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Abstract

Increasing deployment of photovoltaic (PV) plants requires methods for automatic

detection of faulty PV modules in modalities, such as infrared (IR) images. Recently,

deep learning has become popular for this. However, related works typically sample

train and test data from the same distribution ignoring the presence of domain shift

between data of different PV plants. Instead, we frame fault detection as more realis-

tic unsupervised domain adaptation problem where we train on labeled data of one

source PV plant and make predictions on another target plant. We train a ResNet-34

convolutional neural network with a supervised contrastive loss, on top of which we

employ a k-nearest neighbor classifier to detect anomalies. Our method achieves a

satisfactory area under the receiver operating characteristic (AUROC) of 73.3% to

96.6% on nine combinations of four source and target datasets with 2.92 million IR

images of which 8.5% are anomalous. It even outperforms a binary cross-entropy

classifier in some cases. With a fixed decision threshold, this results in 79.4% and

77.1% correctly classified normal and anomalous images, respectively. Most mis-

classified anomalies are of low severity, such as hot diodes and small hot spots. Our

method is insensitive to hyperparameter settings, converges quickly, and reliably

detects unknown types of anomalies making it well suited for practice. Possible uses

are in automatic PV plant inspection systems or to streamline manual labeling of IR

datasets by filtering out normal images. Furthermore, our work serves the community

with a more realistic view on PV module fault detection using unsupervised domain

adaptation to develop more performant methods with favorable generalization

capabilities.
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1 | INTRODUCTION

Solar photovoltaics (PV) has emerged as an important renewable

energy source with a global installed capacity of 627 GWp in 20201

that is projected to reach 2840 GWp in 2030.2 PV modules are prone

to defects due to aging, environmental influences, or incorrect

handling during installation. Defective modules pose safety hazards

and reduce power output, yield, and profitability of a PV plant. Thus,

regular inspection of PV plants is inevitable. As increasing plant sizes

render manual inspection impractical, there is a recent surge in works

on automatic inspection tools,3-16 which use computer vision methods

to automatically detect defective PV modules in modalities, such as

aerial thermographic infrared (IR) images.

The most recent methods frame fault detection as supervised

classification and train a deep convolutional neural network with stan-

dard cross-entropy loss to classify different types of PV module faults

in IR images.7,10 These methods achieve a high detection accuracy on

the test dataset which is sampled from the same distribution as the

training data. However, this setting ignores the fact that data distribu-

tions differ between plants, a problem known as domain shift. We find

significant domain shift by examining 4.16 million IR images from six

different PV plants. Thus, we frame fault detection more realistically

as unsupervised domain adaptation. Here, training is performed on

labeled IR images of one source PV plant and predictions are made on

another target PV plant for which no labels are available. This setting

is more realistic as it takes domain shift into account. It is also more

practical as training is performed only once, and no subsequent fine-

tuning is needed when applying the fault detector to a new PV plant.

Another challenge we address is the detection of unknown anomaly

types which are present in the target dataset but not in the source

dataset. This is generally known as open-set classification.

In this work, we develop a novel PV module anomaly detection

method for IR images based on deep learning which addresses the

aforementioned challenges. We train a ResNet-34 convolutional neu-

ral network17 with a supervised contrastive loss on labeled IR images

of a source plant and use it to extract low-dimensional representa-

tions of the images. Based on these representations, a k-nearest

neighbor (k-NN) classifier detects anomalies in the target plant. By

framing anomaly detection as supervised binary classification, we fol-

low a promising recent trend in the field.18-21 Instead of performing

active domain adaptation, our method uses contrastive representa-

tions which are more informative and less domain specific than repre-

sentations learned by the standard cross-entropy loss.22,23 This also

facilitates generalization beyond the training dataset and thus detec-

tion of unknown anomalies.

To summarize, our contributions are as follows:

• We frame PV module fault detection as more realistic

unsupervised domain adaptation problem where training is per-

formed on one labeled source plant and anomalies are detected in

another target PV plant.

• We introduce a domain-agnostic anomaly detection method based

on contrastive representation learning and a binary k-NN classifier

which outperforms a binary cross-entropy classifier on some tasks

and reliably detects unknown anomalies.

• We validate our method on nine combinations of four source and

target datasets containing a total of 2.92 million IR images.

2 | RELATED WORKS

In this section, we briefly review related works on contrastive repre-

sentation learning, domain adaptation, anomaly detection, and PV

module fault detection in IR images.

2.1 | Contrastive representation learning

Contrastive representation learning is a form of deep metric learning

initially proposed by Hadsell et al,24 which succeeds the older triplet25

and N-pair losses.26 For a good review, see Le-Khac et al.27 Contras-

tive representation learning uses deep neural networks to learn a low-

dimensional feature space of high-dimensional data in which semanti-

cally similar samples are closer than semantically dissimilar ones. To

this end, representations of a set of positive samples are attracted and

repulsed from the representations of all other (negative) samples using,

for example, the InfoNCE28 or NT-Xent29 loss. In the conventional

self-supervised setting, a single sample28,30 and optionally perturbed

versions of it29,31-33 are used as positives. In the supervised setting, all

samples with the same class label (and optional perturbations) are pos-

itives.22,34,35 Self-supervised contrastive representations discriminate

individual samples. Supervised contrastive representations on the

other hand discriminate classes by learning feature spaces in which

samples are clustered based on their class membership. In our work,

we use contrastive representations because they are more informa-

tive than those learned with standard cross-entropy loss which retain

only the minimum of information needed to discriminate training sam-

ples.22,23 This allows to extract discriminative features which are

robust against domain shift and generalize to unseen classes.

2.2 | Domain adaptation

Domain adaptation addresses the problem of learning transferable

representations without the need for large amounts of labeled training

data. For a good overview, we refer the reader to the surveys by

Wang et al.36 and Zhao et al.37 Our problem corresponds to

unsupervised domain adaptation where we learn representations on

labeled data of a source domain that generalize to an unlabeled target

domain. Many domain adaptation methods estimate and minimize the

discrepancy between source and target domain by means of loss func-

tions, such as maximum mean discrepancy,38-40 L2- or cosine

distance,41,42 Rényi divergence,43 or KL-divergence.44 Recently, con-

trastive losses have been used as well.45-47 Aligning source and target

representations this way improves performance when classifying

images48 or detecting anomalies49 in the target domain. While our
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method does not use any domain adaptation loss, it solves the same

problem by using more informative and thus less domain-specific

contrastive representations.

2.3 | Anomaly detection

Anomaly detection (AD) aims at identifying anomalous data samples

which deviate from the majority of normal samples. This relates to our

dataset which contains mostly normal PV modules and only a small

fraction of faulty modules. For a good overview of recent deep

learning-based AD methods, we refer to the surveys by Pang et al.,50

Bulusu et al,51 and Chalapathy and Chawla.52 Most deep AD methods

learn representations of normal data using autoencoders,53,54 genera-

tive adversarial networks,55,56 one-class losses,57,58 self-supervised

learning,20,59-61 or metric learning62,63 and identify anomalies by a

high reconstruction error or a large distance to the normal representa-

tions. Recently, (self-)supervised contrastive learning has gained popu-

larity for learning representations for AD.23,34,64,65 Some works also

explored the use of domain adaptation for AD.49,66-68

Many AD methods assume an unlabeled training dataset con-

taining mostly normal samples and a few anomalies. If labeled anoma-

lies are available, AD can also be formulated as (semi-)supervised

binary classification and achieve state-of-the-art performance.19-21

Similarly, using a supervised k-NN classifier on embeddings of a

ResNet, which is pretrained on ImageNet with cross-entropy loss,

outperforms many other AD methods.18

Building on this, our work formulates AD as supervised binary

classification with a k-NN classifier. As opposed to the other works,

we use contrastive representations and perform AD in a target

domain which differs from the source domain and does not contain

any labeled examples.

2.4 | PV module fault detection

Until recently, PV module faults were detected as hot regions in IR

images using classical computer vision algorithms, such as segmenta-

tion by intensity thresholding,4,6,11-13 iterative growth of segmenta-

tion masks,5,8 or template matching.3 Downside of these methods is

their dependence on heuristics and manual priors, the need for

extensive manual tuning, and poor generalization to unseen imagery.

The extraction of hand-crafted image features and detection of out-

liers by statistical tests9,14 or classification with an SVM or Random

Forest10 is slightly more robust. Recently, deep learning has shown

promising results in overcoming the problems of classical

algorithms.7,10,15,16,69 Typically, fault detection is performed as a

supervised classification in which deep convolutional networks, such

as ResNet, MobileNet,70 or VGG,71 are trained with standard

cross-entropy loss to distinguish a predefined set of fault classes. To

the best of our knowledge, related works in the field have neither

addressed the problem of domain shift nor the detection of unknown

anomaly classes.

3 | DATASET

We use an extended version of the dataset from our previous work.7

It consists of 4.16 million IR images showing 105 546 PV modules

from six different PV plants, which were acquired under clearsky con-

ditions and solar irradiance above 700 Wm�2. Note that we name

the PV plants A to G in accordance to our previous work. We omit

plant D as it contains thin-film modules instead of crystalline silicon

modules like the other plants.

Images are cropped from IR videos of a drone-mounted DJI

Zenmuse XT2 camera and rectified to remove perspective distortion.

Due to redundancies in the video, there are on average 39.4 images

of each PV module which serve as multiple augmented views. Each

image is labeled by an expert either as containing a normal module or

a module with one out of the ten typical faults shown in Figure 1.

While our method makes only a binary distinction between normal

and anomalous modules, fine-grained fault labels are used to evaluate

our method.

Tables 1 and 2 show the distribution of anomaly classes in our

dataset. To ensure a realistic setting, we do not balance the numbers

of normal and anomalous images. For our experiments, we use only

data of plants A, B, E, and F as plant C contains very few anomalies

and ground truth labels of plant G were not obtained by an expert.

Each dataset is split each into 70% train and 30% test data. Here, we

ensure that images of the same PV module do not occur in both train

and test sets.

Figure 2 shows UMAP embeddings72 of our dataset. Here, images

form distinctive clusters or domains depending on the PV plant they

originate from. This domain shift has various reasons, such as differ-

ences in ambient conditions, camera position, as well as module and

cell type. For most plants, we additionally observe sub-domains which

correspond to different rows of vertically stacked modules. Figure 3

shows an exemplary patch for each plant clearly revealing differences.

We also found that different module orientations in the images lead

to domain shift. To account for this, we rotate all images so that mod-

ule junction boxes are always at the top edge.

4 | METHOD

The aim of our method is to predict binary labels ŷTi

n o
i¼1…NT

for NT IR

images xTi
� �

i¼1…NT of a target PV plant, depending on whether a nor-

mal or an anomalous PV module is shown. While we have no labeled

examples for this PV plant, we have a set of NS binary labeled images

xSi ,y
S
i

� �� �
i¼1…NS of at least one other source PV plant. Typically, there

is a domain shift between source and target images and the distribu-

tion of anomaly classes between source and target can differ signifi-

cantly. The target data can even contain unknown anomalies, which

are not present in the source data. Our method shown in Figure 4

overcomes these challenges by (i) learning informative and domain-

agnostic representations with a supervised contrastive loss and

(ii) detecting unknown anomalies on top of the representations with a

k-NN classifier.

BOMMES ET AL. 3



4.1 | Supervised contrastive representation
learning

As indicated by Figure 2B, we observe that IR images form clusters

depending on the PV plant they originate from. However, they do not

form clusters of normal and anomalous images. We employ represen-

tation learning to compute a low-dimensional embedding of the IR

images which forms distinctive clusters of normal and anomalous

images and reduces clustering by plants. Extraction of low-

dimensional embeddings from the high-dimensional IR images is also

needed to make AD computationally tractable. Instead of using hand-

crafted features, we employ deep neural networks and a supervised

contrastive loss to learn a suitable embedding end-to-end. Specifically,

we use a convolutional encoder fθ(�) and a fully connected projection

head hψ(�) to extract a d-dimensional embedding vector vSi �ℝd from

each source image xSi :

F IGURE 1 Exemplary IR images of a normal and ten different types of anomalous PV modules in our dataset. Temperature ranges from 30�C
(black) to 60�C (white). All images except for class Cm+ show plant A. The figure is taken from our previous work7

TABLE 1 Numbers of normal and
anomalous IR images in our dataset

Class

Plant

A B C E F G

Normal 864 394 869 957 135 342 751 261 185 613 1 043 216

Anomalous 107 786 98 206 306 15 174 25 841 63 383

Normal (%) 88.91 89.86 99.77 98.02 87.8 94.27

Anomalous (%) 11.09 10.14 0.23 1.98 12.2 5.73

TABLE 2 Numbers of anomalous IR images per underlying fault
class

Class

Plant

A B C E F G

Mh 212 33 129 112 0 38 19 968

Mp 74 185 151 272 62 26

Sh 2421 2594 43 73 13 145

Sp 360 328 0 1802 217 1573

Pid 40 422 23 174 0 0 0 0

Cm+ 26 388 0 477 352 0

Cs+ 468 1651 0 582 1348 0

C 36 955 28 174 0 11 618 23 539 256

D 24 891 66 0 0 197 41 210

Chs 1957 8517 0 350 75 205

4 BOMMES ET AL.



F IGURE 2 Projection of our dataset obtained by UMAP (with 50 neighbors per sample and minimum distance of 0.1). Colors in (A) indicate
the PV plant, which reveals the domain shift between different plants. In (B), normal and anomalous samples are colored green and red,
respectively. UMAP is applied directly to the flattened images, which are preprocessed as in Section 4.3.2. For better visualization, normal
samples are subsampled to match the number of anomalous samples [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 IR images differ between the PV plants in our dataset due to different ambient conditions, camera positions, as well as module and
cell type. Shown are modules with Sh anomaly. The original aspect ratio is preserved and temperature ranges from 15�C (black) to 50�C (white)

F IGURE 4 Overview of our method for detection of anomalous PV modules in IR images of a target PV plant based on labeled samples of a
source PV plant. Low-dimensional embeddings of both source and target images are extracted by means of contrastive representation learning. A
k-NN classifier predicts target labels based on the labels of neighboring source images in the embedding space [Colour figure can be viewed at
wileyonlinelibrary.com]
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vSi ¼ hψ fθ xSi
� �� �

: ð1Þ

Several related works use a projection head to improve represen-

tational power of the encoder embeddings.29,31,73 We follow this

architecture choice. Note, however, that the effect on the encoder

embeddings is less relevant in our case as we use the embeddings

after the projection head instead for AD.

After encoding, each embedding vector is normalized to unit

L2-norm:

zSi ¼ vSi = vSi
�� ��

2: ð2Þ

Iterative stochastic gradient descent is performed on embeddings

of randomly shuffled batches of N labeled source images xSi ,y
S
i

� �
i¼1…N

to compute suitable network parameters:

θ ∗ ,ψ ∗f g¼ arg min
θ,ψ

LAD zSi ,y
S
i

� �
, ð3Þ

where LAD is a supervised contrastive loss with the following form of

a non-parametric softmax classifier27:

LAD zSi ,y
S
i

� �¼� 1
Nj j

X
i �N

log
exp zSi � zS=τ

� �
P

j �N [Aexp zSj � zS=τ
� � : ð4Þ

Here, the � symbol denotes the dot product of two vectors and

τ�ℝþ is a scalar temperature hyperparameter as used by Wu et al.30

and He et al.32 We set τ¼0:1 for all experiments. Further, N and A
denote the indices of all normal and anomalous embeddings in the cur-

rent batch and zS �ℝd is the mean vector of all normal embeddings:

zS ¼ 1
Nj j

X
i � N

zSi : ð5Þ

This loss is based on the normalized temperature-scaled cross-

entropy loss22,29 and the central contrastive loss.35 Intuitively, it pulls all

normal samples in the batch towards the normal mean vector and

pushes the anomalies away. While this causes formation of a single

cluster of normal IR images in embedding space, anomalies can poten-

tially form multiple clusters depending on the underlying anomaly class.

Note that pulling each normal sample towards the normal mean embed-

ding has the same effect as pulling all pairs of normal embeddings

towards each other. We use the first variant as it is easier to implement.

4.2 | Anomal detection with a k-NN classifier

The AD stage predicts for each target image xTj whether it shows a

normal or an anomalous PV module using a k-NN classifier on top of

the learned representations. First, the trained base encoder and pro-

jection head are used to compute the embeddings zSi
� �

i¼1…NS of all

source images as in Equations (1) and (2). This needs to be done only

once, as the embeddings are persisted in memory. Similarly, the target

embedding zTj is computed. Now, the k source embeddings nearest to

the target embedding in terms of Euclidean distance are obtained. We

denote them as N k . As all embeddings have unit L2-norm, using

Euclidean distance is equivalent to using cosine distance. The final

prediction ŷTj for the target image is made by aggregating the labels of

the images in N k . If the fraction of anomalies in N k exceeds the speci-

fied threshold δ, the target image is predicted to contain an anomalous

PV module. Later, in Section 5.4, we will determine optimal settings

for the hyperparameters k and δ.

We also tried using temperature-scaled cosine distance

exp zTj � zSi =τ
� �

and distance-weighted label aggregation for prediction

as in Wu et al.30 However, we did not observe a large impact on the

predictions.

While in theory it is computationally expensive to compare each

target embedding with all source embeddings, we do not observe this

to be a bottleneck in practice for our dataset sizes. A possible

workaround for significantly larger datasets is to perform k-means

clustering on the source embeddings and to use only the cluster cen-

troids for distance computations.18,74

4.3 | Implementation details

4.3.1 | Network architecture

We employ a randomly initialized ResNet-34 without the final classifi-

cation layer as convolutional encoder fθ(�). We add a 2D global aver-

age pooling layer17,75 as final layer which outputs a 512-dimensional

vector for each input image in the batch. The projection head hψ(�) is
implemented by two randomly initialized fully connected layers with

512 and 128 outputs, respectively, where the first layer is followed by

a ReLU activation. Thus, the dimensionality of embeddings after the

projection head is d¼128.

4.3.2 | Image preprocessing

Prior to feature extraction, each 16-bit grayscale IR image is

converted to Celsius scale, normalized to the interval [0, 255] using

the minimum and maximum temperature value in the image,

converted to 8 bit, and resized to 64 � 64 pixels. Each image is stan-

dardized by subtracting the dataset mean and dividing by the dataset

standard deviation. To account for the domain shift, we compute a

separate mean and standard deviation for each PV plant. As ResNet

expects an RGB image as input, we finally stack three copies of the

grayscale image along the channel direction.

4.3.3 | Training

We train all models for 110 000 steps using stochastic gradient

descent with momentum 0.9 and weight decay 5�10�4.76,77 The
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initial learning rate η0 ¼6�10�2 is decayed in each step following the

Cosine Annealing strategy η¼ η0=2 1þcos pπð Þð Þ where p� [0, 1] is the

training progress.78 We train with 16-bit precision and batch size

128 which is the maximum trainable on our hardware. We believe

larger batch sizes can benefit contrastive representation learning as

reported in similar works.22,29,32 During training, we augment both

source and target images independently from another by random up–

down and left–right flips and random rotation by multiples of 90�. All

images in a batch are augmented identically.

4.3.4 | Hardware and software

All models are trained on a desktop workstation with an Intel

i9-9900K, 64-GB RAM, and a GeForce RTX 2080 Ti running Ubuntu

20.04 LTS, Python 3.6.9, PyTorch 1.7.1, and PyTorch Lightning 1.1.5.

5 | EXPERIMENTS AND RESULTS

In the following, we perform a quantitative analysis of our method

and compare it against a binary cross-entropy classifier.

5.1 | Evaluation protocol

As common in AD, we evaluate all our models in terms of the area

under the receiver operating characteristic (AUROC) and the average

precision score (AP).18,19,60 AUROC is obtained by plotting the true

positive rate TPR¼TP=ðTPþFNÞ over the false positive rate FPR¼
FP=ðFPþTNÞ at various decision thresholds δ and integrating the

resulting curve. Here, TP and TN denote the numbers of correctly

classified anomalous and normal images, FP is the number of normal

images misclassified as anomalous, and FN is the number of anoma-

lous images classified as normal.

Similarly, the AP is obtained from the precision–recall curve

which plots precision P¼TP=ðTPþFPÞ over recall R¼TP=ðTPþFNÞ
at different decision thresholds. The AP summarizes the curve as the

weighted mean of precisions achieved at each threshold

AP¼
Xn

i¼1
Ri�Ri�1ð ÞPi.

While AUROC takes both the normal class and the anomalous

class into account, AP puts more emphasis on the anomalies.79 Both

AUROC and AP do not depend on a specific decision threshold δ.

Instead, they measure classification performance over the entire spec-

trum of threshold values. This makes them more informative than

other metrics, such as classification accuracy or F1-score, which are

computed at a single threshold value. Because of this, AUROC and AP

enable a fair comparison of different methods, which can depend dif-

ferently on the decision threshold.

In the following, each model is trained on a source dataset S

(train split) and evaluated on a target dataset T (train split), which

we refer to as task S ! T. As mentioned in Section 3, only the data

of PV plants A, B, E, and F are used. When we train and evaluate

on the same PV plant, we use the source test split for evaluation

and refer to it as A0 , B0 , E0, or F0. We train each model three times

with different random seeds and report the mean of AUROC

and AP.

5.2 | Model selection

In the following experiments, we compute AUROC and AP after each

training epoch and report the best values obtained. In practice, this is

not feasible as target labels are unknown. Thus, we use labeled data

of a second PV plant as validation dataset and report the target

AUROC (AP) for the epoch at which the highest validation AUROC

(AP) is achieved.

Sun et al.80 proposed to use the cosine distance between the

mean source and target embeddings for model selection. However, in

our experiments, this did not correlate well to the target metrics.

5.3 | Results of the contrastive k-NN classifier

We train and evaluate our method on various tasks and report the

best target AUROC scores in Figure 5. All scores are above 70% and

thus well above the 50% of a random guess. When training and eval-

uating on the same plant, AUROC scores are generally higher, as

there is no domain shift between train and test data. The results

suggest that the choice of source plant has a considerable effect on

F IGURE 5 Best target AUROC of our
method when trained on different source
PV plants. When source and target plants
are identical, we evaluate on the target
test split otherwise on the target train
split. Error bars indicate the 95%
confidence interval over three runs
[Colour figure can be viewed at
wileyonlinelibrary.com]
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the achievable target AUROC. For example, plant B is a better

source plant than A and plant A is better than F. Plant F is most

likely the worst source plant because its dataset is 4.6 times smaller

than that of plants A and B. However, plants A and B are similar in

sample count and distribution of anomaly classes. Hence, it is

interesting that plant B is a better source plant. This indicates that

other effects like image quality and module/cell types are important

factors as well.

We further find that AUROC is generally lower when using plant

A or B as target as opposed to plant E or F. Possible explanations for

this are the larger number of anomalies and the presence of sub-

domains in plants A and B (see Figure 2) which make the accurate pre-

diction of anomalies harder.

Note that we do not report results for training on plant E as the

contrastive loss did not converge. This is due to the lower fraction of

anomalies in plant E, resulting in batches with only very few anoma-

lous images. A larger batch size or special sampling strategy could

have solved this issue.

5.4 | Hyperparameter selection of the k-NN
classifier

The absence of labeled target images renders hyperparameter tuning

of the k-NN classifier on the target plant impossible. Thus, for practi-

cal applications, it is important that the k-NN classifier is insensitive to

the choice of hyperparameters.

Figure 6A shows the k-NN classifier AUROC for different num-

bers of neighbors. For all tasks, the k-NN classifier is insensitive to the

choice of k once it exceeds 25. For some tasks, the AUROC is still

slightly increasing at k¼200. However, as runtime also increases, we

choose k¼100 as trade-off in our experiments.

Another important hyperparameter is the decision threshold δ,

which is the fraction of anomalies required in the set of neighbors N k

to classify a target image as anomalous. Figure 6B shows the geomet-

ric mean (G-Mean) of true positive rate and false positive rate for vari-

ous decision thresholds δ. While the classifier is more sensitive to the

choice of δ (as compared to k), it behaves consistent across the tasks,

F IGURE 6 Prediction performance of the k-NN classifier for different settings of the hyperparameters k and δ. The dashed vertical lines at
k¼100,δ¼0:1 represent the trade-offs we use in practice. All classifiers are trained on contrastive embeddings of the model with random seed
1 and best target AUROC on the respective task. (A) AUROC versus numbers k of neighbors. (B) G-Mean versus decision threshold δ [Colour
figure can be viewed at wileyonlinelibrary.com]
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taking on a high value for small thresholds. We choose δ¼0:1 in prac-

tice to account for the imbalance between normal and anomalous

images.

5.5 | Which faults are misclassified?

Using the hyperparameter settings from above, we make predictions

with our contrastive k-NN classifier and show the resulting confusion

matrices in Figure 7. Averaged over all tasks, the fractions of correctly

classified normal and anomalous images are 79.4% and 77.1%, respec-

tively. Furthermore, the fraction of anomalies misclassified as normal

is only 22.9% on average. Higher misclassification rates for the model

trained on plant F suggest (in line with the results from Section 5.3)

that plant F is a poor choice for training. The less critical fraction of

normal images misclassified as anomalous is 20.6% on average. An

outlier in this metric is task B ! A, which would require a higher deci-

sion threshold as can be seen in Figure 6B.

For the purpose of analysis, we have access to fine-grained target

labels. Thus, we can analyze which specific anomaly classes are mis-

classified, allowing us to identify potential systematic errors. Table 3

reports our findings. With a few exceptions, error rates are below

15% for faults Mp, Sh, Sp, Pid, Cm+, Cs+, and C when training on

plants A and B.

For homogeneously overheated modules (Mh), we observe a high

error rate. This is caused by the image-wise normalization applied dur-

ing preprocessing and may be addressed in future works. High error

rates also occur for D and Chs faults due to their small spatial extent

in the image. This is a typical problem of convolutional neural net-

works. However, as D and Chs faults are not critical, we can accept

the higher error rates. Interestingly, the model trained on plant F cor-

rectly identifies many Pid modules, despite the lack of Pid training

examples in F. The model most likely transfers knowledge from the

visually similar Mp class. This fails for the visually more unique Sh

anomaly, of which plant F contains only 13 examples.

5.6 | Visualization of misclassified IR images

To build an intuition for the quantitative results of our method, we

make predictions on IR images and visualize both correct and false

predictions in Figure 8.

As shown by the examples, the high misclassification rates for the

Mh, D, and Chs anomalies can be explained by their high visual simi-

larity to the normal images. Similarly, we find that primarily those

anomalous images are misclassified that exhibit lower local tempera-

ture differences and are visually more similar to the normal images.

This is a good indicator for the smoothness of the learned contrastive

representations and thus the robustness of our approach.

Figure 8 also highlights a few misclassified normal images. Inter-

estingly, most of these are valid anomalies with false ground truth

labels. There are also cases of poorly cropped images, images with

strong perspective distortion, or images with sun reflections. Our

method correctly identifies them as anomalies despite never having

been trained on such examples.

5.7 | Embedding visualizations

As another means to interpret our models, we visualize the represen-

tations learned by supervised contrastive training in Figure 9. Here,

for most tasks, the representations clearly separate normal and anom-

alous images, which explains the overall high AUROC and AP scores

achieved. Exceptions are tasks F ! A and F ! B, where many anoma-

lies lie within the normal cluster resulting in a low recall. We can also

see that the anomaly classes Mp, Sh, Sp, Pid, Cm+, and Cs+, which

F IGURE 7 Normalized confusion matrices of the k-NN classifier (k¼100 and δ¼0:1) on different tasks. We report averages using the model
with best target AUROC at each random seed [Colour figure can be viewed at wileyonlinelibrary.com]
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achieved low error rates in Section 5.5, have a larger distance to the

normal modules than anomalies with higher error rates (Mh, D, and

Chs). The C anomalies often lie somewhere in between, which is in

accordance to the slightly higher error rates of around 10%.

5.8 | Detection of unknown anomalies

One goal of our method is the ability to reliably detect anomalies in

the target dataset, which are not contained in the source dataset. To

TABLE 3 Percentage of target
anomalies misclassified as normal by our
k-NN classifier (k¼100 and δ¼0:1)
grouped by fault class

Task

Actual fault class

Mh Mp Sh Sp Pid Cm+ Cs+ C D Chs All

A ! A0 7.8 0.0 0.0 11.2 0.3 – 0.0 3.4 16.6 28.4 5.6

A ! B 76.6 0.3 1.3 0.0 1.5 3.6 2.7 13.5 55.8 33.0 33.4

A ! E – 0.0 2.7 0.0 – 0.0 0.1 18.6 – 72.0 16.1

A ! F 0.0 16.1 0.0 2.1 – 1.2 4.9 11.9 55.3 – 11.8

B ! A 0.0 0.0 0.1 0.0 0.7 0.0 0.0 3.8 10.8 9.4 4.3

B ! B0 37.0 0.0 3.9 0.0 1.1 35.0 0.3 11.2 97.4 21.7 17.8

B ! E – 0.0 8.7 0.1 – 0.0 3.9 10.3 – 51.9 9.6

B ! F 0.0 0.0 0.0 0.0 – 0.0 0.2 3.9 66.0 – 4.3

F ! A 30.4 0.0 60.5 0.0 27.0 0.0 1.3 62.1 62.1 59.8 48.3

F ! B 91.2 0.0 71.8 1.0 8.6 3.6 1.0 26.6 30.8 75.8 49.2

F ! E – 7.0 68.9 2.3 – 22.3 2.3 32.6 – 84.2 28.7

F ! F0 – – – 0.0 – 0.7 0.3 6.7 – 0.0 6.0

Note: Fault criticality decreases from left to right. Error rates below 15% are green, between 15% and

50% orange, and above 50% red. We report averages over three runs using the model with best target

AUROC at each run.

F IGURE 8 Exemplary predictions of our k-NN classifier (k¼100 and δ¼0:1) for IR images of plant B by the model trained on plant A. We
use the model at seed 1 with best target AUROC and show preprocessed patches
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analyze how well our method deals with such unknown anomalies, we

remove all anomalies of classes Mp, Sh, Sp, Cm+, and Cs+ from the

source datasets of plants A and B, retrain our models, and evaluate on

the full target datasets containing all anomaly classes. We chose pre-

cisely these classes, as they make up only 3.1% and 5.2% of all anoma-

lies in datasets A and B. This leaves dataset sizes nearly unchanged,

providing us with a more comparable result. For most tasks, the

resulting target AUROCs (see Table 4) do not deviate much from the

respective AUROCs of the models trained on all anomaly classes. Sim-

ilarly, we do not observe any change in model convergence during

training, as shown in Figure B1 in Appendix B1. The results indicate

that our method can reliably detect unknown anomalies.

5.9 | Comparison with cross-entropy classifier

We compare our method with a deep convolutional binary classifier

based on ResNet-34, which is trained with standard cross-entropy

loss using the same data preprocessing, data augmentation, and train-

ing settings as our method (see Section 4.3). While the convolutional

backbone is identical to our contrastive model, a softmax-activated

fully connected layer with two outputs is used on top of the 2D global

average pooling layer. A projection head is not employed.

As shown in Table 5, our method outperforms the cross-entropy

classifier in terms of target AUROC in many cases which is in accor-

dance to the literature.22 Only on tasks F ! B and F ! E our method

F IGURE 9 UMAP projections (with 50 neighbors per sample and minimum distance of 0.1) of the target datasets embedded by ResNet-34
after supervised contrastive training. Embeddings are obtained behind the ResNet-34 average pooling layer. For each task, the model at seed
1 with best target AUROC is shown [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Target AUROCs of our
contrastive k-NN classifier trained on
datasets where anomaly classes Mp, Sh,
Sp, Cm+, and Cs+ are left out versus the
baseline trained on the full dataset

Task

Variant

Task

Variant

Full dataset Leaveout Full dataset Leaveout

A ! A0 98.39 98.29 B ! A 86.86 83.43

A ! B 80.38 80.60 B ! B0 93.38 93.38

A ! E 91.93 92.26 B ! E 96.64 96.67

A ! F 91.06 91.63 B ! F 94.35 93.92

Note: All values are averages over three training runs.
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falls behind. This could be due to the smaller dataset size and thus

smaller absolute number of anomalies in plant F. It indicates that our

method is more sensitive to the dataset size, that is, is less accurate

on small datasets but profits more from larger dataset sizes than the

cross-entropy classifier.

The same result is reflected in the AP, which is exemplary shown

for plant A over the course of the training in Figure 10. An additional

analysis for plants B and F is provided in Appendix A1. Furthermore,

we find that due to the large size of our datasets, target AP converges

within a single training epoch.

5.10 | Module-level aggregation of predictions

As there are on average 39.4 IR images of each PV module, we can

aggregate predictions of those images to obtain a final prediction for

the module. Specifically, we predict a module as anomalous if at least

one half of the corresponding images are predicted anomalous. As

indicated by the resulting confusion matrices in Figure 11, on average,

82.9% of all normal and 78.1% of all anomalous modules are correctly

classified. On average, 17.1% of the normal modules are misclassified

as anomalous and 21.9% of the anomalous modules are misclassified

as normal. As compared to the image-level predictions (see

Section 5.5), module-level aggregation improves especially upon the

detection rate of normal modules but also yields a 1% higher detec-

tion rate for anomalies. These results suggest that the hierarchical

structure of our dataset is beneficial for the accurate detection of

anomalous PV modules.

5.11 | Exemplary application to labeling of IR
datasets

For the development of future fault classification methods, large IR

image datasets are needed. Our method can drastically reduce the

time and effort needed for labeling such datasets by automatically

TABLE 5 Target AUROCs of our
contrastive k-NN classifier versus a
binary classifier trained with cross-
entropy loss

Task Val 0 Val 1

Contrastive AUROC Cross-entropy AUROC

@Val 0 @Val 1 Best @Val 0 @Val 1 Best

A ! A0 – – – – 98.39 – – 98.64

A ! B F E 78.83 79.62 80.38 74.68 77.76 78.19

A ! E F B 90.85 90.02 91.93 81.45 86.49 88.71

A ! F B E 88.82 90.49 91.06 85.18 86.10 89.26

B ! A F E 77.01 80.25 86.86 68.35 69.95 76.81

B ! B0 – – – – 93.38 – – 95.45

B ! E F A 95.20 93.20 96.64 92.54 88.32 96.66

B ! F A E 88.13 92.42 94.35 89.94 92.51 93.85

F ! A B E 66.14 61.58 73.29 63.46 55.49 75.22

F ! B A E 69.22 72.68 74.54 74.91 76.83 77.52

F ! E A B 84.06 86.42 88.86 88.02 88.65 90.64

F ! F0 – – – – 97.44 – – 97.54

Note: We report the best values achieved and values for models selected via two different validation

datasets (Val 0 and Val 1). All values are averages over three training runs. Values of the better method

are in bold.

F IGURE 10 Average precision over the course of training of our contrastive k-NN classifier (orange line) versus a supervised binary classifier
trained on cross-entropy loss (dashed blue line). Plant A is used as source. Shaded regions indicate the 95% confidence interval over three runs
[Colour figure can be viewed at wileyonlinelibrary.com]
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rejecting the majority of normal (and thus uninteresting) PV modules.

For example, when labeling plant E, one would have to manually sight

14 662 PV modules, of which only 296 are anomalous, that is, actually

interesting. Applying our method (trained, e.g., on plant B) could auto-

matically reject 98.1% of the normal modules, leaving only 273 normal

modules for manual sighting. The cost for this improvement is the loss

of 26 anomalous modules, which are misclassified as normal. In total,

543 modules are left for manual sighting. Assuming an expert takes

three seconds to label one module, this reduces the time needed to

label plant E from 12.2 hours to only 27 minutes. Adjusting the deci-

sion threshold during module-level aggregation allows to trade off lost

anomalies and time savings.

6 | DISCUSSION AND CONCLUSION

6.1 | Summary

In this work, we proposed a novel method for the detection of PV

module faults in IR images using supervised contrastive learning.

Instead of sampling train and test data from the same PV plant, we

performed training with labeled IR images of one source plant and

made predictions on another target plant. We identified domain shift

between source and target data as a problem in this setting and

addressed it by learning transferable representations with a super-

vised contrastive loss. A k-NN classifier was used on top of these rep-

resentations to detect unknown anomalies in the target plant.

Experiments on nine different combinations of four source and target

datasets showed the effectiveness of our method, which achieved an

AUROC of 73.3% to 96.6% and even outperformed a binary cross-

entropy classifier in some cases. We further found that our method

converges quickly and is relatively insensitive to hyperparameter set-

tings, making it well suited for practical applications. Using fault labels

for ten different types of anomalies, we found that our method most

frequently misses anomalies with a small spatial extent in the image,

for example, overheated bypass diodes or small hot spots. Most strik-

ing, our method showed no significant drop in AUROC after removing

five of the ten anomaly classes from the training datasets, proving its

ability to reliably detect unknown anomalies. Finally, we improved

detection accuracy by aggregating predictions of multiple IR images

belonging to the same PV module.

6.2 | Practical relevance

Increasing PV deployments and aging PV plants require regular inspec-

tions to ensure a safe operation and maximum power output, yield,

and profitability of a plant. The large size of most PV plants and poten-

tially high labor cost renders a manual inspection economically infeasi-

ble and raises the need for fully automatic plant inspection. Our

method is highly relevant for such inspection systems, as it automati-

cally identifies anomalous PV modules in a large number of IR images.

This enables targeted repairs and restoration of the original perfor-

mance of a PV plant. Apart from the inspection of existing plants, auto-

matic inspection is further useful for the commissioning of new plants.

One problem of existing fault detection methods is that they do

not explicitly consider domain shift between different PV plants.

This means a fault detector must be fine-tuned on labeled training

images of each new PV plant that is inspected. This is not only

labor-intensive, but also time-consuming, as training a neural network

takes several hours. Opposed to that, our method explicitly handles

domain shift. This way, it needs to be trained only once on a labeled

dataset and generalizes afterwards to new PV plants without further

fine-tuning. This is of major importance for realizing economically

viable plant inspection systems that work for many different PV plants

without the need for a time-consuming and costly setup phase.

F IGURE 11 Normalized confusion matrices of the k-NN classifier (k¼100 and δ¼0:1) for predictions aggregated on module level. We
report averages using the model with best target AUROC at each random seed [Colour figure can be viewed at wileyonlinelibrary.com]
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Apart from automatic plant inspection, our method can also aid

the manual labeling of IR datasets. This facilitates creation of large-

scale datasets, which are needed for the development of the next

generation of automatic fault detection algorithms.

6.3 | Future works

We presented a PV module fault detection method, which overcomes

domain shift between different PV plants and generalizes beyond the

training dataset without the need for huge amounts of labeled training

data. While this is an important milestone, further measures could

improve domain adaption and increase detection accuracy on new PV

plants. For example, future works could explore active domain adapta-

tion techniques, such as maximum mean discrepancy. In addition,

multi-domain adaptation, which uses multiple labeled source datasets

from different PV plants simultaneously, could be taken into

consideration.
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F IGURE A1 Average precision over the course of training of our contrastive k-NN classifier (orange line) versus a supervised binary classifier
trained on cross-entropy loss (dashed blue line). The top row uses plant B as source, and the bottom row plant F. Shaded regions indicate the
95% confidence interval over three runs [Colour figure can be viewed at wileyonlinelibrary.com]

APPENDIX A: Additional comparisons with the cross-entropy classifier

Figure A1 shows additional results for the comparison of our method with a cross-entropy classifier performed in Section 5.9.
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APPENDIX B: Additional comparisons for training without some anomalies

Figure B1 shows additional results for our method trained on reduced source datasets without Mp, Sh, Sp, Cm+, and Cs+ anomalies. It extends

the results presented in Section 5.8.

F IGURE B1 Average precision over the course of training of our contrastive k-NN classifier trained on datasets without anomaly classes Mp,
Sh, Sp, Cm+, and Cs+ (orange line) versus the baseline trained on the full dataset (dashed blue line). Shaded regions indicate the 95% confidence
interval over three runs [Colour figure can be viewed at wileyonlinelibrary.com]
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