf or −inf with 0
59 dataset_run1(isnan(dataset_run1)) = 0;
60 dataset_run1(isinf(dataset_run1)) = 0;
61 dataset_run2(isnan(dataset_run2)) = 0;
62 dataset_run2(isinf(dataset_run2)) = 0;
63 dataset_run3(isnan(dataset_run3)) = 0;
64 dataset_run3(isinf(dataset_run3)) = 0;
65
66 %% merge desired classes vectors into datasets
67 desired_classes_run1(end) = [];
68 desired_classes_run2(end) = [];
69 desired_classes_run3(end) = [];
70 dataset_run1 = [dataset_run1, desired_classes_run1];
71 dataset_run2 = [dataset_run2, desired_classes_run2];
72 dataset_run3 = [dataset_run3, desired_classes_run3];
73
74 %% write extracted datasets to csv and orange3 tab files
75 % csv files
76 dlmwrite('Extracted_Datasets/dataset_testing.csv',...
77 dataset_run1,'precision',10);
78 dlmwrite('Extracted_Datasets/dataset_training.csv',...
79 [dataset_run2; dataset_run3],'precision',10);
80
81 % special table format for orange3
82 header = {'C#q' 'C#sq' 'C#mu2' 'C#mu3' 'C#mu4' 'C#mu5' 'C#mu6'...
83 'C#mu7' 'C#mu8' 'C#mu9' 'C#c4' 'C#c5' 'C#c6' 'C#v' 'C#w' 'C#sigma'...
84 'C#srsd' 'C#siqr' 'C#smed' 'C#dmean' 'C#dmed' 'C#smin' 'C#smax'...
85 'C#sp2p' 'C#speak' 'C#ssrv' 'C#sarv' 'C#srms' 'C#srss' 'C#ks' 'C#kf'...
86 'C#hj2' 'C#hj3' 'C#auc' 'C#aac' 'C#sos' 'C#sus' 'C#srt' 'C#sft'...
87 'C#ssr' 'C#abp' 'C#hpbw' 'C#ocbw' 'C#fmean' 'C#fmed' 'C#ssfdr'...
88 'C#ssinad' 'C#ssnr' 'C#sthd' 'cD#Machine State'};
89
90 filename = 'Extracted_Datasets/dataset_testing.tab';
91 fid = fopen(filename,'w');
92 fprintf(fid, '%s\t', header{1:end−1});
93 fprintf(fid, '%s\n', header{end});
94 fclose(fid);
95 dlmwrite(filename,dataset_run1,'delimiter','\t','precision',10,'−append');
96
97 filename = 'Extracted_Datasets/dataset_training.tab';
98 fid = fopen(filename,'w');
99 fprintf(fid, '%s\t', header{1:end−1});
100 fprintf(fid, '%s\n', header{end});
101 fclose(fid);
102 dlmwrite(filename,[dataset_run2; dataset_run3],'delimiter','\t',...
103 'precision',10,'−append');

260

A Appendix

Listing A.12: Matlab source code of the subroutine which conducts feature calculation for each
segment of time series data.

1 function features = calc_features(time_signal)
2 % Calculate features from given Signal
3
4 %#### time domain ####
5 % number of samples
6 q = length(time_signal);
7 % moment
8 sq = mean(time_signal);
9 % central moments
10 mu2 = moment(time_signal,2);
11 mu3 = moment(time_signal,3);
12 mu4 = moment(time_signal,4);
13 mu5 = moment(time_signal,5);
14 mu6 = moment(time_signal,6);
15 mu7 = moment(time_signal,7);
16 mu8 = moment(time_signal,8);
17 mu9 = moment(time_signal,9);
18 % cumulants
19 c4 = mu4−3*mu2^2;
20 c5 = mu5−10*mu3*mu2;
21 c6 = mu6−15*mu4*mu2−10*mu3^2+30*mu2^3;
22 % skewness
23 v = skewness(time_signal);
24 % kurtosis
25 w = kurtosis(time_signal);
26 % standard deviation
27 sigma = std(time_signal,1);
28 % relative standard deviation
29 srsd = std(time_signal,1)/mean(time_signal);
30 % interquartile range
31 siqr = iqr(time_signal);
32 % median
33 smed = median(time_signal);
34 % mean absoute deviation
35 dmean = mad(time_signal);
36 % median absolute deviation
37 dmed = mad(time_signal,1);
38 % minimum value
39 smin = min(time_signal);
40 % maximum value
41 smax = max(time_signal);
42 % peak to peak value
43 sp2p = peak2peak(time_signal);
44 % maximum absolute value
45 speak = max(abs(time_signal));
46 % square root value
47 ssrv = (1/length(time_signal)*sum(sqrt(abs(time_signal)))).^2;
48 % average rectified value
49 sarv = 1/length(time_signal)*sum(abs(time_signal));

261

A Appendix

50 % root mean square
51 srms = rms(time_signal);
52 % root sum of squares
53 srss = rssq(time_signal);
54 % crest factor
55 ks = speak/srms;
56 % shape factor
57 kf = srms/sarv;
58 % 2nd and 3rd Hjorth Parameter
59 [hj2, hj3] = HjorthParameters(time_signal');
60 % area under curve
61 auc = trapz(time_signal);
62 % area under autocorrelation curve
63 aac = trapz(xcorr(time_signal));
64 % sum of overshoots
65 sos = sum(overshoot(time_signal));
66 % sum of undershoots
67 sus = sum(undershoot(time_signal));
68 % sum of rise times
69 srt = sum(risetime(time_signal));
70 % sum of fall time
71 sft = sum(falltime(time_signal));
72 % sum of slew rates
73 ssr = sum(slewrate(time_signal));
74
75 %#### frequency domain ####
76 % average bandpower
77 abp = bandpower(time_signal);
78 % 3dB half−power bandwidth
79 hpbw = powerbw(time_signal);
80 % 99% occupied bandwidth
81 ocbw = obw(time_signal);
82 % mean normalized frequency
83 fmean = meanfreq(time_signal);
84 % median normalized frequency
85 fmed = meanfreq(time_signal);
86 % spurious free dynamic range
87 ssfdr = sfdr(time_signal);
88 % singal to noise and distortion ratio
89 ssinad = sinad(time_signal);
90 % signal to noise ratio
91 ssnr = snr(time_signal);
92 % total harmonic distortion
93 sthd = thd(time_signal);
94
95 %#### create feature vector ####
96 features = [q sq mu2 mu3 mu4 mu5 mu6 mu7 mu8 mu9...
97 c4 c5 c6 v w sigma srsd siqr smed dmean...
98 dmed smin smax sp2p speak ssrv sarv...
99 srms srss ks kf hj2 hj3 auc aac sos sus srt sft ssr...
100 abp hpbw ocbw fmean fmed ssfdr ssinad ssnr sthd];
101 end

262

A Appendix

A.7.8 Test Set Modification Script

Listing A.13: Matlab source code of the test set modification script.

1 %% Script for modifying testsets to simulate machine faults
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 27.06.2017
5 clear all, clc, close all;
6
7 %% load original test dataset
8 [~,main_line_l2_run1,~,~,~,~,~,~,~,~,~,~,~,~,~,~] = get_data('Data_Run_1');
9
10 %% load labels and cut positions from labelsets
11 labelset_run1 = csvread('Labelsets/labelset_nominal_run1.csv');
12 cuts_run1 = labelset_run1(:,1);
13 desired_classes_run1 = labelset_run1(:,3);
14
15 %% create cell arrays containing all segments of the testcycle run
16 cuts_main_line_l2_exp1 = cell(length(cuts_run1)−1,1);
17 for i = 1:length(cuts_run1)−1
18 cuts_main_line_l2_exp1(i,1) = ...
19 {main_line_l2_run1(cuts_run1(i):cuts_run1(i+1))'};
20 end
21 cuts_main_line_l2_exp2 = cuts_main_line_l2_exp1;
22 cuts_main_line_l2_exp3 = cuts_main_line_l2_exp1;
23
24 %% create testdataset 1: all instances of class 6 are modified
25 % find all instances of class 6
26 ind = desired_classes_run1==6;
27 instances_exp1 = cuts_main_line_l2_exp1(ind);
28 % add weighted offset onto segments
29 for i = 1:length(instances_exp1)
30 % get offsets of first and last datapoint
31 offset(1) = instances_exp1{i}(1);
32 offset(2) = instances_exp1{i}(end);
33 % interpolate between both offsets to create linear offset function
34 len = length(instances_exp1{i});
35 offset_func = interp1([1 len], offset, 1:len);
36 % subtract offset function from original sequence
37 instances_exp1{i} = instances_exp1{i} − offset_func;
38 % multiply by factor
39 instances_exp1{i} = 1.5*instances_exp1{i};
40 % add offset function again
41 instances_exp1{i} = instances_exp1{i} + offset_func;
42 end
43 % merge modified instances into test dataset
44 cuts_main_line_l2_exp1(ind) = instances_exp1;
45
46 %% create testdataset 2: all instances of class 6 and 7 are modified
47 % find all instances of class 6 and 7
48 ind = (desired_classes_run1==6) | (desired_classes_run1==7);
49 instances_exp2 = cuts_main_line_l2_exp2(ind);

263

A Appendix

50 % add weighted offset onto segments
51 for i = 1:length(instances_exp2)
52 % get offsets of first and last datapoint
53 offset(1) = instances_exp2{i}(1);
54 offset(2) = instances_exp2{i}(end);
55 % interpolate between both offsets to create linear offset function
56 len = length(instances_exp2{i});
57 offset_func = interp1([1 len], offset, 1:len);
58 % subtract offset function from original sequence
59 instances_exp2{i} = instances_exp2{i} − offset_func;
60 % multiply by factor
61 instances_exp2{i} = 1.5*instances_exp2{i};
62 % add offset function again
63 instances_exp2{i} = instances_exp2{i} + offset_func;
64 end
65 % merge modified instances into test dataset
66 cuts_main_line_l2_exp2(ind) = instances_exp2;
67
68 %% create testdataset 3: individual segments randomly modified
69 % set state of random number generator
70 rng(0);
71 % randomly select instances
72 ind = [datasample(find(desired_classes_run1==6),10); ...
73 datasample(find(desired_classes_run1==7),5); ...
74 datasample(find(desired_classes_run1==2),2)];
75 instances_exp3 = cuts_main_line_l2_exp3(ind);
76 % add weighted offset onto segments
77 for i = 1:length(instances_exp3)
78 % get offsets of first and last datapoint
79 offset(1) = instances_exp3{i}(1);
80 offset(2) = instances_exp3{i}(end);
81 % interpolate between both offsets to create linear offset function
82 len = length(instances_exp3{i});
83 offset_func = interp1([1 len], offset, 1:len);
84 % subtract offset function from original sequence
85 instances_exp3{i} = instances_exp3{i} − offset_func;
86 % multiply by factor
87 instances_exp3{i} = 1.5*instances_exp3{i};
88 % add offset function again
89 instances_exp3{i} = instances_exp3{i} + offset_func;
90 end
91 % merge modified instances into test dataset
92 cuts_main_line_l2_exp3(ind) = instances_exp3;
93 % modify one segment of class 1 to create an outlier within the outliers
94 segment_ind = 52;
95 offset(1) = cuts_main_line_l2_exp3{segment_ind}(1);
96 offset(2) = 15;
97 offset(3) = cuts_main_line_l2_exp3{segment_ind}(end);
98 len = length(cuts_main_line_l2_exp3{segment_ind});
99 linear_func = interp1([1 round(len/2) len], offset, 1:len);
100 cuts_main_line_l2_exp3{segment_ind} = linear_func;
101
102 %% sequencialize all cuts to view modified test datasets
103 main_line_l2_exp1 = zeros(length(main_line_l2_run1),1);

264

A Appendix

104 main_line_l2_exp2 = zeros(length(main_line_l2_run1),1);
105 main_line_l2_exp3 = zeros(length(main_line_l2_run1),1);
106 for i = 1:length(cuts_main_line_l2_exp1)−1
107 main_line_l2_exp1(cuts_run1(i):cuts_run1(i+1)) = ...
108 cuts_main_line_l2_exp1{i};
109 end
110 for i = 1:length(cuts_main_line_l2_exp2)−1
111 main_line_l2_exp2(cuts_run1(i):cuts_run1(i+1)) = ...
112 cuts_main_line_l2_exp2{i};
113 end
114 for i = 1:length(cuts_main_line_l2_exp3)−1
115 main_line_l2_exp3(cuts_run1(i):cuts_run1(i+1)) = ...
116 cuts_main_line_l2_exp3{i};
117 end
118
119 %% plot modified test dataset
120 % EXP 1
121 figure;
122 clf;
123 plot(main_line_l2_exp1);
124 hold on;
125 plot(main_line_l2_run1);
126 xlabel('Data Sample');
127 ylabel('Current I / A');
128 legend('Modified','Original');
129 title('EXP 1: Modified Test Dataset');
130 grid on;
131 axis tight;
132 % EXP 2
133 figure;
134 clf;
135 plot(main_line_l2_exp2);
136 hold on;
137 plot(main_line_l2_run1);
138 xlabel('Data Sample');
139 ylabel('Current I / A');
140 legend('Modified','Original');
141 title('EXP 2: Modified Test Dataset');
142 grid on;
143 axis tight;
144 % EXP 3
145 figure;
146 clf;
147 plot(main_line_l2_exp3);
148 hold on;
149 plot(main_line_l2_run1);
150 xlabel('Data Sample');
151 ylabel('Current I / A');
152 legend('Modified','Original');
153 title('EXP 3: Modified Test Dataset');
154 grid on;
155 axis tight;
156
157 %% calculate features for modified testcycles

265

A Appendix

158 num_of_features = 49;
159 dataset_exp1 = zeros(length(cuts_run1)−1,num_of_features);
160 dataset_exp2 = zeros(length(cuts_run1)−1,num_of_features);
161 dataset_exp3 = zeros(length(cuts_run1)−1,num_of_features);
162 for i = 1:length(cuts_run1)−1
163 dataset_exp1(i,1:num_of_features) = ...
164 calc_features(cuts_main_line_l2_exp1{i});
165 dataset_exp2(i,1:num_of_features) = ...
166 calc_features(cuts_main_line_l2_exp2{i});
167 dataset_exp3(i,1:num_of_features) = ...
168 calc_features(cuts_main_line_l2_exp3{i});
169 end
170
171 %% replace every NaN, inf or −inf with 0
172 dataset_exp1(isnan(dataset_exp1)) = 0;
173 dataset_exp1(isinf(dataset_exp1)) = 0;
174 dataset_exp2(isnan(dataset_exp2)) = 0;
175 dataset_exp2(isinf(dataset_exp2)) = 0;
176 dataset_exp3(isnan(dataset_exp3)) = 0;
177 dataset_exp3(isinf(dataset_exp3)) = 0;
178
179 %% merge desired classes vectors into datasets
180 desired_classes_run1(end) = [];
181 dataset_exp1 = [dataset_exp1, desired_classes_run1];
182 dataset_exp2 = [dataset_exp2, desired_classes_run1];
183 dataset_exp3 = [dataset_exp3, desired_classes_run1];
184
185 %% write extracted datasets to csv and orange3 tab files
186 % csv files
187 dlmwrite('Modified_Testsets/dataset_testing_exp1.csv',...
188 dataset_exp1,'precision',10);
189 dlmwrite('Modified_Testsets/dataset_testing_exp2.csv',...
190 dataset_exp2,'precision',10);
191 dlmwrite('Modified_Testsets/dataset_testing_exp3.csv',...
192 dataset_exp3,'precision',10);
193
194 % special table format for orange3
195 header = {'C#q' 'C#sq' 'C#mu2' 'C#mu3' 'C#mu4' 'C#mu5' 'C#mu6'...
196 'C#mu7' 'C#mu8' 'C#mu9' 'C#c4' 'C#c5' 'C#c6' 'C#v' 'C#w' 'C#sigma'...
197 'C#srsd' 'C#siqr' 'C#smed' 'C#dmean' 'C#dmed' 'C#smin' 'C#smax'...
198 'C#sp2p' 'C#speak' 'C#ssrv' 'C#sarv' 'C#srms' 'C#srss' 'C#ks' 'C#kf'...
199 'C#hj2' 'C#hj3' 'C#auc' 'C#aac' 'C#sos' 'C#sus' 'C#srt' 'C#sft'...
200 'C#ssr' 'C#abp' 'C#hpbw' 'C#ocbw' 'C#fmean' 'C#fmed' 'C#ssfdr'...
201 'C#ssinad' 'C#ssnr' 'C#sthd' 'cD#Machine State'};
202
203 filename = 'Modified_Testsets/dataset_testing_exp1.tab';
204 fid = fopen(filename,'w');
205 fprintf(fid, '%s\t', header{1:end−1});
206 fprintf(fid, '%s\n', header{end});
207 fclose(fid);
208 dlmwrite(filename,dataset_exp1,'delimiter','\t','precision',10,'−append');
209
210 filename = 'Modified_Testsets/dataset_testing_exp2.tab';
211 fid = fopen(filename,'w');

266

A Appendix

212 fprintf(fid, '%s\t', header{1:end−1});
213 fprintf(fid, '%s\n', header{end});
214 fclose(fid);
215 dlmwrite(filename,dataset_exp2,'delimiter','\t','precision',10,'−append');
216
217 filename = 'Modified_Testsets/dataset_testing_exp3.tab';
218 fid = fopen(filename,'w');
219 fprintf(fid, '%s\t', header{1:end−1});
220 fprintf(fid, '%s\n', header{end});
221 fclose(fid);
222 dlmwrite(filename,dataset_exp3,'delimiter','\t','precision',10,'−append');

267

A Appendix

A.7.9 Processing of the Experimentally Acquired Modified Test Data

A.7.9.1 Measurement Data Plotting Script

Listing A.14: Matlab source code of the plotting script for the modified test measurement data.

1 %% Script for plotting of measurement data (for modified testset)
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 01.07.2017
5 clear all, clc, close all;
6 format short;
7
8 %% read csv files
9 [main_line_l1,...
10 main_line_l2,...
11 main_line_l3] = get_data_modified('Data_Run_1');
12
13 %% plot raw data
14 % DMU Main
15 fmain = figure;
16 clf;
17 plot(main_line_l1);
18 hold on;
19 plot(main_line_l2);
20 plot(main_line_l3);
21 title('DMU Main');
22 xlabel('Data Sample');
23 ylabel('Current I / A');
24 legend('L1','L2','L3');
25 grid on;
26 axis tight;
27 ylim([0, 60]);

Listing A.15: Matlab source code of the function used to read out the CSV files containing modified
test measurement data.

1 function [main_line_l1,...
2 main_line_l2,...
3 main_line_l3] = get_data(dataset_subfolder)
4 main_line_l1 = csvread([dataset_subfolder,'/main_line_l1.csv']);
5 main_line_l2 = csvread([dataset_subfolder,'/main_line_l2.csv']);
6 main_line_l3 = csvread([dataset_subfolder,'/main_line_l3.csv']);
7
8 %% drop last samples (only one or two) of too long vector
9 lmin = min([length(main_line_l1(:,2)),...
10 length(main_line_l2(:,2)),...
11 length(main_line_l3(:,2))]);
12
13 main_line_l1 = main_line_l1(1:lmin,2);
14 main_line_l2 = main_line_l2(1:lmin,2);
15 main_line_l3 = main_line_l3(1:lmin,2);

268

A Appendix

16 end

269

A Appendix

A.7.9.2 Automatic Segmentation and Labeling Script

Listing A.16: Matlab source code of the automatic segmentation and labeling algorithm for the
modified test measurement data.

1 %% Script for shape−based automatic cutting (for modified testset)
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 01.07.2017
5 % !!Run N01_Plotting.m first!!
6
7 %% create shape dicitionary from first subcycle of second testcycle run
8 [~,main_line_l2_2,~] = get_data_modified('../Data_Run_2');
9 c{1} = main_line_l2_2(880:2020); % spindle
10 c{2} = main_line_l2_2(7084:7320); % x−axis forward
11 c{3} = main_line_l2_2(7423:7660); % x−axis backward
12 c{4} = main_line_l2_2(10465:10626); % y−axis forward
13 c{5} = main_line_l2_2(10727:10887); % y−axis backward
14 c{6} = main_line_l2_2(13088:13215); % z−axis forward
15 c{7} = main_line_l2_2(13305:13432); % z−axis backward
16 c{8} = main_line_l2_2(15212:15290); % c−axis forward
17 c{9} = main_line_l2_2(15374:15457); % c−axis backward
18 c{10} = main_line_l2_2(16850:16908); % b−axis forward
19 c{11} = main_line_l2_2(16992:17047); % b−axis backward
20
21 %% match templates to find positions
22 % number of subcycles in one testcycle (normally 20)
23 num_of_runs = 20;
24 % variable holds positions of cuts
25 peak_pos = 0;
26
27 % repeat for every template
28 for k = 1:11
29 % Determine, how many peaks to find for the current type of template.
30 if(ismember(k,[1,6,7,10,11]))
31 num_of_peaks = 5*num_of_runs;
32 else
33 num_of_peaks = 10*num_of_runs;
34 end
35
36 % slide template indexwise over dataset_dmu_strom_l2
37 % calculate for each window position a distance measure (e.g. inf norm)
38 % find local minima in similarity measure over lag
39 templ = c{k};
40 tmplen = length(templ);
41 len = length(main_line_l2)−tmplen;
42 dist = zeros(len,1);
43 for i = 1:len
44 dist(i) = norm(main_line_l2(i:i+tmplen−1)−templ,Inf);
45 end
46
47 % invert distance to make it usable for findpeaks function
48 dist = −dist;

270

A Appendix

49
50 % find peaks in the signal and append to peak_pos
51 len = nnz(peak_pos);
52 [~, pp] = findpeaks(dist,'SortStr','descend','NPeaks',num_of_peaks);
53
54 % combine cutting points and endpoints of templates to cutting vector
55 peak_pos(len+1:len+2*num_of_peaks,1) = [pp; pp+tmplen];
56
57 % create variable which contains class numbers, but combines classes,
58 % which can't be distiguished by the algorithm, to a single classs
59 switch(k)
60 case {1,6,7,10,11}
61 r = k;
62 case {2,3}
63 r = 2;
64 case {4,5}
65 r = 4;
66 case {8,9}
67 r = 8;
68 end
69
70 % append current class as well as endpoint class (0) to the segment
71 classes(len+1:len+2*num_of_peaks,1) = ...
72 [repmat(r,num_of_peaks,1); zeros(num_of_peaks,1)];
73 end
74
75 % sort peak_pos in ascending order and sort classes accordingly
76 [peak_pos, sortidx] = sort(peak_pos);
77 classes = classes(sortidx);
78
79 % check, if there are approximative duplicates in the peak vector and
80 % remove them. Approximative duplicates are values, that are closer than
81 % 50 samples to each other. Remove from classes vector accordingly.
82 peak_pos_diff = diff(peak_pos);
83 idx = find(peak_pos_diff<50);
84 peak_pos(idx) = [];
85 classes(idx) = [];
86
87 % search for classes 2, 4 and 8 and replace every second one by the
88 % corresponding class 3, 5 or 9 (backward movements of x−, y− and z−axis)
89 for i = 1:length(classes)−2
90 if isequal(classes(i:i+2),[2;0;2])
91 classes(i:i+2) = [2;0;3];
92 elseif isequal(classes(i:i+2),[4;0;4])
93 classes(i:i+2) = [4;0;5];
94 elseif isequal(classes(i:i+2),[8;0;8])
95 classes(i:i+2) = [8;0;9];
96 end
97 end
98
99 % add inital cut on first sample of the dataset, where the state of the
100 % corresponding first segment must be idle (0)
101 peak_pos = [1; peak_pos];
102 classes = [0; classes];

271

A Appendix

103
104 %% check if class sequence is nominal
105 seq = [1,0,1,0,1,0,1,0,1,0,2,0,3,0,2,0,3,0,2,0,3,0,2,0,3,0,2,0,3,0,...
106 4,0,5,0,4,0,5,0,4,0,5,0,4,0,5,0,4,0,5,0,6,0,7,0,6,0,7,0,6,0,...
107 7,0,6,0,7,0,6,0,7,0,8,0,9,0,8,0,9,0,8,0,9,0,8,0,9,0,8,0,9,0,...
108 10,0,11,0,10,0,11,0,10,0,11,0,10,0,11,0,10,0,11,0];
109 seq = repmat(seq,1,num_of_runs);
110 seq = [0, seq];
111 if isequal(seq',classes)
112 disp('Class sequence is valid!');
113 else
114 disp('Class sequence is invalid! Check manually for any faults.');
115 end
116
117 %% create labelset csv file containing nominal cuts and base classes
118 labelset = [peak_pos ones(size(peak_pos)) classes];
119 dlmwrite('Labelsets/labelset_nominal_run4.csv',labelset,'precision',10);
120
121 %% plot found positions into data
122 if 1
123 figure;
124 clf;
125 plot(main_line_l1);
126 hold on;
127 plot(main_line_l2);
128 plot(main_line_l3);
129 hold on;
130 title('DMU Main');
131 xlabel('Data Sample');
132 ylabel('Current I / A');
133 %legend('L2');
134 grid on;
135 axis tight;
136 ylim([0, 60]);
137
138 % plot cut positions
139 for i = 1:length(peak_pos)
140 plot([peak_pos(i), peak_pos(i)],[0, 60],'r:');
141 end
142
143 for i = 1:length(peak_pos)
144 text(peak_pos(i),10,num2str(classes(i)));
145 end
146 end

272

A Appendix

A.7.9.3 Feature Extraction Script

Listing A.17: Matlab source code of the feature extraction algorithm for the modified test measurement
data.

1 %% Script for feature extraction (for modified testset)
2 % Lukas Bommes
3 % IWF TU Braunschweig
4 % 01.07.2017
5 clear all, clc, close all;
6
7 %% load measurement data
8 [~,main_line_l2_run4,~] = get_data_modified('Data_Run_1');
9
10 %% load labels and cut positions from labelsets
11 labelset_run4 = csvread('Labelsets/labelset_nominal_run4.csv');
12 cuts_run4 = labelset_run4(:,1);
13 desired_classes_run4 = labelset_run4(:,3);
14
15 %% create cell arrays containing all segments for each testcycle run
16 cuts_main_line_l2_run4 = cell(length(cuts_run4)−1,1);
17 for i = 1:length(cuts_run4)−1
18 cuts_main_line_l2_run4(i,1) = ...
19 {main_line_l2_run4(cuts_run4(i):cuts_run4(i+1))'};
20 end
21
22 %% loop through each row of the cell arrays and calculate features
23 num_of_features = 49;
24 dataset_run4 = zeros(length(cuts_run4)−1,num_of_features);
25 for i = 1:length(cuts_run4)−1
26 dataset_run4(i,1:num_of_features) = ...
27 calc_features(cuts_main_line_l2_run4{i});
28 end
29
30 %% replace every NaN, inf or −inf with 0
31 dataset_run4(isnan(dataset_run4)) = 0;
32 dataset_run4(isinf(dataset_run4)) = 0;
33
34 %% merge desired classes vectors into datasets
35 desired_classes_run4(end) = [];
36 dataset_run4 = [dataset_run4, desired_classes_run4];
37
38 %% write extracted datasets to csv and orange3 tab files
39 % csv files
40 dlmwrite('Modified_Testsets/dataset_testing_exp4.csv',...
41 dataset_run4,'precision',10);
42
43 % special table format for orange3
44 header = {'C#q' 'C#sq' 'C#mu2' 'C#mu3' 'C#mu4' 'C#mu5' 'C#mu6'...
45 'C#mu7' 'C#mu8' 'C#mu9' 'C#c4' 'C#c5' 'C#c6' 'C#v' 'C#w' 'C#sigma'...
46 'C#srsd' 'C#siqr' 'C#smed' 'C#dmean' 'C#dmed' 'C#smin' 'C#smax'...
47 'C#sp2p' 'C#speak' 'C#ssrv' 'C#sarv' 'C#srms' 'C#srss' 'C#ks' 'C#kf'...
48 'C#hj2' 'C#hj3' 'C#auc' 'C#aac' 'C#sos' 'C#sus' 'C#srt' 'C#sft'...

273

A Appendix

49 'C#ssr' 'C#abp' 'C#hpbw' 'C#ocbw' 'C#fmean' 'C#fmed' 'C#ssfdr'...
50 'C#ssinad' 'C#ssnr' 'C#sthd' 'cD#Machine State'};
51
52 filename = 'Modified_Testsets/dataset_testing_exp4.tab';
53 fid = fopen(filename,'w');
54 fprintf(fid, '%s\t', header{1:end−1});
55 fprintf(fid, '%s\n', header{end});
56 fclose(fid);
57 dlmwrite(filename,dataset_run4,'delimiter','\t','precision',10,'−append');

274

A Appendix

A.8 Python Source Codes

A.8.1 Feature-Based Classification

A.8.1.1 Training and Hyperparameter Optimization

Listing A.18: Python source code of the feature-based classifier training and hyperparameter opti-
mization.

1 """
2 Script for Feature Based Classification
3 Technical University Brunswick
4 21/06/2017
5
6 @author: Lukas Bommes
7 """
8
9 import pandas as pd
10 import numpy as np
11 from sklearn.preprocessing import StandardScaler
12 from sklearn.feature_selection import SelectFromModel
13 from sklearn.model_selection import GridSearchCV
14 from sklearn.neighbors import KNeighborsClassifier
15 from sklearn.tree import DecisionTreeClassifier
16 from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
17 from sklearn.svm import SVC
18 from sklearn.linear_model import SGDClassifier
19 from sklearn.naive_bayes import GaussianNB
20 from sklearn.externals import joblib
21
22 # define feature names
23 f_names = [’q’, ’sq’, ’mu2’, ’mu3’, ’mu4’, ’mu5’, ’mu6’, ’mu7’, ’mu8’, ’mu9’,
24 ’c4’, ’c5’, ’c6’, ’v’, ’w’, ’sigma’, ’srsd’, ’siqr’, ’smed’,
25 ’dmean’, ’dmed’, ’smin’, ’smax’, ’sp2p’, ’speak’, ’ssrv’, ’sarv’,
26 ’srms’, ’srss’, ’ks’, ’kf’, ’hj2’, ’hj3’, ’auc’, ’aac’, ’sos’,
27 ’sus’, ’srt’, ’sft’, ’ssr’, ’abp’, ’hpbw’, ’ocbw’, ’fmean’, ’fmed’,
28 ’ssfdr’, ’ssinad’, ’ssnr’, ’sthd’,’class’]
29
30 # import training and testing dataset
31 dataset_training = pd.read_csv(’dataset_training.csv’, names=f_names)
32 dataset_testing = pd.read_csv(’dataset_testing.csv’, names=f_names)
33
34 # split datasets in target class vector and features
35 X_train = dataset_training.iloc[:,0:49]
36 X_test = dataset_testing.iloc[:,0:49]
37 y_train = dataset_training.iloc[:,49]
38 y_test = dataset_testing.iloc[:,49]
39
40 # center data around mean and then scale it to unit variance
41 scaler = StandardScaler().fit(X_train)
42 X_train = scaler.transform(X_train)
43 X_test = scaler.transform(X_test)

275

A Appendix

44
45 # manual removal of inappropiate features
46 f_not_used = [0, 33, 44, 15, 16, 21, 22, 24]
47 X_train = np.delete(X_train, f_not_used, 1)
48 X_test = np.delete(X_test, f_not_used, 1)
49 for i in f_not_used:
50 del f_names[i]
51
52 # select 10 most relevant features by maximizing information gain
53 dt = DecisionTreeClassifier(criterion=’entropy’,
54 min_samples_leaf=1,
55 random_state=0)
56 sfm = SelectFromModel(dt)
57 sfm.fit(X_train, y_train)
58 X_train = sfm.transform(X_train)
59 X_test = sfm.transform(X_test)
60 selected_features = sfm.get_support(indices=True)
61 print(’Selected Features: ’ + str(list(f_names[i] for i in selected_features)))
62
63 # store preprossed test dataset
64 np.savetxt(’X_test_preprocessed.csv’, X_test, delimiter=",")
65 np.savetxt(’y_test_preprocessed.csv’, y_test, delimiter=",")
66
67 # initialise classifiers
68 classifiers = [KNeighborsClassifier(),
69 DecisionTreeClassifier(random_state=0),
70 RandomForestClassifier(random_state=0),
71 AdaBoostClassifier(random_state=0),
72 SVC(random_state=0, decision_function_shape=’ovr’),
73 SGDClassifier(random_state=0),
74 GaussianNB(priors=None)]
75
76 # define classifier names
77 names = [’NearestNeighbours’,
78 ’DecisionTree’,
79 ’RandomForest’,
80 ’AdaBoost’,
81 ’SupportVectorMachine’,
82 ’StochasticGradientDescent’,
83 ’NaiveBayes’]
84
85 # define parameter grids for classifier hyperparameters
86 parameters = [{’n_neighbors’:np.arange(1, 20, 1), # KNN
87 ’p’:[1,2],
88 ’weights’:[’uniform’,’distance’]},
89 {’criterion’:[’gini’,’entropy’], # DT
90 ’max_depth’:[None] + list(np.arange(1, 100, 1)),
91 ’min_samples_leaf’:np.arange(1, 5, 1)},
92 {’n_estimators’:np.arange(10, 100, 5), # RF
93 ’criterion’:[’gini’,’entropy’]},
94 {’n_estimators’:np.arange(10, 100, 5), # AdaBoost
95 ’learning_rate’:np.arange(0.1, 1.0, 0.1)},
96 {’kernel’:[’linear’,’poly’,’rbf’,’sigmoid’], # SVM
97 ’C’:np.arange(0.1, 1.0, 0.1),

276

A Appendix

98 ’degree’:[2,3,4,5]},
99 {’loss’:[’hinge’,’log’,’modified_huber’, # SGD
100 ’squared_hinge’, ’perceptron’],
101 ’penalty’:[’none’,’l2’,’l1’,’elasticnet’],
102 ’shuffle’:[True, False]},
103 {}] # Bayes
104
105 # do an exhaustive grid search over all hyperparameters for each classifiers
106 for i, (name, clf) in enumerate(zip(names, classifiers)):
107
108 # fit to training data and do grid search
109 clf = GridSearchCV(clf, parameters[i], cv=3)
110 clf.fit(X_train, y_train)
111
112 # output score for classifiers with optimized hyperparameters
113 print(name + ’: ’ + str(clf.best_estimator_.score(X_test, y_test)*100)
114 + ’ % (’ + str(clf.best_params_) + ’)’)
115
116 # store classifier to binary files
117 filename = ’Models\\’ + name + ’.pkl’
118 joblib.dump(clf, filename)

277

A Appendix

A.8.1.2 Classifier Evaluation

Listing A.19: Python source code of the feature based classifier evaluation.

1 """
2 Script for Evaluation of Feature Based Classsifiers
3 Technical University Brunswick
4 21/06/2017
5
6 @author: Lukas Bommes
7 """
8
9 import numpy as np
10 from sklearn.externals import joblib
11 import sklearn.metrics as metric
12
13 # print always full arrays instead of truncated versions
14 np.set_printoptions(threshold=np.inf)
15
16 # import preprocessed datasets
17 X_test = np.genfromtxt(’X_test_preprocessed.csv’, delimiter=’,’)
18 y_test = np.genfromtxt(’y_test_preprocessed.csv’, delimiter=’,’)
19
20 # define classifier names
21 names = [’NearestNeighbours’,
22 ’DecisionTree’,
23 ’RandomForest’,
24 ’AdaBoost’,
25 ’SupportVectorMachine’,
26 ’StochasticGradientDescent’,
27 ’NaiveBayes’]
28
29 # iterate over all classifiers
30 for i, name in enumerate(names):
31
32 # load trained classsifiers
33 filename = ’Models\\’ + name + ’.pkl’
34 clf = joblib.load(filename)
35
36 # calculate predictions on test set
37 y_pred = clf.predict(X_test)
38
39 # calculate confusion matrix
40 clf_confusion_matrix = metric.confusion_matrix(y_test, y_pred)
41
42 # compute different metrics
43 clf_accuracy_score = metric.accuracy_score(y_test, y_pred)
44
45 # create evaluation report file
46 filename = ’Evaluation\\’ + name + ’_report.txt’
47 f = open(filename, ’w’)
48 f.write(’Confusion Matrix: \n’)
49 f.write(str(clf_confusion_matrix) + ’\n\n’)

278

A Appendix

50 f.write(’Accuracacy Score: ’ + str(clf_accuracy_score))
51 f.close()

279

A Appendix

A.8.2 Machine Fault Detection Algorithm

A.8.2.1 Main Script

Listing A.20: Python source code of the machine fault detection algorithm.

1 """
2 Script for Machine Fault Detection
3 Technical University Brunswick
4 21/06/2017
5
6 @author: Lukas Bommes
7 """
8
9 ##
10 #
11 # Import packages
12 #
13 ##
14
15 import pandas as pd
16 import numpy as np
17 from sklearn.preprocessing import StandardScaler
18 import matplotlib.pyplot as plt
19 import LocalOutlierFactor
20
21 # print always full arrays instead of truncated versions
22 np.set_printoptions(threshold=np.inf)
23
24 ##
25 #
26 # Load and scale datasets, calculate centroids
27 #
28 ##
29
30 # define feature names
31 f_names = [’q’, ’sq’, ’mu2’, ’mu3’, ’mu4’, ’mu5’, ’mu6’, ’mu7’, ’mu8’, ’mu9’,
32 ’c4’, ’c5’, ’c6’, ’v’, ’w’, ’sigma’, ’srsd’, ’siqr’, ’smed’,
33 ’dmean’, ’dmed’, ’smin’, ’smax’, ’sp2p’, ’speak’, ’ssrv’, ’sarv’,
34 ’srms’, ’srss’, ’ks’, ’kf’, ’hj2’, ’hj3’, ’auc’, ’aac’, ’sos’,
35 ’sus’, ’srt’, ’sft’, ’ssr’, ’abp’, ’hpbw’, ’ocbw’, ’fmean’, ’fmed’,
36 ’ssfdr’, ’ssinad’, ’ssnr’, ’sthd’,’class’]
37
38 # import training and test datasets
39 dataset_training = pd.read_csv(’dataset_training.csv’, names=f_names)
40 dataset_testing_exp1 = pd.read_csv(’dataset_testing_exp1.csv’, names=f_names)
41 dataset_testing_exp2 = pd.read_csv(’dataset_testing_exp2.csv’, names=f_names)
42 dataset_testing_exp3 = pd.read_csv(’dataset_testing_exp3.csv’, names=f_names)
43 dataset_testing_exp4 = pd.read_csv(’dataset_testing_exp4.csv’, names=f_names)
44
45 # split datasets in target class vector and features
46 X_train = dataset_training.iloc[:,0:49]
47 y_train = dataset_training.iloc[:,49]

280

A Appendix

48 X_test_exp1 = dataset_testing_exp1.iloc[:,0:49]
49 y_test_exp1 = dataset_testing_exp1.iloc[:,49]
50 X_test_exp2 = dataset_testing_exp2.iloc[:,0:49]
51 y_test_exp2 = dataset_testing_exp2.iloc[:,49]
52 X_test_exp3 = dataset_testing_exp3.iloc[:,0:49]
53 y_test_exp3 = dataset_testing_exp3.iloc[:,49]
54 X_test_exp4 = dataset_testing_exp4.iloc[:,0:49]
55 y_test_exp4 = dataset_testing_exp4.iloc[:,49]
56
57 # center data around mean and then scale it to unit variance
58 scaler = StandardScaler().fit(X_train)
59 X_train = scaler.transform(X_train)
60 X_test_exp1 = scaler.transform(X_test_exp1)
61 X_test_exp2 = scaler.transform(X_test_exp2)
62 X_test_exp3 = scaler.transform(X_test_exp3)
63 X_test_exp4 = scaler.transform(X_test_exp4)
64
65 # select relevant features
66 selected_features = np.array([9,7,8,4,23,43,19,15,29,30])
67 X_train = X_train[:, selected_features]
68 X_test_exp1 = X_test_exp1[:, selected_features]
69 X_test_exp2 = X_test_exp2[:, selected_features]
70 X_test_exp3 = X_test_exp3[:, selected_features]
71 X_test_exp4 = X_test_exp4[:, selected_features]
72
73 # calculate centroid (center) for every class cluster
74 centroids_train = np.zeros((12,10))
75 centroids_test_exp1 = np.zeros((12,10))
76 centroids_test_exp2 = np.zeros((12,10))
77 centroids_test_exp3 = np.zeros((12,10))
78 centroids_test_exp4 = np.zeros((12,10))
79 for i in range(12):
80 class_samples_train = X_train[y_train==i,:]
81 class_samples_test_exp1 = X_test_exp1[y_test_exp1==i,:]
82 class_samples_test_exp2 = X_test_exp2[y_test_exp2==i,:]
83 class_samples_test_exp3 = X_test_exp3[y_test_exp3==i,:]
84 class_samples_test_exp4 = X_test_exp4[y_test_exp4==i,:]
85 centroids_train[i,:] = np.mean(class_samples_train, axis=0)
86 centroids_test_exp1[i,:] = np.mean(class_samples_test_exp1, axis=0)
87 centroids_test_exp2[i,:] = np.mean(class_samples_test_exp2, axis=0)
88 centroids_test_exp3[i,:] = np.mean(class_samples_test_exp3, axis=0)
89 centroids_test_exp4[i,:] = np.mean(class_samples_test_exp4, axis=0)
90
91 ##
92 #
93 # EXP 1: Detect shift of cluster centroid of class 6
94 #
95 ##
96
97 # calculate distance between centroids of training data and test data
98 dist = np.zeros((12,1))
99 for i in range(12):
100 dist[i] = np.linalg.norm(centroids_test_exp1[i,:] − centroids_train[i,:])
101

281

A Appendix

102 # compare distances with threshold value and print result
103 distance_threshold = 0.2
104 print(’\n−−\nReport of experiment 1:’)
105 for i, dist in enumerate(dist):
106 if dist > distance_threshold:
107 print(’\nFault detected in class ’ + str(i) + ’.’ +
108 ’\nCentroid shifted by ’ + str(dist[0]) +
109 ’ units.\n(threshold = ’ +
110 str(distance_threshold) + ’ units)’)
111 print(’−−’)
112
113 ##
114 #
115 # EXP 2: Detect shift of cluster centroids of classes 6 and 7
116 #
117 ##
118
119 # calculate distance between centroids of training data and test data
120 dist = np.zeros((12,1))
121 for i in range(12):
122 dist[i] = np.linalg.norm(centroids_test_exp2[i,:] − centroids_train[i,:])
123
124 # compare distances with threshold value and print result
125 distance_threshold = 0.2
126 print(’\n−−\nReport of experiment 2:’)
127 for i, dist in enumerate(dist):
128 if dist > distance_threshold:
129 print(’\nFault detected in class ’ + str(i) + ’.’ +
130 ’\nCentroid shifted by ’ + str(dist[0]) +
131 ’ units.\n(threshold = ’ +
132 str(distance_threshold) + ’ units)’)
133 print(’−−’)
134
135 ##
136 #
137 # EXP 3: Detect individual outliers of classes 2, 6 and 7
138 #
139 ##
140
141 # parameters for experiment 3
142 lof_n_neighbours = 20 # neighbours to consider when calculating overall lof
143 lof_threshold = 2000 # lof value above which point is labeled as outlier
144 outlier_subset_size = 5 # outliers per class above which fault is assumed
145 outlier_subset_lof_threshold = 200 # threshold for finding outliers in subset
146
147 # function for plotting the report
148 def print_report(obj):
149 if obj == ’header’:
150 print(’\n−−’ +
151 ’\nReport of experiment 3:’)
152 elif obj == ’footer’:
153 print(’−−’)
154 elif obj == ’systematic_fault’:
155 print(’\nFault detected in class ’ + str(i) + ’.’ +

282

A Appendix

156 ’\nThis class contains ’ + str(outlier_subset_count) + ’ outliers.’)
157 print(’(threshold = ’ + str(outlier_subset_size) + ’ outliers)’)
158 print(str(outlier_subset_count_updated) + ’ outliers are’ +
159 ’ clustered and ’ + str(outlier_subset_count −
160 outlier_subset_count_updated) + ’ are random noise.’)
161 elif obj == ’random_fault’:
162 print(’\nClass ’ + str(i) + ’ contains ’ + str(outlier_subset_count) +
163 ’ outliers.\nThis is a low number, possibly it is just noise.’)
164
165 # calculate lof for all samples in the dataset
166 lof = LocalOutlierFactor.lof(X_test_exp3, lof_n_neighbours)
167
168 # label outliers (points with lof bigger than threshold)
169 outliers = np.where(lof > lof_threshold)[0]
170
171 # get outlier classes and count outliers per class
172 outlier_classes = np.array(y_test_exp3[outliers])
173
174 # create dict containing numbers and indices of outliers for each class
175 outlier_index = dict((i, [outliers[np.where(outlier_classes == i)],
176 np.shape(outliers[np.where(outlier_classes == i)])[0]])
177 for i in range(12))
178
179 print_report(’header’)
180
181 # loop through all classes and find outliers within the subset of outliers
182 for i in range(12):
183 outlier_subset_count = outlier_index[i][1]
184 # check if there are enough outliers per class to preclude a random error
185 if outlier_subset_count < outlier_subset_size:
186 if outlier_subset_count > 0:
187 print_report(’random_fault’)
188 else:
189 # identify interclass outliers and check number of outliers again
190 outlier_subset_index = outlier_index[i][0]
191 outlier_subset_data = X_test_exp3[outlier_subset_index]
192 outlier_subset_lof = LocalOutlierFactor.lof(outlier_subset_data, 4)
193 interclass_outliers = np.where(outlier_subset_lof >
194 outlier_subset_lof_threshold)[0]
195 # remove number of interclass outliers from total number of outliers
196 outlier_subset_count_updated = (outlier_subset_count −
197 np.shape(interclass_outliers)[0])
198 # check again, if enough outliers are left to assume systematic fault
199 if outlier_subset_count_updated < outlier_subset_size:
200 print_report(’random_fault’)
201 else:
202 print_report(’systematic_fault’)
203
204 print_report(’footer’)
205
206 ##
207 #
208 # EXP 4: Detect faults in real measurement data
209 #

283

A Appendix

210 ##
211
212 # calculate distance between centroids of training data and test data
213 dist = np.zeros((12,1))
214 for i in range(12):
215 dist[i] = np.linalg.norm(centroids_test_exp4[i,:] − centroids_train[i,:])
216
217 # compare distances with threshold value and print result
218 distance_threshold = 0.2
219 print(’\n−−\nReport of experiment 4:’)
220 for i, dist in enumerate(dist):
221 if dist > distance_threshold:
222 print(’\nFault detected in class ’ + str(i) + ’.’ +
223 ’\nCentroid shifted by ’ + str(dist[0]) +
224 ’ units.\n(threshold = ’ +
225 str(distance_threshold) + ’ units)’)
226 print(’−−’)
227
228 ##
229 #
230 # Create CSV files containing necceassary data for plotting in MATLAB
231 #
232 ##
233
234 # Preprocessed Training and test Dataset
235 np.savetxt(’plot\\X_train.csv’, X_train, delimiter=",")
236 np.savetxt(’plot\\X_test_exp1.csv’, X_test_exp1, delimiter=",")
237 np.savetxt(’plot\\X_test_exp2.csv’, X_test_exp2, delimiter=",")
238 np.savetxt(’plot\\X_test_exp3.csv’, X_test_exp3, delimiter=",")
239 np.savetxt(’plot\\X_test_exp4.csv’, X_test_exp4, delimiter=",")
240
241 # Centroids
242 np.savetxt(’plot\\centroids_train.csv’, centroids_train, delimiter=",")
243 np.savetxt(’plot\\centroids_exp1.csv’, centroids_test_exp1, delimiter=",")
244 np.savetxt(’plot\\centroids_exp2.csv’, centroids_test_exp2, delimiter=",")
245 np.savetxt(’plot\\centroids_exp3.csv’, centroids_test_exp3, delimiter=",")
246 np.savetxt(’plot\\centroids_exp4.csv’, centroids_test_exp4, delimiter=",")
247
248 # Outliers
249 np.savetxt(’plot\\outliers.csv’, outliers, delimiter=",")
250
251
252 ##
253 #
254 # Plot results
255 #
256 ##
257
258 # create axis with three subplots
259 f, ax = plt.subplots(2, 2)
260 ax[0, 0].set_title(’Experiment 1’)
261 ax[0, 1].set_title(’Experiment 2’)
262 ax[1, 0].set_title(’Experiment 3’)
263 ax[1, 1].set_title(’Experiment 4’)

284

A Appendix

264
265 # define 12 different colors for distiguishing classes of the training set
266 colors = np.zeros(np.shape(X_train)[0])
267 for i in range(12):
268 colors[y_train==i] = i/12
269
270 # plot training set
271 ax[0, 0].scatter(X_train[:,6], X_train[:,4], c=colors, cmap=’hsv’)
272 ax[0, 1].scatter(X_train[:,6], X_train[:,4], c=colors, cmap=’hsv’)
273 ax[1, 0].scatter(X_train[:,6], X_train[:,4], c=colors, cmap=’hsv’)
274 ax[1, 1].scatter(X_train[:,6], X_train[:,4], c=colors, cmap=’hsv’)
275
276 # plot test set
277 ax[0, 0].scatter(X_test_exp1[:,6], X_test_exp1[:,4], c=’k’, alpha=0.4)
278 ax[0, 1].scatter(X_test_exp2[:,6], X_test_exp2[:,4], c=’k’, alpha=0.4)
279 ax[1, 0].scatter(X_test_exp3[:,6], X_test_exp3[:,4], c=’k’, alpha=0.4)
280 ax[1, 1].scatter(X_test_exp4[:,6], X_test_exp4[:,4], c=’k’, alpha=0.4)
281
282 # plot centroids of experiment 1, 2 and 4 as pink dots
283 ax[0, 0].scatter(centroids_test_exp1[:,6], centroids_test_exp1[:,4], c=’pink’)
284 ax[0, 1].scatter(centroids_test_exp2[:,6], centroids_test_exp2[:,4], c=’pink’)
285 ax[1, 1].scatter(centroids_test_exp4[:,6], centroids_test_exp4[:,4], c=’pink’)
286
287 # plot outliers of experiment 3 as orange points
288 ax[1, 0].scatter(X_test_exp3[outliers,6], X_test_exp3[outliers,4], c=’orange’)
289 plt.tight_layout()
290 plt.draw()

285

A Appendix

A.8.2.2 Function for Computing Local Outlier Factor

Listing A.21: Python source code of the function computing the local outlier factor.

1 """
2 Script for Calculation of Local Outlier Factor
3 Technical University Brunswick
4 29/06/2017
5
6 @author: Lukas Bommes
7 """
8
9 # import packages
10 import numpy as np
11 from sklearn.neighbors import NearestNeighbors
12
13 def lof(data, k):
14 # get neighbourhoods of all points
15 neigh = NearestNeighbors(n_neighbors=k+1, p=1)
16 neigh.fit(data)
17 (dist, neighbours) = neigh.kneighbors(data)
18 (dist, neighbours) = (dist[:,1:], neighbours[:,1:])
19 kdist = np.amax(dist, axis=1)
20
21 # calculate local reachability distances for all points
22 rdist = np.zeros([k, np.shape(data[:,0])[0]])
23 for o in range(np.shape(data[:,0])[0]):
24 neighbours_o = neighbours[o,:]
25 distances = np.array([kdist[neighbours_o], dist[o,:]])
26 rdist[:,o] = np.amax(distances, axis=0)
27
28 # calculate local reachability densities of all points
29 lrd = np.divide(k, np.sum(rdist, axis=0))
30
31 # calculate local outlier factors for all points
32 lof = np.multiply(np.sum(lrd[neighbours], axis=1), np.sum(rdist, axis=0))
33
34 return lof

286

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources
used are acknowledged as references. I am aware that the thesis in digital form can be examined
for the use of unauthorized aid and in order to determine whether the thesis as a whole or parts
incorporated in it may be deemed as plagiarism. For the comparison of my work with existing
sources I agree that it shall be entered in a database where it shall also remain after examination,
to enable comparison with future theses submitted. Further rights of reproduction and usage,
however, are not granted here. This paper was not previously presented to another examination
board and has not been published. [191]

Singapore, 17th Juli 2017

(Lukas Bommes)

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	1 Introduction
	2 Theoretical Concepts
	2.1 Knowledge Discovery in Databases
	2.2 Machine Learning
	2.3 Patterns and Pattern Recognition
	2.4 Anomaly Detection

	3 Machine Tool Analysis
	3.1 Key Features of the Machine
	3.2 Functional Modules of the Machine
	3.3 Electrical Power Consumers within the Machine

	4 Data Acquisition
	4.1 Overview of the Measurement Data
	4.2 Data Acquisition Toolchain
	4.3 Definition of Machine States
	4.4 Test Cycle Definition
	4.5 Test Cycle Results

	5 Data Segmentation and Labelling
	5.1 Segmentation and Labelling Task Outline
	5.2 Manual Segmentation and Labelling
	5.3 Automatic Segmentation and Labelling
	5.3.1 Segmentation
	5.3.2 Labeling of Controllable State Changes
	5.3.3 Labeling of Non-Controllable State Changes
	5.3.4 Results of Automatic Segmentation and Labeling

	6 Shape Based Classification
	6.1 Foundations of Shape Based Classification
	6.1.1 Principle of Shape Based Classification
	6.1.2 Dynamic Time Warping
	6.1.3 Cross-Correlation

	6.2 Template Creation via Accurate Shape Averaging
	6.2.1 Overview Over Existing Shape Averaging Methods
	6.2.2 Foundations of Shape Averaging
	6.2.3 Operational Principle of the ASA Algorithm
	6.2.3.1 Localizing Pair of Most Similar Sequences
	6.2.3.2 Alignment of Both Sequences by Means of DTW
	6.2.3.3 Calculation of the Shape Averaged Sequence
	6.2.3.4 Resampling of the Averaged Sequence

	6.2.4 Description of the Template Creation Algorithm
	6.2.5 Results of the Template Creation Algorithm

	6.3 Development of Shape Based Classifiers
	6.4 Evaluation of Classification Result
	6.5 Conclusion of Shape Based Classification Approach

	7 Feature Based Classification
	7.1 Foundations of Feature Based-Classsification
	7.1.1 Dataset Nomenclature
	7.1.2 Principle of Feature Based Classification
	7.1.3 Classification Algorithms
	7.1.3.1 k-Nearest-Neighbours
	7.1.3.2 Decision Tree
	7.1.3.3 Random Forest
	7.1.3.4 AdaBoost
	7.1.3.5 Support Vector Machine
	7.1.3.6 Stocastic Gradient Descent
	7.1.3.7 Naive Bayes

	7.2 Extraction of Statistical Features
	7.3 Development of Feature-Based Classifiers
	7.3.1 Standardization of Extracted Features
	7.3.2 Selection of Relevant Features
	7.3.3 Hyperparameter Setup

	7.4 Evaluation of Feature-Based Classifiers
	7.5 Conclusion of Feature-Based Classification Approach

	8 Machine Fault Detection
	8.1 Local Outlier Factor
	8.2 Test Dataset Generation
	8.2.1 Synthetic Generation of Modified Test Datasets
	8.2.2 Experimental Generation of a Modified Test Dataset

	8.3 Fault Detection Algorithm
	8.3.1 Detection of Systematic Faults
	8.3.2 Detection of Random Faults

	8.4 Experiment Results
	8.5 Conclusion of Machine Fault Detection

	9 Conclusion
	Bibliography
	A Appendix
	A.1 Full Machine State Definition Table
	A.2 Test Cycle Code for Heidenhain iTNC 530
	A.3 Results of Test Cycle Runs 1 and 2
	A.3.1 Test Cycle Run 1
	A.3.2 Test Cycle Run 2

	A.4 Distance Measures of Templates for Automatic Segmentation
	A.5 Resulting Averaged Templates from Accurate Shape Averaging
	A.6 Confusion Matrices for Feature-Based Classifiers
	A.7 Matlab Source Codes
	A.7.1 Label Assistant GUI
	A.7.2 Measurement Data Plotting Script
	A.7.3 Automatic Segmentation and Labeling Algorithm
	A.7.4 Template Averaging Algorithm
	A.7.5 Shape-Based Template Matching Algorithm
	A.7.6 Parameter Studies for the Template Matching Algorithm
	A.7.7 Feature Extraction Algorithm
	A.7.8 Test Set Modification Script
	A.7.9 Processing of the Experimentally Acquired Modified Test Data
	A.7.9.1 Measurement Data Plotting Script
	A.7.9.2 Automatic Segmentation and Labeling Script
	A.7.9.3 Feature Extraction Script

	A.8 Python Source Codes
	A.8.1 Feature-Based Classification
	A.8.1.1 Training and Hyperparameter Optimization
	A.8.1.2 Classifier Evaluation

	A.8.2 Machine Fault Detection Algorithm
	A.8.2.1 Main Script
	A.8.2.2 Function for Computing Local Outlier Factor

