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Abstract
Thermography is a frequently used and appreciated method to detect underperforming
Photovoltaic modules in solar power stations. With the review, we give insights on two aspects: (a)
are the developed measurement strategies highly efficient (about 1 module s−1) to derive timely
answers from the images for operators of multi-Mega Warr peak power stations, and (b) do
Photovoltaic stakeholders get answers on the relevance of thermal anomalies for further decisions.
Following these questions, the influence of measurement conditions, image and data collection,
image evaluation as well as image assessment are discussed. From the literature it is clear that
automated image acquisition with manned and unmanned aircrafts allow to capture more than
1 module s−1. This makes it possible to achieve almost identical measurement conditions for the
modules; however, it is documented to what extent the increase in speed is achieved at the expense
of image resolution. Many image processing tools based on machine learning (ML) have been
developed and show the potential for analysis of infrared (IR) images and defect classification.
There are different approaches to evaluating IR anomalies in terms of impact on performance,
yield or degradation, of individual modules or modules in a string configuration. It is clear that the
problem is very complex and multi-layered. On the one hand, information on the electrical
interconnection is necessary, and on the other hand, there is a lack of sufficient and suitable data
sets to adapt existing computer vision tools to Photovolatics. This is where we see the greatest need
for action and further development to increase the expressiveness of IR images for PV stakeholder.
We conclude with recommendations to improve the outcome of IR-images and encourage the
generation of suitable public data sets of IR-footage for the development of ML tools.

1. Introduction

Thermography, also called infrared (IR) imaging, has been a frequently used tool for years to detect faulty or
underperforming modules and strings in PV power plants. IR is so attractive because the images are taken
during operation in a non-contact and non-destructive way without interfering with the electrical system.
With this review, we address the question in how far today’s methodology of thermography inspection meets
the current and future requirements of researchers and industry. Two aspects are in focus:

(a) Worldwide, the PV installation market is expected to grow annually by 200 GWp and more over the next
five years [1] PV systems will be installed on water (floating PV), on facades (Building Integrated
Photovoltaics), in agricultural environments (agri PV), and of course on large open spaces at Giga Watt
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Figure 1. Scheme of holistic inspection process: data acquisition, data processing, data analysis, and data visualization.

peak (GWp) scale. Important to power production will be ground-mounted, large and extended
utility-scale multi Mega Watt peak (MWp) PV systems. We focus on these systems in the review. Let us
do a small calculation example. Assume for simplicity a 100 MWp PV power station with 200 000 PV
modules (each having 500 Wp) distributed over 300 hectares and e.g. 200 central inverters as well as
changing micro climates throughout the installation site. With this review we want to paint a holistic
picture of the inspection process: (1) data acquisition, (2) data processing, (3) data analysis, and (4) data
visualization, as presented in figure 1. In continuation of the little example, assuming further that every
second one module is inspected, and the recorded data is analyzed and evaluated, a total processing time
of 7 d (each 8 h) would be needed to assess the entire plant. At 5 s of inspection process, it is in total 35 d
of inspection time. While data acquisition is not the limiting factor to the inspection throughput, most
time is spent, instead, on the data processing and analysis. All processing steps that require manual labor
and cannot be automated in image analysis are time critical, as is training of models for data processing.
Recent automated processing systems based on computer vision and machine learning (ML) have
shown the potential to significantly reduce the time required for processing. However, for automated
data analysis appropriate datasets and knowledge about failures need to be created: is a time scheme of
1 s per module for analyzing GWp PV power stations sufficient in order to locate underperforming
modules and strings? We emphasize what is achievable with thermography according to the state of the
art, but also possibilities for development potential.

(b) Discussions with asset owners, EPCs and O&M companies reveal that they are aware of and appreciate
the advantages of thermography. It enables fast and direct, non-contact, non-destructive identification
and localization of malfunctioning or underperforming modules and strings without disrupting regular
operation. ‘A picture is worth a thousand words’. Making faults visible by means of thermal anomalies
can only be a first step, statements about the relevance of the findings are lacking, though for e.g.
operation, service life, yield, or O&M. Can thermography provide the industry with this information to
decide on necessary maintenance measures to secure operation and yield? We are therefore researching
the literature for reliable, quantitative statements on performance reduction (power or yield) and/or
degradation behavior of PV systems based on IR images.

The review shows what contribution thermography of state of the art makes to PV power plant
inspection today, but also which developments can be beneficial to be prepared for future requirements,
(a) fast and (b) expressive inspection tool. Scanning the publications of the current state of research and
developments in industry and academia, PV-system-related thermography started already in 1994. As
visualized in figure 2, we can distinguish four epochs in the development of IR thermography as a suitable
tool for PV power plant inspection:

(a) IR—in the first two decades IR-imaging started to move from the lab to outdoor application for PV
module inspection as a fast and inexpensive tool. IR photographer walked through PV-systems and took
IR-images of defective modules by hand. Defect signatures of real operating modules, such as substrings,
potential induced degradation (PID), module strings, diodes, hot cells, solder defects, were collected.

(b) IR+UAV—about 2014 first publications highlight the benefit of using drones or unmanned aerial
vehicles (UAVs) as carriers for IR-cameras. The use of drones accelerated and facilitated the inspection
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Figure 2. Overview of the 142 publications on thermography-related inspections of installed photovoltaics studied.

process and laid the foundation for the automation of image acquisition. In 2017 Andrews [2] reports
IR-inspections of PV-power stations by aircraft.

(c) IR+UAV+ML—due to the immense image volumes, manual evaluation became too tedious and was
increasingly replaced by automated image analysis since 2016. Now the images are digitized in order to
be used for ML methods.

(d) IR+ EVAL—since around 2018, we have seen the first efforts to evaluate (EVAL) and quantify the
thermal anomalies found.

Since the first studies [3–5] on visualizing defects in PV modules under operating conditions, the interest
and acceptance of thermography for quality control of PV modules and PV power stations has increased
significantly. The focus was on the recognition, documentation and explanation of typical failure patterns of
PV-modules in the IR images (marked in figure 2 as ‘PV modules’) and other established imaging methods
such as electroluminescence (EL). Since the occurrence and relevance of defective PV modules can only be
understood in the context of the PV system, this aspect is captured with the key word ‘PV system’ in figure 2.
The success story of thermographic quality testing continued with the availability and usability of drones for
civil applications, marked in figure 2 as ‘UAV’. In one fell swoop, the IR cameras on drones made it so easy to
record large quantities of images of many PV modules in large PV power stations that it was no longer
possible or practical to process the data manually. Available computer vision tools enhanced the research on
algorithms for automated image processing and anomaly detection. Fault detection and classification can
now be done using various ML methods. Successful fault/anomaly detection is important, but also requires
quantitative evaluation in terms of relevance and impact on the yield of the PV system. Publications on the
evaluation are summarized in the category ‘assessment’. Furthermore, the comparison of IR-findings with
other imaging techniques are of interest and are listed under the headline ‘imaging methods’, e.g. EL, true
color red-green-blue (RGB) -images. Since 2017, there is an international standard for thermographic
inspection of solar modules [6], which is addressed as ‘standard’.

There are many reviews in the IR PV-related literature that indicate community expectations for IR
testing of PV power stations and the potential to be disclosed. The reviews, listed in table 1, cover a wide range
of aspects. They provide insights in optics and camera specifications [9], specifications of robots and drones
[9, 10, 13], imaging techniques [11, 12, 14, 18, 19], module failures and their patterns [7, 8, 15, 17, 19],
image processing [17], and ML tools [16]. This review is about IR testing of the PV system, not the PV
module. It extends beyond the individual PV module and considers the PV module as a part of the electrical
system and in connection with the grid. The aspect of high throughput of the inspection of GWp PV power
stations is emphasized on an equal footing with the claim to state the relevance of the thermal anomalies.
Relevance means which defect must be taken seriously, which can be ignored. EL is an alternative imaging
technique which can confirm defects. A possible assessment may be based on hazard potential, performance,
yield, or degradation over time. IV measurements and monitoring data can help classify and evaluate
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Table 1. Summary of IR- and PV-related reviews in the period 2012–2021.

Main aspect/topic Authors Year Citation

Failures, module degradation, list of typical
errors

Spagnolo et al 2012 [7]

Failures, modules Tsanakas et al 2016 [8]
General principles+ cameras and drones
and specifications

Gallardo et al 2018 [9]

Drones, UAS towards automated inspection
procedures, thermal anomalies, 3d
photogrammetry

Rakha and Gorodetsky 2018 [10]

Imaging techniques Jahn et al, IEA report 2018 [11]
Fundamentals Herraiz et al 2020 [12]
Drones and IR-images of PV-systems,
fundamentals

Rahaman et al 2020 [13]

Condition monitoring, fundamentals of
thermography

Kandeal et al 2021 [14]

Visual faults, faults, power-reducing affects,
faults and methods, data analysis

Venkatesh and Sugumaran 2021 [15]

Deep learning for infrared imaging-based
machine vision

He et al 2021 [16]

Image processing: surface
defects—internal—external problems,
damage identification of PV, pictures of
failures

Afifah et al 2021 [17]

Field-suitable mobile test equipment for
PV-plants

Herrmann et al, IEA report 2021 [18]

Fault diagnostics for utility-scale PV systems,
calculation of electrical parameters,
thermography, faults+ classification

Navid et al 2021 [19]

performance losses. Interesting is how current methods are equipped for future tasks, e.g. inspecting a GWp
PV power stations in continuous operation within acceptable time frames and with expressive reports.

The review is structured as follows: (a) brief introduction into thermal anomalies, identified failures and
IR findings and their relevance for safe plant operation or system performance, (b) measurement conditions
for IR-snapshots, which are important for image analysis but rarely discussed and included (on one hand
measurement conditions can assist in root cause analysis, on the other hand be constraints for comparable
image analysis), (c) core section highlighting: first; image acquisition and its responsibility for image quality
and inspection speed, second, image processing for PV module segmentation, failure extraction and
classification, and third, image evaluation, interpretation and assessment for giving insights into the
relevance of the findings, and (d) discussion provides an overview of the lessons-learned, the consequences
and the resulting need for development, i.e. which pieces of the puzzle are still missing in order to test
large-scale PV power plants quickly and reliably and to make statements on relevance of their findings.

2. Failure modes in IR-imaging

In the early years thermal anomalies in IR-images were classified according to the patterns typical for distinct
physical signatures, e.g. substring failure (open circuit or short circuit), diodes, cell fracture, PID. Many
exemplary images of such failures, especially for 60 and 72 cell PV modules, can be found in the literature
[8, 11, 18, 20, 21]. The classification of the observed anomalies changed in line with the efforts to make the
evaluation more automated. The physical root-cause analysis became a phenomenological classification of
the observations. Typically, PV-module faults are classified into visual, electrical, and miscellaneous faults
[15, 22, 23]. The widely used classification of IR-anomalies suggested in the International Energy Agency
(IEA) report [24] is shown in table 2. Cell cracks are usually not detectable with IR due to lateral dissolution
limited by blurring caused by heat diffusion, as impressively shown by Muehleisen et al [25] using the
example of modules after a hailstorm, here the existence of cell cracks was verified by EL.

Thermography is the imaging method that can make more than PV-module defects visible. Many
deficiencies/deviations from normal operation can be detected using IR-imaging, namely:

• PV module faults [27, 28], all kinds of thermal anomalies and temperature gradients.
• Operational issues, e.g. disconnected strings/arrays/inverters, curtailment [29, 30].
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Table 2. Classification of thermal signatures of PV-module faults can be found in IEA report [24] originally from feasibility study [26]
but modified and extended.

Thermal signature category Description Reason

A Whole cell part Shunted, delaminated or partially shaded
cell

B Part of hot cell Cracked cell, disconnected interconnector,
or faulty solder joints

C Single hot point= hot spot Cracked cell or damaged
busbar/interconnector, or artifact

D Uniformly hot substring Fully active bypass diode
E Patchwork pattern of hot

cells
Short-circuited diode/fractured front glass,
shunted diode (with increased occurrence
close to frame: indication for PID)

F Hot junction box Poor connection causing ohmic heating

Figure 3. IR-images showing thermal anomalies in IROP (900 W m−2, 21 ◦C ambient). Upper left: bypassed substring, upper
right (IR and visual): soiling by bird droppings, lower row: disconnected string, short-circuited strings with typical patterns (see
section 3.2.1), and shading (right: corresponding RGB image).

• External factors, e.g. soiling and dust [31], shading by stationary or changing/moving objects e.g. vegetation
[30, 32], chimneys, high voltage lines [33], poles, partial shading [32].

Statistics from the years 2017 and 2019 show that PV-module and PV-array failures [29, 30] as well as
shading [30] are frequently detected anomalies in IR-images. Especially during the commissioning period
inactive tables, glass breakage, diode and junction box issues are the most frequent findings [34]. Examples
of modules failures and external factors in IR images taken in normal operation mode (IROP, explanation
below) are shown in figure 3.

Because of the limitations of one method to better understand observed findings, often supplementary
and comparative measurements are carried out. For more details IR-images are enriched with EL images
[35–38] or photoluminescence [39] or for power data with IV-measurements [40]. Frequently visual
RGB-images are recorded simultaneously to the IR-footage in order to prevent misinterpretations due to
artifacts, e.g. glass breakage, bird droppings, leaves, shading [41, 42]. An example for thermal anomalies due
to soiling is given in figure 4.
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Figure 4. Thermal anomalies due to soiling (1000 Wm−2, 12 ◦C ambient). Left: stitched RGB images, right: stitched IR images#.

IR-imaging is also suitable to detect faults due to thermal anomalies in thin-film PV-modules [27, 43, 44]
but will not be further discussed in this review. While thermography can be applied successfully to detect
faults in all electrical equipment (e.g. inverters, combiner boxes, and cables) [27, 45] we will focus on its
application to PV modules for the remainder of this article. Issues, that are easily detectable from the front
side in PV-systems.

3. Measurement conditions

Measurement conditions provide the framework for high throughput and informative value of IR
inspections. To achieve both, careful trade-offs must be made between the objectives. The dependence of IR
images on the moment of external, given measurement conditions is outlined, first. Subsequently, the
(additional) benefit of IR images at controlled operating conditions of the PV system for fault evaluation and
root-cause analysis is presented. Here, a clear balance has to be made between additional benefits for error
evaluation and fast and contact-free measurement performance.

3.1. Influencing factors
The measurement conditions are crucial for the recorded temperature distribution of the IR-snapshot and
further analysis and assessment as well as for the time needed for the inspection including preparation.
Thermography uses IR cameras to record heat radiation emitted by objects, in this case PV modules, in a
non-contact and non-destructive manner. Global and local temperature differences or increases indicate
faults and underperformance. For PV modules, solar energy that is not converted into electricity is converted
into heat. Furthermore, low performing parts of modules can become consumers rather than producers of
power and thus heat up considerably. Temperature increases are therefore a good indication of reduced
performance and the presence of faults, but also a difficult task using the IR images. Aspects such as relevance
and safety must be assessed using the absolute temperatures or temperature differences between anomaly
and unaffected references. Even though temperature differences can be determined more reliably than
absolute temperatures, temperature is still sensitive to changes.

The measurement conditions include all factors which influence the equilibrium between module
temperature or defect temperature T and power P or power loss. These impact factors cover (a) electrical
settings, e.g. strings length [46, 47], (b) operational configuration, e.g. maximum power point
(MPP)-tracking or curtailment which define the operating point, (c) weather conditions, e.g. insolation E,
temperature, wind speed, and (d) characteristics of a defective PV-module [48]. If one impact factor changes,
the temperature-power balance of a defective PV-module changes, too [49–51], as visualized in figure 5. At
operating point MPP the temperature is lowest and power output maximum. A shift of the operating point
leads to increased power loss and increased temperature. The evaluation of the power loss of thermally
conspicuous PV modules can be ambiguous: Module power at STC conditions or module power at field
conditions or impact of defective PV module on string power in the field. The resulting numbers differ,
following the example in [51], e.g. relative module power compared to nominal power: P(STC)= 92%,
P(field)= 73%, and P(field+ in-series with other modules)= 58%. At that, knowledge of electrical
configurations, string and inverter layouts (module optimizer, string inverter, or central inverters) are
absolutely necessary.
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Figure 5. Visualization of TOP: module temperature, operating conditions, and power and the impact of changing operating
conditions on the temperature distribution and power output. Reproduced with permission from [51].

However, the reaction time to changes, e.g. in weather conditions, is different for electrical current and
voltage in comparison to temperature. The electrical parameters react instantaneously while the temperature
adapts slowly [52, 53]. Patterns can change within minutes, e.g. the bypass diode becomes active, or
throughout the course of the day (a short-circuited bypass diode/substring of a solar module shows a
checkerboard-like thermal appearance in the early morning (E = 400 Wm−2 and T = 36 ◦C) and one very
hot cell in the substring in the early afternoon (E = 900 Wm−2 and T = 69 ◦C)). Therefore, at least 15 min
of unchanged weather conditions are widely recommended.

Another aspect that needs to be considered is moisture on the module surface. Dew is to be avoided at IR
recordings because otherwise blurred IR-images are the result. Furthermore, the image quality is of
importance. Camera properties, as wavelength, pixels, instantaneous field of view (IFOV) determine the
limits of the lateral resolution, addressed in [6, 54, 55]. View angle and altitude/distance [55–57] also need to
be taken into account. For inspections on cell level, altitude/distance as well as IR-sensors, lens data
FOV/IFOV need to be adapted to measurement spot sizes of the cell technology to be analyzed, e.g. new half
cells/modules.

3.2. IR methodology
IR-images capture and document thermal anomalies directly, instantaneously [58], and in real-time without
operation interruption. For the preparation and subsequent evaluation of an IR inspection, geographical and
mechanical site plans, electrical string plans, the inverter concept, grid influences (e.g. curtailment), module
data and weather data must be examined in order to be able to explain any observed thermal anomalies
during the inspection. Different IR measurement methods can be distinguished depending on the
intervention in the PV array, e.g. [59]. We describe: IR-imaging in operation (IROP or IRMPP), IR-imaging at
short-circuit (IRSC), IR-imaging at open-circuit (IROC), IR-imaging in inverse current (IRINV), and
IR-imaging rear-side (IRrs). We will use a blue color scale for images of IRINV to avoid confusion with IRSC in
green color scale and IROP, IROC in often used rainbow color scale. In the following, the procedures,
advantages and limitations of the methods are presented. Classic IR drones can be used for all types of IR
inspections. Technical modifications to the drones/IR-cameras are not necessary.

3.2.1. IR-imaging in operational mode (OP)—IROP or IRMPP

The real operation conditions are recorded in the OP or at MPP. Since a PV array is not necessarily working
in its MPP, the designation IROP is preferred over IRMPP. Although an intervention in the electrical system is
generally not necessary for IROP, knowledge of the operating conditions is beneficial. Therefore, electrical
data of the sites monitoring system or own records provided by clamp ampere meters can be utilized.

IROP measurements [60] of PV power plants require minimum irradiances for the evaluation and
generation of meaningful reports. In addition to the normative requirements of 600 W m−2 [6],
measurements at lower irradiances are also possible, or even have a clearer significance, such as for PID at
irradiances as low as 250 W m−2 [61]. Note: if normative minimum irradiation is required, the measuring
times can turn out to be severely limited by seasonal fluctuations and location/country/continent.
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Figure 6. PID in IROP (left) and IROC (right) (700 W m−2, 16 ◦C ambient).

Figure 7. IROP (700 W m−2, 23 ◦C ambient). In the uppermost string, five modules have been bridged manually. They are in idle
mode (same temperature as the bypassed substrings visible in several other modules on the roof), but the remaining modules of
the string are much hotter. The energy for that additional temperature increase origins from two other strings which are
connected in parallel (not shown here).

3.2.2. IR-imaging at open circuit—IROC

For various types of faults, it can be very helpful to inspect the PV modules, not only in OP mode, but also in
the open circuit mode (IROC). This is illustrated in figure 6 for the case of PID: in IROP, we find the typical
pattern of hotter cells especially at the module borders. Additionally, we see in IROC that within these affected
cells, the cell parts closest to the module frame are hottest. This underlines the diagnosis of PID where the
notorious stray currents flow from the cell to the frame, thereby heating up the area. If the two operating
conditions are compared directly with each other, some error backgrounds can be clearly identified, compare
appearance of PID in OP and OC-mode in figure 6. For this purpose, the inverter must be disabled on the
AC/DC side, all modules are then theoretically completely in open circuit. In the case of parallel-connected
module strings with different module string voltages (due to shading/soiling/module faults), equalization
currents can then already occur between them, which can be directly detected thermally. One or more strings
then feed one or more other strings with lower voltages; these modules within the fed string appear
significantly warmer than modules in no-load operation and indicate string/module problems. This is
illustrated in figure 7. To avoid this phenomenon, all strings have to be disconnected from the inverter.

Likewise, the difference between IROP and IROC can clearly prove whether a bypass diode in a
conspicuous substring is defective or was merely active. In addition, heavily loaded crystalline modules with
PID can also be detected in the open circuit operating condition, see figure 6.
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Figure 8. Patterns of cells in the short-circuited strings (IRSC, 1200 W m−2, 30 ◦C ambient).

3.2.3. IR-imaging at short-circuit—IRSC

Measuring IR in short circuit (IRSC) requires intervention in the DC electrical system and is therefore
reserved for qualified and authorized electricians. For this purpose, the individual module strings are
short-circuited by means of a suitable DC switch when solar irradiation >150 Wm−2. Stronger crystalline
cells in the short-circuited module/string start producing electricity immediately after the short-circuit;
shaded, soiled, damaged cells with a weaker current in the module/string become consumers in the series
connection and convert the energy produced by the stronger cells into heat. The usually chessboard-like
thermal patterns that form, can provide information on cell mismatching (factory problem) as well as
existing cell damage/shading or soiling already in the initial phase of the short circuit, see figure 8. Note that
in this operating condition, the current flow ISC in the substrings is higher than IMPP. We use a green color
scale here for IRSC to avoid confusion with IROP or IROC.

This effect can be helpful with lower irradiations, on the other hand, cell problems basically become
more obvious and are detected more easily. Post documentation of roof/string plans in daylight can also be
implemented very quickly.

3.2.4. IR-imaging with power supply—IRINV

An alternative to using sun light as an excitation source for PV-modules is the application of an external
power source, similar to EL but recording the infrared heat radiation. This method is called ‘IR inverse’
(IRINV) to emphasize the inverted operation of the module when current is supplied to produce heat. These
measurements require an intervention in the electrical DC system and is therefore reserved for qualified and
authorized electricians. For this purpose, the individual module strings are energized with 0.1–1× ISC
(depending on the module/failure type) by means of suitable DC power supplies when there is little or no
solar irradiation, i.e. also at dusk or at night.

Due to the current applied to the modules/strings, the defect areas in the modules usually heat up faster
in the first few seconds than the rest of the cell material at ambient temperature. In contrast to IROP scans at
module/cell temperatures of >70 ◦C, these scans produce defects in a 5 ◦C–15 ◦C warm module. Thus, they
produce a higher relative∆T and more distinct heat signatures, as known for pulsed or lock-in
thermography [43].

Depending on the module/environment temperature, the modules/strings are only energized for several
seconds to make the faults visible. Figure 9 illustrates a typical IRINV-pattern.

IRINV examinations can be carried out at low irradiation or at dawn/night. This greatly increases the
possible measurement deployment times for IR drone inspections worldwide. Due to the IR inspection with
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Figure 9. Equipment used for energizing the PV strings at a combiner box (left and center), IRINV image recording of a PV
module revealing cell breakage (right).

Figure 10. Front-side (left) and backside IROP (800 Wm−2, 25 ◦C ambient) displaying a substring failure. Note how the junction
box is heating up due to the active bypass diode.

low/absent solar irradiation in the inverse procedure, shadowing and soiling of the solar modules no longer
play a major role. Due to the lack of solar reflections compared to IRMPP measurements, the (automated)
detection of thermal anomalies is also much easier. Plants with different module orientations can therefore
always be examined and evaluated under the same conditions, e.g. PV-modules orientated differently in an
east–west-alignment. In contrast to IRMPP measurements, the IRINV method allows cell defects to be clearly
detected. Cell breaks/cracks, high resistance cell connectors, busbar problems/current distributions, PID, etc
can be detected down to the cell level.

3.2.5. IR rear side
IR-images from polymer rear side of the PV-modules can be beneficial (rear-side IR-imaging, see figure 10
for an example), because of different emissivity and thermal properties of front side glass and rear side
polymer. The emissivity in the infrared spectral range for glass surfaces is ε≈ 85% [54, 62, 63] and for
polymers ε≈ 90%–93% [64, 65]. Furthermore, the blurring is reduced due to thin polymer layers behind the
solar cell (ca. 0.5 mm) compared to the thick glass sheet in front of the cell (ca. 4 mm) by comparable low
thermal diffusivity a of both materials (glass a= 0.34 mm2 s−1, polymer:polyethylen a= 0.17 mm2 s−1)
[66]. For completion purpose, IR-images can also be recorded from the rear side of PV-modules as it was
done for the extended All-Indian PV reliability survey 2016 [67] in order to study the electrical degradation
of PV modules. The advantages are good access to PV-modules in open rack installations by high emissivity
and therefore more reliable temperatures.
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Because the emissivity of glass surface is ε≈ 85% in the infrared spectral range [54, 62, 63], IR-images
from the highly emitting polymer rear side of the PV-modules can be beneficial (rear-side IR-imaging, see
figure 10 for an example).

4. IR-image analysis

We analyzed literature about IR analysis of PV power stations to answer the questions: (a) is IR inspection
fast enough to detect all relevant failures in GWp PV power stations, and (b) does IR imaging provide the
information plant stakeholders, e.g. operators, are looking for.

4.1. Data acquisition—IR-image recording
To better and more efficiently exploit IR imaging of PV power stations, the recording technology has changed
over time. Automated, enduring mobile robots and vehicles have largely replaced stationary systems
(e.g. lifting platforms, cranes) and IR photographers (human labor). While ground-based measurements are
still in use for certain scenarios and experienced IR photographers can manage up to 30 MWp a day (here
only IR-images of suspicious PV modules are documented), airborne measurements are in general more
common. When performing ground based measurements tripods and small motorized all-terrain vehicles,
commonly known as quads, might be valuable tools to increase the operating range of the photographer.
However, most often an airborne vehicle is used to carry the IR-camera through the PV power stations in the
right position for the IR-images [57, 68, 69]. Especially UAVs [13] also known as drones, like multicopters,
which are affordable, are often used. They are easy to navigate and to transport. Compared to ground-based
measurements, airborne measurements have the advantage that hard-to-reach PV systems (e.g. floating PV,
pitched roofs, facades of BIPV [5], rooftop installations, tracked PV systems [70]) can be inspected without
problems. Several works [71–74] propose solutions for automatic flight planning and execution. References
[71–73] extract outlines of the PV plant rows from available satellite imagery of the site using classic
computer vision algorithms, such as thresholding. Subsequently, an optimal flight path is computed and
transferred to the drone as waypoint mission [71]. To achieve accurate tracking of each row during the
scanning procedure [72–74], propose the use of a row-following controller, which steers the drone based on
visual feedback.

Aerial inspections using unmanned drones as well as manned aircrafts can be easily automated, both in
route planning and navigation. This increases the throughput respectively reduces the acquisition time
compared to conventional, hand-held methods significantly, as shown by a selection of publicly accessible
data in table 3. Using drones the inspection time is reduced [75, 76], the factors vary, e.g. 10–15-fold [13, 21]
or 50-fold [77]. The figures of state of the art methods show that with drones and aircrafts, more than
1 module s−1 can be recorded. Unclear remains frequently the level of inspection, i.e. the image resolution is
not stated/reported which determines the anomaly detection. Standard IEC TS 62446-3 Edition 1.0 2017-06
recommends at least 3 cm px−1 as ground sample distance. A systematic and automated image acquisition
enables the automation of the subsequent image processing and evaluation/assessment, as will be shown
below [78, 79].

IR-inspection of PV power stations using drones is fast, simple and inexpensive, stated by Spagnolo et al
[7]. Weinreich highlights fast by 10–20 MWp per photographer and day [30]. The costs range between 1800
Euros to 2740 Euros a day, or 225 Euros MWp−1, giving accurate results by a flight altitude of 15 m [80].
Confirmed by Weinreich et al [30] for plants larger than 100 kWp. Companies offering drone-based IR
inspections are, e.g. Above Surveying, Rapotormaps, Sitemark, AePVI, Volateq, PV Service Pro.

For extended utility-scale PV power stations of several 10 MWp or 100 MWp, the use of manned aircrafts
with high-resolution camera systems makes sense [2, 89]. Despite the large distance between the solar
module and the camera system, cell defects such as PID can be detected. The big advantage is, that extended
PV power stations can be inspected very fast, i.e. under approximately similar environmental conditions
[2, 86, 90]. In summary, image acquisition does not appear to be the limiting step for inspection time,
neglecting image resolution and defect detection.

All methods benefit from direct detection of the thermal anomalies during operation, i.e. IROP. However,
further thermographic measurements can be very helpful to identify the root cause of an observed anomaly.
In figure 11, measurements of IROP, IROC, IRSC, and IRINV are shown. By combination of the observations,
the highlighted substring failure can be explained. Generally, three possible scenarios can lead to this
phenomenon: (a) an active bypass diode, (b) a faulty bypass diode, (c) an electrical failure in the module
substring. In IRSC, we observe the typical checkerboard patterns that occur due to the performance
differences of the PV cells: in the short-circuited string the better cells produce current which is turned into
heat by the worse cells. However, the pattern is absent in the discussed substring, indicating no electrical
connection. This is emphasized also by IRINV, where the substring appears cooler. Note, that some module
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Table 3. Overview of reported inspection information related to acquisition time of IR-images of some sources without claim to
completeness.

Measurement
type Capacity

Inspection
time

Image
resolution

Camera
resolution

Flight
speed Comment

Data
source

Hand-held 1 MWp 10 h — — — — [76]
4000 modules 8 d — — — 1module

min−1
[80]

Unmanned
drones

1 MWp 10 min — — — — [81]
1 MWp 1 h — — — — [82]
1.3 MWp 0.5 h — — — — [83]
2–3 MWp 1 h Depends — — — [11]
3.2 MWp 32 min — — — 2 rows [84]

18 min 3 rows
6–8 MWp 3–4 h — 640× 480 — — [85]
10 MWp 1 h — — — — [76]
10 MWp 1 d 3 cm px−1 — — — [86]
40 MWp 1 d Low resol.
74 MWp 24 h — — — — [75]
30 Mwp 6 h
21 MWp 7 h
13 Mwp 4 h
40 MWp 1 d — 640× 512 — [77]
— — 10–

15 cm px−1
— 48 km h−1 Overview,

string-level
[87]

5–6 cm px−1 Module-level
3 cm px−1 Abs. temp.

— — 3 cm px−1 — — Hot spot
detection

[55]

4000 modules 5 min [80]
Manned
aircrafts

100 MWp 1 h — — — — [86]
300 MWp 1 d — — — 200 MWp in

1 flight
[88]

types do not show these patterns in IRSC at all, possibly due to excellent matching of cells with the same
performance. In figure 11, we find no checkerboard pattern in the substring in IROP. We can conclude that it
is case (c), an electrical failure in the substring. If it had to do with the bypass diodes, the pattern would be
present in IROP, too, and IROC would finally tell us if the bypass is merely active (no pattern) or defect
(pattern visible). Experience shows that most substring failures found in the field are due to electrical failures
in the module (not the bypass diodes).

Instead of an intervention into the system, as necessary for IROC, IRSC, IRINV, or IRbackside, often another
IROP measurement at a different irradiance is a useful alternative.

In the end, the no-fly zone determines the technical specification of the sensor platform: aircraft for
extended open space PV power station, drone for roof, facade, floating, open space PV power stations,
alternatively, quad for open space PV power station, lift/high tripod for façade and pitched roof, and
handheld/steady camera for flat roof PV systems.

4.2. Data processing—IR-image segmentation, classification
4.2.1. Detection of PV-modules in IR-videos
Many existing works utilize classic image processing techniques for the detection of PV modules in IR videos.
A popular technique is (adaptive) binary thresholding of image intensities—usually applied after other
means of image pre-processing—to obtain segmentation masks of PV modules [91–97]. Other methods
detect PVmodule edges with morphological operations (opening, closing) [98, 99], the Canny edge detection
algorithm [100, 101] or the Hough transform [100, 102]. Another technique for PV module detection is
template matching [103]. Here, a template image of a PV module is moved over the input image in a sliding
window fashion, a correlation metric is computed at each position, and the maxima are selected as potential
location of PV modules. Jeong et al find candidate PV module regions (rectangular boxes) with the
maximally stable extremal regions (MSERs) algorithm and filter out over-/undersized candidate boxes [104].

Disadvantages of these classic image processing techniques is their reliance on manual priors and
heuristics, their need for extensive manual hyper parameter tuning, and most importantly poor
generalization to unseen imagery.
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Figure 11. Power plant in different operating conditions. A lost sub-string with active bypass-diode is present in the marked
module.

To overcome these issues, deep learning has been employed recently for PV module detection in IR
images. Zhang et al perform semantic segmentation by means of a U-Net architecture with ResNet-34
backbone [105]. This approach distinguishes PV modules from the image background, however, does not
differentiate between individual PV modules. The YOLOv3 object detector used by Greco et al distinguishes
individual PV modules, however, provides only the bounding box of each module instead of a pixel-accurate
mask [106]. Bommes et al and Vega Díaz et al use the Mask region-based convolutional neural network
(R-CNN) instance segmentation framework to overcome both problems and obtain a pixel-accurate
segmentation mask for each individual PV module [107, 108]. Furthermore, Vega Díaz et al find Mask
R-CNN to outperform a baseline algorithm, which obtains PV module candidate regions with adaptive
thresholding and classifies extracted texture features with a support vector machine. Table 4 summarizes the
related works in terms of their methods and size of their datasets used. The analysis of dataset sizes reveals
that many works use very small datasets, which raises doubts about the general applicability of the developed
methods. Especially in the context of deep learning, training on small and low-variance datasets causes
model overfitting, which hampers generalization.

4.2.2. Detection of PV module anomalies
Similar to the PV module detection, many existing works identify anomalous PV modules in IR images with
classic image processing techniques. The most popular one is binary thresholding of image intensities, which
segments hot regions of PV modules corresponding to thermal anomalies [91, 92, 97, 102, 104, 109]. Other
techniques are k-means clustering of pixel intensities [110], fuzzy rule-based classification [111], color image
descriptors [112] and the iterative growth of segmentation masks starting from local intensity maxima [100,
113]. Addabbo et al propose template matching for the localization of hot regions [103].

Due to their reliance on classic image processing all these techniques require extensive manual hyper
parameter tuning and do not generalize well to unseen imagery. Furthermore, these works only detect the
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Table 4. Literature overview of methods for PV module detection and anomaly detection. Traditional ML and deep learning methods
are highlighted in italic and bold, respectively. All other methods use classic image processing. Datasets of sufficient size (in our opinion)
are highlighted in bold.

Source
Dataset size
(images/modules/plants) PV module detection Anomaly detection

[91, 92, 94] 34/—/1 Binary thresholding Binary thresholding
[93] 37/1 554/1 Binary thresholding Manual feature extraction+ Grubb’s

test/Dixon’s Q test
[95, 96] 3/204/1 Binary thresholding —
[97] 120/—/1 Binary thresholding Binary thresholding
[98, 99] n.a. Morphological operations —
[100] 14 215/14 215/>1 Canny edges+Hough

trans.
Iterative growth of segmentation mask

[101] 4/4/1 Canny edge detection —
[102] 1171/84/>1 Hough transform Binary thresholding
[104] 40/240/1 Maximally stable extremal

regions (MSERs)
Binary thresholding

[103] 270/—/1 Template matching Template matching
[105] 235/—/1 U-Net semantic

segmentation
—

[106] 50 499/—/>1 YOLOv3 object detection —
[107] 100/—/3 Mask R-CNN instance seg. —
[108] 453 511/11 644/7 Mask R-CNN instance seg. Supervised classification with CNN
[109] <10/3/1 — Binary thresholding
[110] 4/4/1 — k-means clustering of pixel intensities
[111] 120/120/1 — Fuzzy rule-based classification
[112] 315/315/1 — Color image descriptors
[113] <10/2/1 — Iterative growth of segmentation mask
[114] 375/375/1 — HoG features+ naïve Bayes classifier
[79] <10/—/1 — VGG-16 semantic segmentation
[115] 9000/9000/6 — Faster R-CNN object detection
[116] 783/783/1 — Supervised classification with CNN
[117] 1000/1000/>1 — Supervised classification with CNN
[118] n.a. — Supervised classification with CNN
[60] 93 220/93 220/28 — Supervised classification with CNN
[119] 1428/480/1 — R-CNN object detection
[120] 4160 000/105 546/6 — Domain-agnostic CNN+ k-nearest

neighbor classifier

presence of relatively large and connected hot spots with large local temperature gradients. That makes them
prone to miss important types of anomalies, such as PID.

Again, machine learning and deep learning have been used recently, to overcome these problems. For
example, Oliveira et al [79] use a segmentation model based on the VGG-16 CNN to segment three different
module anomalies directly in the IR video frame. Vlaminck et al [115] also operate directly on the video
frame and employ a Faster R-CNN object detector to obtain bounding boxes of PV modules that contain a
thermal anomaly. Opposed to that, other methods operate on images of individual PV modules instead of
the entire video frame. For example, Dotenco et al extract hand-crafted features, such as mean and standard
deviation, for each PV module and identifies outlier modules by means of a cascaded Grubb’s test and
Dixon’s Q test [93]. Similarly, Niazi et al extract histogram of oriented gradients (HOGs) features and classify
them using a naïve Bayes classifier [114]. Dunderdale et al extract scale-invariant feature transform (SIFT)
features and apply a supervised random forest classifier to distinguish between four different types of module
anomalies [116]. The same work finds a MobileNet and a VGG-16 CNN outperform the random forest
classifier for classification of anomalous modules. The works by Manno et al [117], Zefri et al [60] and
Ramirez et al [118] follow the same line of research. Similarly, Bommes et al train a ResNet-50 CNN for the
classification of ten different modules anomalies [108]. Their dataset comprises of 450 000 images and is
significantly larger than the datasets used in other works (see table 4). Bommes et al also demonstrate that
collecting multiple images for each PV module benefits classification accuracy. By using the R-CNN object
detector Su et al [119] predict not only the type of module anomaly, but also obtain bounding boxes, which
localize the anomaly within the module image.

While these early adoptions of deep learning methods achieve high accuracies on their respective test
datasets, they do not consider the inevitable domain shift between training and test data distributions. This
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problem was examined in a more recent work of Bommes et al [120]. As an initial solution to the domain
shift problem, a k-nearest neighbor classifier operating on less domain-specific supervised contrastive
representations, was proposed. However, this classifier only makes a binary decision and cannot distinguish
different types of anomalies. Thus, accurate classification of different types of PV module anomalies in IR
images in the presence of domain shift between training and test data remains an open problem.

4.2.3. Spatial localization of PV modules in a PV plant
Accurate localization of PV modules in a large-scale plant based on an aerial IR video is an important task as
it facilitates targeted repairs of defective modules. However, it is also a difficult problem as the video is highly
repetitive and shows only a small local viewport with only a few PV modules at a time.

As a partial solution to the problem, Henry et almark the gobal positioning system (GPS) position of the
drone on a map whenever a video frame contains an anomalous PV module [71]. While being simple this
approach only obtains an approximate position of the anomalous module.

A few works solve the localization problem by stitching subsequent video frames into a panorama image
of an entire PV plant row [91, 92, 98]. This was shown to work well for short video sequences but localizes
modules only relative to another. To provide the location in absolute reference frame, Niccolai et al extend
the method by matching each row panorama to a computer-aided-design (CAD) plan of the plant by means
of the GPS coordinates of the panorama center points [94]. Problematic is the need for a standardized CAD
plan, which is not always available.

A different approach is the creation of an orthophoto of the entire PV plant from a high altitude
[41, 121, 122]. This requires nadiral images with a suitable overlap which may not always be feasible in case
of nearby power lines, streets, or train tracks. Most importantly, the spatial resolution of a high-altitude
image is low making fine-grained anomaly classification of PV modules difficult.

Several works propose direct georeferencing to obtain geocoordinates of each pixel in each video frame
[103, 123]. While this is an elegant approach it requires nadiral images and highly accurate GPS position
estimates that can only be achieved by real-time kinematics GPS. The approach does not consider visual cues
but relies only on GPS measurements, making it prone to GPS measurement errors.

Bommes et al [84] and Zefri et al [60] propose a more robust method for direct georeferencing that uses
both GPS measurements and visual cues [84]. The method used structure from motion to reconstruct the
camera trajectory and to obtain accurate geocoordinates for the corners of each PV module.

4.3. Data assessment—IR-image evaluation, relevance for system performance
Besides anomaly detection and defect location, evaluation and assessment of the IR-findings is of importance
and interest. The aim is to link performance/yield/power loss with detected changes in the temperature
distribution or fault-specific IR patterns and resulting recommended actions for O&M. Increasing
temperature means reduction in power and vice versa. But there are many influencing factors that make the
quantification of the power loss under real operating conditions challenging. The most important factors are,
e.g. changing (temporal and local) weather conditions, unknown operating point (ideally MPP), unavoidable
(and mostly unknown) external influences from the grid (e.g. curtailment), operating of PV-modules in
serial and/or parallel electrical connection, IV-characteristic of each solar cell [124]. An interesting more
fundamental approach is presented by Catalano [125], a power balance model is used to estimate the
generated (dissipated) power for the individual cells, which has an error less than 1% for shunted cells.

Especially when linking IR-findings to yield losses it is utterly important that mentioned factors and
other power relevant faults might affect a PV-power station, but not necessarily during an IR-inspection.
Figure 12 shows an example for the electrical performance of a PV-power station on a day where
IR-measurements took place. While during the actual measurement the overall performance fulfilled the
expectations of the IR-findings, before and after the measurement parts of the plant were affected by shading
and an inverter fault, which caused the outage of some PV-strings.

There are several approaches to correlate the module temperature with the module power [126] and
degradation [67, 127]. Vergura and Marino [128] classifies the efficiencies by a framework analyzing the cells
and clusters of cells:∆T ≈ 10 K provokes 4% efficiency reduction,∆T ≈ 18 K causes 7%–10% efficiency
decrease. Teubner [129, 130] calculates the relative power reduction of a PV module based on its average
module temperature in relation to that of an open-circuited reference module. The remaining power of
PID-affected modules correlates well with the number of heated cells [131–133]. Verifying the
derived/deduced power of a defective PV-module from its IR-signature can be done by either
IV-measurements or monitoring on module level. In utility-scale projects without string monitoring
thermography scans are becoming more important to locate the weakest modules in the string and to
prioritize corrective maintenance [134]. Module level monitoring data verify voltage drops [51, 135] for
defective modules with increased temperatures due to the shift of the working point. Moreton et al [136]
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Figure 12. Electrical performance of a PV installation during a measurement day (gray) and the actual IR-measurement (green).
While the course of the day there are power relevant factors like shading in the morning and evening, as well as an inverter outage
(blue) starting at 3 pm, none of those effects were captured during the IR-measurement between 11:45 am and 1:15 pm. Insets
visualize IR-images at different points of time, (a) 12:00, (b) 16:00.

studied explicitly the correlation between temperature difference and voltage drop and showed the impact of
MPP-tracking on the operation point and on the temperature difference, which fluctuated strongly for low
irradiances. Heated cells, namely hot spots, are studied and modeled in order to prevent failures [136–140].
Islam et al [141] describes a linear performance loss for defective PV-modules with increasing temperature
difference between heated defect and the ambient temperature. Muttillo et al [142] extracted failure
characteristic electric values (MPP, ISC and VOC) from defective PV-modules in correlation with IR-images
of a test-string. Pinceti et al [143] presented a mathematical model to correlate temperature increase
with power loss and economical income reduction. Using data from module optimizers [144] or
IV-measurements [136] can also support power prediction but first, do not reflect real operating conditions
of the majority of PV modules in the open space installation and second, provide data for the single PV
module at certain ambient conditions. A extended degradation study of thermal anomalies of 53.5 GWp by
aircrafts reveals that the fault degradation progresses faster in higher temperature zones and with site age,
shown for unattributed hot spots and warrantable defects [127].

More important than the exact assessment of the power degradation of an individual defective PV
module is the impact on the system performance to which the module belongs. Because of the difficulties to
transfer the data from single modules to modules in a string configuration and to determine the impact on
the string/array (e.g. double strings i.e. two strings in parallel) performance Dalsass et al [93, 145–147] and
Skomedal et al [148–151] investigated monitored array data. Both combined IR-images with production data
on string level. They analyzed/aggregated daily yield data of the month before and after the IR-inspection.
They found/defined substrings, which are protected by diodes, as the smallest detectable unit. According to
Dalsass and Skomedal, most important on string level is the number of module substrings containing
thermal anomalies. The performance of a string with 60 substrings (20 modules each having three
substrings) is on average reduced by 1.16+ 0.12% per module substring containing thermal anomalies,
which is less than expected (1/60= 1.6%). In addition, a shift of the operating point takes place according to
Dalsass et al [152].

For a meaningful and quantitative analysis and evaluation, the irradiation data and module temperatures
should be logged due to the thermal delay. For extended PV power stations several measurement units
should be distributed throughout the PV power station, because the micro climate can differ significantly
(due to shading, haze, fog, dust, stratosphere, cloud formation and so on).

Furthermore, the evaluation and quantification of defective module in the field is still difficult and
unclear. There are no clear qualification criteria. Most authors rate the determined module power to
standard test conditions (STC)-conditions. Moreton made suggestions for rejection and acceptance criteria.
Suggestions to investigate the performance of defective PV-modules in the context of the PV-system are given
by Dalsass and Skomedal.
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5. Discussion

Lessons-learned from the literature show that much has been achieved in recent years, both for
high-throughput IR inspections in GWp PV power stations and in terms of the relevance of the findings.
Nevertheless, we have identified three pillars of development needs to provide value to stakeholders/users of
such IR measurements in the future. We see unused potential in the area of data acquisition, image
processing and image assessment.

First, image acquisition is the execution of the inspection. The use of aircraft and less expensive drones
in combination with suitable camera systems has been further developed and expanded in recent years.
While aircraft can inspect many MWp from a height within a short period of time, drones with lower flight
altitude and thus better resolution require ten times longer. State of the art is that drones can inspect
1 module s−1 of multi MWp PV power stations. However, the reports do not provide insights into image
quality, if the image resolution is sufficient for an expressive image assessment, that are useful for PV
stakeholders. Furthermore, it is documented that extended drone-based missions are carried out within 1 d.
The question of the influence of changing measurement conditions during the course of the measurement
day on the evaluation and assessment remains unanswered. Promising is that drones are suitable for daytime
operations. For the introductory example of a GWp PV power station a continuous drone-based IR
inspection for at least 70 daytime operations is needed. This demands robust systems for permanent and
ideally autarkic operation under harsh environmental conditions, where PV power stations are located.
Solutions are necessary, adapting examples like the powered, controlled helicopter ‘ingenuity’ as part of the
NASA Mars mission 2020 [153], or autonomous flying drones for medical purposes to remote islands [154],
for PV. Parallelizing and coordinating the operation and communication of autonomous drones in swarms is
also an alternative, but further developments and adjusted regulations are needed. Smart drone operation
strategies can then control route planning and navigation.

Second, image processing has been the focus of research in recent years, and much has already been done
on anomaly detection and failure classification. ML has become an important part of the processing
techniques. The published metrics emphasize the quality of the developed tools, the relevance and benefit for
the PV community is often unclear because type of failures and their quantities are not included. In general,
there is a lack of suitable data sets with a sufficient number of examples of certain error patterns, a lack of
relevance of the evaluated observations, e.g. bird droppings. As a consequence, many ML methods suffer
from the limited certainty of a prediction.

In literature, the dominant successor technologies to 60 and 72 cell modules, e.g. half-cut/butterfly
modules, do not yet play a role. Because of the special electrical connection of these modules, standard
analysis tools may misinterpret the symmetric thermal anomalies, which are caused by a failure in only one
half, see figure 13.

Here, the establishment of an IR image dataset with international participation can help to fill the gaps
and promote algorithm development for all.

Third, image assessment aims to indicate the relevance of the observed anomaly for performance, yield
and safety of the PV power thermography. The weakest modules in the string can be identified by their
temperature rise. That these are not necessarily all defective modules as shown by comparison with EL
records, see figure 14. To get clarity about the extent of defects and the impact of the defects, especially cell
fractures, PV stakeholders should consider supplementary measurements, such as IRINV, IV curves, EL, PL,
see figure 15, depending on their objectives.

The limited number of publications on performance evaluation show that this is difficult. Many
influencing factors must be known and should be taken into account. Basic knowledge must be built up, e.g.
knowledge of electrical configurations and string/inverter layout (module optimizer, string inverter, or
central inverters). The power loss of PV modules is not defined. Is it the power loss of a module under STC
or field conditions, or in series connection with other modules, as in real operation, or better the yield? Here
the awareness of the differences and their meaning is missing. So far, the focus has been on the modules, but
the view should go beyond the modules to include external factors, inverters, and the grid. First approaches
combine production data with IR-images to consider a longer time period and not just the moment of image
recording. The correlation between monitoring data and IR anomolies is not always obvious, but this does
not imply that there are no errors or impacts. In the monitoring data, the influences of various system
components can overlap and hide module faults.

To prevent misinterpretation of apparent thermal anomalies, meta data (geographical and mechanical
site information) and electrical wiring concepts and measurement conditions should be known and involved
in the assessment. Two measurements at differing measurement conditions strengthen outcome and failure
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Figure 13. Butterfly architecture modules demonstrating thermal anomalies in both right and left sided areas in IROP

(900 W m−2, 22 ◦C ambient). Butterfly modules features three substrings, but effectively forming two sub-substrings connected
in parallel. This electrical connection can lead to thermal anomalies in both substring areas in the forward bias of the diode
(active short-circuited or defective short-circuited), although the fault is only present in one sub-substring.

Figure 14. Comparison of visual (top), IROP (1200 W m−2, 30 ◦C ambient) (center), and EL (bottom) measurements of a
roof-top installation [155]. While the EL measurements reveal severe cell damage at almost all modules, only half of the modules
show anomalies in IROP. Because the inverter reacts to the reduced power output of the damaged modules, the operating point
shifts to lower power. Then, only the most severely damaged cells show up as thermal anomalies.

analysis of ambiguous images. Promising computer vision tools exist, e.g. [156], what is missing is the
implementation for PV. Exemplary results are given by Bommes et al [120], if the required datasets exist.

Furthermore, solid and widely accepted criteria for the gravity of thermal anomalies do not exist. There
are ambiguous approaches, e.g. suggesting∆T > 20 K to be severe [136, 157] or projecting power loss to STC
conditions. According to our experience the degree of underperformance related to thermal anomalies needs
to be evaluated in the context of measurement conditions and additionally the financial backbone and
investment concept of the PV power station of interest. Suitable field-relevant metrics should be evaluated
and transferred into a standard.

Finally, we strongly recommend a consistent and informative declaration of presented IR-footage
including: irradiance, ambient temperature, operating point, and temperature scale (suitable look-up table
and color-bar). Furthermore, plant configuration (module type, string layout, inverter type), date, time, a
corresponding visual image and wind speed are desirable for a Golden standard. We recommend to use
different color-schemes for IROP, IRSC and IRINV. ML metrics should be enriched with descriptions of the
datasets.
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Figure 15. Comparison of various measurement methods for one module [155].

6. Conclusion

The high number of publications in the last years shows that the advantages of thermography, especially
quick drone-based IR surveys for troubleshooting PV power stations have been recognized and are being
used. To promote the expansion of renewable energy, GWp power stations must be built, operated, and
function. These investments must and should deliver electricity for a long time and sustainably. Asset
owners, EPCs and O&M companies are interested to achieve a quick and reliable assessment of the status of
the PV system, which is actionable. Operation and maintenance are important to ensure that. Solid and
reliable bases for decision-making are the prerequisite. Infrared has the potential to become an essential
component in the toolbox for inspection and evaluation of GWp PV power stations. For the inspection of
these extended PV power stations, the potential of IR imaging cannot yet be fully exploited with current
approaches in the field of data acquisition, image processing and assessment.

According to the literature we need more emphasis, a deeper understanding how to quantify the impact
of these anomalies on the performance as well as their degradation. Standards and elaborated scientific
studies can provide PV stakeholders with the necessary information for actionable O&M. For that suitable
datasets of failures plus electrical data need to be generated. Because the failure rates of PV-systems are
usually low, less than 8%, it is advantageous to cooperate internationally. Mostly missing are available
suitable datasets for adapting, training and test of existing computational instrumentation to PV. Generating
these datasets and making them publicly available is the most challenging task. International collaborations
on gathering such labeled dataset, following the example of NREL [158], giving access to various datasets.
Then, future pipelines of ML tools can capture the entire IR-inspection process steps.

At that, we are convinced that IR-imaging is well equipped for upcoming quality checks of GWp PV
power stations.
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[69] Álvarez-Tey G, Jiménez-Castañeda R and Carpio J 2017 Analysis of the configuration and the location of thermographic
equipment for the inspection in photovoltaic systems Infrared Phys. Technol. 87 40–46

[70] Buerhop C, Scheuerpflug H, Pickel T and Camus C 2016 IR-imaging a tracked PV-plant using an unmanned aerial vehicle 32nd
EU PVSEC (Munich, Germany) p 2016

[71] Henry C, Poudel S, Lee S-W and Jeong H 2020 Automatic detection system of deteriorated PV modules using drone with thermal
camera Appl. Sci. 10 3802

[72] Xi Z, Lou Z, Sun Y, Li X, Yang Q and Yan W 2018 A vision-based inspection strategy for large-scale photovoltaic farms using an
autonomous UAV 2018 17th Int. Symp. on Distributed Computing and Applications for Business Engineering and Science (DCABES)
pp 200–3

[73] Moradi Sizkouhi A M, Esmailifar S M, Aghaei M and Karimkhani M 2022 RoboPV: an integrated software package for
autonomous aerial monitoring of large scale PV plants Energy Convers. Manage. 254 115217

[74] Roggi G, Niccolai A, Grimaccia F and Lovera M 2020 A computer vision line-tracking algorithm for automatic UAV photovoltaic
plants monitoring applications Energies 13 838

[75] Measure Drones in solar (available at: www.measure.com/drones-in-solar-operations) (Accessed 2022)
[76] McColl D Aerial solar PV inspection 2020 (available at: http://large.stanford.edu/courses/2020/ph240/mccoll2/)
[77] Heliguy 2021 Drones for solar panel inspections
[78] Oliveira A, Bracht M K, Melo A P, Lamberts R and Rüther R 2021 Evaluation of faults in a photovoltaic power plant using

orthomosaics based on aerial infrared thermography 2021 IEEE 48th Photovoltaic Specialists Conf. (PVSC) pp 2604–10
[79] Vidal de Oliveira A K, Aghaei M and Ruther R 2019 Automatic fault detection of photovoltaic arrays by convolutional neural

networks during aerial infrared thermography 36th EU-PVSEC (Marseille, France) pp 1302–7
[80] Uasvision 2016 Drones cut cost of thermographic PV panel inspections (available at: www.uasvision.com/2016/09/15/

drones-cut-cost-of-thermographic-pv-panel-inspections/)
[81] Life td Infrared drone solar inspections (available at: https://thedronelifenj.com/infrared-drone-solar-inspections/)
[82] Aghaei M, Madukanya U E, Vidal de Oliveira A K and Rüther R 2018 Fault inspection by aerial infrared thermography in a PV

plant after a meteorological tsunami VII Congresso Brasileiro De Energia Soalr (Granado)
[83] Muntwyler U, Schüpbach E and Lanz M Infrared drone for quick and cheap PV inspection 31st EU-PVSEC pp 1804–6
[84] Bommes L, Buerhop C, Pickel T, Hauch J, Brabec C J and Peters I M 2022 Georeferencing of photovoltaic modules from aerial

infrared videos using structure-from-motion Prog. Photovolt. 30 1122–35
[85] Kitawa P 2014 Thermografie an photovoltaikanlagen (available at: https://kitawa.de/thermografie-pv-anlagen)
[86] Andrews R 2018 Aerial inspections (Solarplaza) white paper
[87] Raptormaps Available levels of inspection (available at: https://raptormaps.com/turnkey-services/) (Accessed 2022)
[88] Solarif Aircraft inspection (available at: www.solarif.com/drone-inspection-2/) (Accessed 2022)
[89] Raptormaps 2021 Guide to solar PV inspection via manned aircraft (available at: https://f.hubspotusercontent40.net/hubfs/

3446343/2021%20Guide%20to%20Manned%20Aircraft%20PV%20Inspections.pdf)
[90] Andrews R 2018 Identifying and addressing underperforming solar assets Solarpro 11 12–18
[91] Grimaccia F, Leva S and Niccolai A 2017 PV plant digital mapping for modules’ defects detection by unmanned aerial vehicles

IET Renew. Power Gener. 11 1221–8
[92] Francesco G, Sonia L and Alessandro N 2018 A semi-automated method for defect identification in large photovoltaic power

plants using unmanned aerial vehicles 2018 IEEE Power & Energy Society General Meeting (PESGM) (IEEE) pp 1–5
[93] Dotenco S, Dalsass M, Winkler L, Würzner T, Brabec C, Maier A and Gallwitz F 2016 Automatic detection and analysis of

photovoltaic modules in aerial infrared imagery 2016 IEEE Winter Conf. on Applications of Computer Vision (WACV) (Lake Placid,
NY: IEEE) pp 1–9

[94] Niccolai A, Grimaccia F and Leva S 2019 Advanced asset management tools in photovoltaic plant monitoring: UAV-based digital
mapping Energies 12 4736

[95] Kim D, Youn J and Kim C 2016 Automatic photovoltaic panel area extraction from UAV thermal infrared images J. Korean Soc.
Surv. Geod. Photogramm. Cartogr. 34 559–68

[96] Kim D, Youn J and Kim C 2017 Automatic fault recognition of photovoltaic modules based on statistical analysis of UAV
thermography Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42 179

[97] Wang Q, Paynabar K and Pacella M 2021 Online automatic anomaly detection for photovoltaic systems using thermography
imaging and low rank matrix decomposition J. Qual. Technol. 1–14

[98] Aghaei M, Leva S and Grimaccia F 2016 PV power plant inspection by image mosaicing techniques for IR real-time images 2016
IEEE 43rd Photovoltaic Specialists Conf. (PVSC) (IEEE) pp 3100–5

[99] Wu F, Zhang D, Li X, Luo X, Wang J, Yan W, Chen Z and Yang Q 2017 Aerial image recognition and matching for inspection of
large-scale photovoltaic farms 2017 Int. Smart Cities Conf. (ISC2) (IEEE) pp 1–6

[100] Carletti V, Greco A, Saggese A and Vento M 2020 An intelligent flying system for automatic detection of faults in photovoltaic
plants J. Ambient Intell. Humaniz. Comput. 11 2027–40

[101] Tsanakas J A, Chrysostomou D, Botsaris P N and Gasteratos E A 2013 Fault diagnosis of photovoltaic modules through image
processing and Canny edge detection on field thermographic measurements Int. J. Sustain. Energy 34 351–72

[102] Arenella A, Greco A, Saggese A and Vento M 2017 Real time fault detection in photovoltaic cells by cameras on drones Int. Conf.
Image Analysis and Recognition (Springer) pp 617–25

[103] Addabbo P, Angrisano A, Bernardi M L, Gagliarde G, Mennella A, Nisi M and Ullo S L 2018 UAV system for photovoltaic plant
inspection IEEE Aerosp. Electron. Syst. Mag. 33 58–67

[104] Jeong H, Kwon G-R and Lee S-W 2020 Deterioration diagnosis of solar module using thermal and visible image processing
Energies 13 2856

[105] Zhang H, Hong X, Zhou S and Wang Q 2019 Infrared image segmentation for photovoltaic panels based on Res-UNet Chinese
Conf. on Pattern Recognition and Computer Vision (PRCV) (Springer) pp 611–22

[106] Greco A, Pironti C, Saggese A, Vento M and Vigilante V 2020 A deep learning based approach for detecting panels in photovoltaic
plants Proc. 3rd Int. Conf. on Applications of Intelligent Systems pp 1–7

[107] Vega Díaz J J, Vlaminck M, Lefkaditis D, Orjuela Vargas S A and Luong H 2020 Solar panel detection within complex
backgrounds using thermal images acquired by UAVs Sensors 20 6219

22

https://doi.org/10.1109/JPHOTOV.2014.2323714
https://doi.org/10.1109/JPHOTOV.2014.2323714
https://doi.org/10.1016/j.infrared.2017.09.022
https://doi.org/10.1016/j.infrared.2017.09.022
https://doi.org/10.4229/32thEUPVSEC2016
https://doi.org/10.3390/app10113802
https://doi.org/10.3390/app10113802
https://doi.org/10.1109/DCABES.2018.00059
https://doi.org/10.1016/j.enconman.2022.115217
https://doi.org/10.1016/j.enconman.2022.115217
https://doi.org/10.3390/en13040838
https://doi.org/10.3390/en13040838
https://www.measure.com/drones-in-solar-operations
http://large.stanford.edu/courses/2020/ph240/mccoll2/
https://doi.org/10.1109/PVSC43889.2021.9518541
https://doi.org/10.4229/EUPVSEC20192019-5BO.6.4
https://www.uasvision.com/2016/09/15/drones-cut-cost-of-thermographic-pv-panel-inspections/
https://www.uasvision.com/2016/09/15/drones-cut-cost-of-thermographic-pv-panel-inspections/
https://thedronelifenj.com/infrared-drone-solar-inspections/
https://doi.org/10.4229/EUPVSEC20152015-5CO.15.6
https://doi.org/10.1002/pip.3564
https://doi.org/10.1002/pip.3564
https://kitawa.de/thermografie-pv-anlagen
https://raptormaps.com/turnkey-services/
https://www.solarif.com/drone-inspection-2/
https://f.hubspotusercontent40.net/hubfs/3446343/2021%2520Guide%2520to%2520Manned%2520Aircraft%2520PV%2520Inspections.pdf
https://f.hubspotusercontent40.net/hubfs/3446343/2021%2520Guide%2520to%2520Manned%2520Aircraft%2520PV%2520Inspections.pdf
https://doi.org/10.1049/iet-rpg.2016.1041
https://doi.org/10.1049/iet-rpg.2016.1041
https://doi.org/10.1109/WACV.2016.7477658
https://doi.org/10.3390/en12244736
https://doi.org/10.3390/en12244736
https://doi.org/10.7848/ksgpc.2016.34.6.559
https://doi.org/10.7848/ksgpc.2016.34.6.559
https://doi.org/10.5194/isprs-archives-XLII-2-W6-179-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W6-179-2017
https://doi.org/10.1080/00224065.2021.1948372
https://doi.org/10.1007/s12652-019-01212-6
https://doi.org/10.1007/s12652-019-01212-6
https://doi.org/10.1080/14786451.2013.826223
https://doi.org/10.1080/14786451.2013.826223
https://doi.org/10.1109/MAES.2018.170145
https://doi.org/10.1109/MAES.2018.170145
https://doi.org/10.3390/en13112856
https://doi.org/10.3390/en13112856
https://doi.org/10.3390/s20216219
https://doi.org/10.3390/s20216219


Prog. Energy 4 (2022) 042010 C Buerhop et al

[108] Bommes L, Pickel T, Buerhop C, Brabec C J and Peters I M 2021 Computer vision tool for detection, mapping and fault
classification of PV modules in aerial IR videos Prog. Photovolt. 29 1236–51

[109] Aghaei M, Grimaccia F, Gonano C A and Leva S 2015 Innovative automated control system for PV fields inspection and remote
control IEEE Trans. Ind. Electron. 62 7287–96

[110] Et-taleby A, Boussetta M, Benslimane M and Khadka D B 2020 Faults detection for photovoltaic field based on K-means, elbow,
and average silhouette techniques through the segmentation of a thermal image Int. J. Photoenergy 2020 6617597

[111] Jaffery Z A, Dubey A K, Haque I and Haque A 2017 Scheme for predictive fault diagnosis in photo-voltaic modules using thermal
imaging Infrared Phys. Technol. 83 182–7

[112] Ali M U, Saleem S, Masood H, Kallu K D, Masud M, Alvi M J and Zafar A 2022 Early hotspot detection in photovoltaic modules
using color image descriptors: an infrared thermography study Int. J. Energy Res. 46 774–85

[113] Alsafasfeh M, Abdel-Qader I, Bazuin B, Alsafasfeh Q and Su W 2018 Unsupervised fault detection and analysis for large
photovoltaic systems using drones and machine vision Energies 11 2252

[114] Niazi K A K, Akhtar W, Khan H A, Yang Y and Athar S 2019 Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes
classifier Sol. Energy 190 34–43

[115] Vlaminck M, Heidbuchel R, Philips W and Luong H 2022 Region-based CNN for anomaly detection in PV power plants using
aerial imagery Sensors 22 1244

[116] Dunderdale C, Brettenny W, Clohessy C and van Dyk E E 2020 Photovoltaic defect classification through thermal infrared
imaging using a machine learning approach Prog. Photovolt., Res. Appl. 28 177–88

[117] Manno D, Cipriani G, Ciulla G, di Dio V, Guarino S and Lo Brano V 2021 Deep learning strategies for automatic fault diagnosis
in photovoltaic systems by thermographic images Energy Convers. Manage. 241 114315

[118] Segovia Ramírez I, Das B and García Márquez F P 2022 Fault detection and diagnosis in photovoltaic panels by radiometric
sensors embedded in unmanned aerial vehicles Prog. Photovolt., Res. Appl. 30 240–56

[119] Su Y, Tao F, Jin J and Zhang C 2021 Automated overheated region object detection of photovoltaic module with thermography
image IEEE J. Photovolt. 11 535–44

[120] Bommes L, Hoffmann M, Buerhop C, Hauch J, Brabec C J and Peters I M 2022 Anomaly detection in IR images of PV modules
using supervised contrastive learning Prog. Photovolt. 30 597–614

[121] Lee D H and Park J H 2019 Developing inspection methodology of solar energy plants by thermal infrared sensor on board
unmanned aerial vehicles Energies 12 2928

[122] Tsanakas J A, Ha L D and Al Shakarchi F 2017 Advanced inspection of photovoltaic installations by aerial triangulation and
terrestrial georeferencing of thermal/visual imagery Renew. Energy 102 224–33

[123] Nisi M, Menichetti F, Muhammad B, Prasad R, Cianca E, Mennella A, Gagliarde G and Marenchino D 2016 EGNSS high accuracy
system improving photovoltaic plant maintenance using RPAS integrated with low-cost RTK receiver Proc. Global Wireless
Summit Conf.

[124] Alonso-García M C, Ruiz J M and Chenlo F 2006 Experimental study of mismatch and shading effects in the I–V characteristic of
a photovoltaic module Sol. Energy Mater. Sol. Cells 90 329–40

[125] Catalano A P, Scognamillo C, Guerriero P, Daliento S and d’Alessandro V 2021 Using EMPHASIS for the thermography-based
fault detection in photovoltaic plants Energies 14 1559

[126] Kauppinen T, Panouillot P-E, Siikanen S, Athanasakou E, Baltas P and Nikopoulous B 2015 About infrared scanning of
photovoltaic solar plant Proc. SPIE 9485 948517

[127] Andrews R 2022 Impact of climate on thermally-detectable module degradation modes NREL Photovoltaic Reliability Workshop
(Denver, CO)

[128] Vergura S and Marino F 2017 Quantitative and computer-aided thermography-based diagnostics for PV devices: part
I—framework IEEE J. Photovolt. 7 822–7

[129] Teubner J, Buerhop-Lutz C, Pickel T, Hauch J, Camus C J and Brabec C J 2019 Quantitative assessment of the power loss of silicon
PV modules by IR thermography and its dependence on data filtering criteria Prog. Photovolt. 27 479

[130] Denz J, Buerhop-Lutz C, Pickel T, Hauch J, Camus C and Brabec C J 2020 Quantitative assessment of the power loss of silicon PV
modules by IR thermography and its practical application in the field 37th EU-PVSEC (Lisboan, Portugal) pp 1542–7

[131] Martínez-Moreno F, Figueiredo G and Lorenzo E 2018 In-the-field PID related experiences Sol. Energy Mater. Sol. Cells
174 485–93

[132] Buerhop-Lutz C, Fecher F W, Pickel T, Patel T, Zetzmann C, Camus C, Hauch J and Brabec C J 2017 Impact of PID on industrial
roof-top PV-installations Proc. SPIE 10370 103700B

[133] Buerhop C, Pickel T, Blumberg T, Adams J, Wrana S, Dalsass M, Camus C, Zetzmann C, Hauch J and Brabec C J 2016 Correlation
of potential induced degradation (PID) in PV-modules with monitored string power output Proc. SPIE 9938 99380J

[134] van der Vaeren S 2018 The have-it-all synergy between monitoring & aerial data for solar PV (available at: www.PESSOLAR.com)
[135] Teubner J, Kruse I, Scheuerpflug H, Buerhop-Lutz C, Hauch J, Camus C and Brabec C J 2017 Comparison of drone-based

IR-imaging with module resolved monitoring power data 7th Int. Conf. on Silicon Photovoltaics, Silicon PV 2017 (Freiburg,
Germany)

[136] Moretón R, Lorenzo E and Narvarte L 2015 Experimental observations on hot-spots and derived acceptance/rejection criteria Sol.
Energy 118 28–40

[137] Winston D P 2019 Efficient output power enhancement and protection technique for hot spotted solar photovoltaic modules
IEEE Trans. Device Mater. Reliab. 19 664–70

[138] Ma M, Liu H, Zhang Z, Yun P and Liu F 2019 Rapid diagnosis of hot spot failure of crystalline silicon PV module based on I–V
curveMicroelectron. Reliab. 100–1 113402
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