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Abstract

Increasing deployment of photovoltaics (PV) plants demands for cheap and fast

inspection. A viable tool for this task is thermographic imaging by unmanned aerial

vehicles (UAV). In this work, we develop a computer vision tool for the semi-

automatic extraction of PV modules from thermographic UAV videos. We use it to

curate a dataset containing 4.3 million IR images of 107,842 PV modules from ther-

mographic videos of seven different PV plants. To demonstrate its use for automated

PV plant inspection, we train a ResNet-50 to classify ten common module anomalies

with more than 90% test accuracy. Experiments show that our tool generalizes well

to different PV plants. It successfully extracts PV modules from 512 out of 561 plant

rows. Failures are mostly due to an inappropriate UAV trajectory and erroneous mod-

ule segmentation. Including all manual steps our tool enables inspection of 3.5 MWp

to 9 MWp of PV installations per day, potentially scaling to multi-gigawatt plants due

to its parallel nature. While we present an effective method for automated PV plant

inspection, we are also confident that our approach helps to meet the growing

demand for large thermographic datasets for machine learning tasks, such as power

prediction or unsupervised defect identification.
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1 | INTRODUCTION

Deployment of solar photovoltaics (PV) has increased exponentially in

the past years. At the end of 2019, globally installed capacity reached

586 GWp.
1 Many PV plants contain defective PV modules which pose

safety hazards and reduce power output, yield and as a consequence,

the profitability of the plant. Defects occur during manufacturing,

installation or due to aging. To identify defective modules PV plants

need to be inspected regularly.

A valuable tool for defect identification in PV modules is thermo-

graphic imaging which uses a thermal IR camera to visualize defects

based on their increased temperature. To speed up the inspection

process thermography is typically performed by unmanned aerial vehi-

cles (UAV).2–5 Many works have explored the use of UAVs for PV

plant inspection. A high-level overview of the inspection process and

the challenges involved is given in previous works.6,7 Gallardo-

Saavedra et al8 compare available camera and drone technologies and

Bizarri et al9 perform an economical analysis. Other studies analyze
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the influence of the image resolution on the detectability of

defects.10,11

UAV thermography of PV plants with millions of modules pro-

duces so many images that manual sighting is infeasible. This raises

the need for image processing tools which automatically detect PV

modules in each image and identify thermal anomalies. To enable

repairs or exchange of defective modules the automated processing

tool needs to further determine the exact location of each module in

the plant. Instead of taking individual images at predetermined posi-

tions, we simply fly along each row of the PV plant and acquire videos.

This renders expensive and time consuming flight planning unneces-

sary and allows for faster inspection on-site. However, it increases the

amount of data as each PV module occurs in multiple consecutive

video frames. It further introduces perspective distortion and other

artifacts, such as sun reflections, which need to be handled by the

processing tool to make the images usable for downstream anomaly

classification and other machine learning algorithms. The large number

of acquired thermographic images is key to accurate anomaly classifi-

cation as some anomalies are very seldom and machine learning algo-

rithms used for anomaly classification require many examples to

achieve high accuracy and good generalization.

In this work we develop such an image processing tool for the

semi-automatic extraction and localization of PV modules in UAV

thermographic videos of large-scale PV plants (see Figure 1). It can be

used to automate inspection of PV plants and to curate large datasets

for downstream machine-learning tasks. While there are several

works on automated PV plant inspection systems,12–19 they rely

heavily on classic image processing techniques, such as intensity

thresholding (see Table 1). These techniques are based on heuristics,

need extensive manual tuning, do not generalize well and are not very

accurate. Further, many of the related works can distinguish at most

three different thermal anomalies or perform only a binary classifica-

tion. First works have shown promising results using deep learning for

these tasks.20,21 Following this recent trend, we use the Mask R-CNN

instance segmentation framework22 to robustly extract PV modules

from thermal IR videos. A ResNet-50 deep convolutional classifier23 is

used for fine-grained classification of ten thermal anomalies. Further,

we exploit the large redundancy and temporal context present in the

video data to efficiently build a large-scale dataset of thermographic

images of PV modules for downstream machine learning tasks. To

summarize, our contributions are as follows:

• A tool for semi-automatic extraction and localization of PV mod-

ules in UAV thermographic videos of large-scale PV plants which

can be used for automated plant inspection and to curate large

datasets for downstream machine-learning tasks.

• A dataset of 4.3 million thermographic images of 107,842 PV mod-

ules from seven PV plants with fine-grained labels of ten common

thermal anomalies.

• Training and evaluation of a ResNet-50 classifier on our dataset.

• A quantitative analysis of generalization ability, processing time

and failure cases of our tool.

2 | RELATED WORKS

The following is an overview of related methods for semi-automatic

thermographic PV plant inspection by UAVs. We compare them in

terms of module detection, thermal anomaly detection and localiza-

tion of modules in the plant. Table 1 summarizes methods and dataset

sizes of the related works.

2.1 | PV module detection

Most works employ classic computer vision algorithms to detect PV

modules in both visual and thermographic images. The most popular

method is binary thresholding of image intensities to obtain segmen-

tation masks of the PV modules13–15,19,24,25. Vega Díaz et al21 detect

rectangular candidate contours by thresholding, extract texture fea-

tures and classify them with a Support Vector Machine (SVM). Other

works find edges of PV modules using morphological operations30,31

or the Hough transform.12,16 More exotic techniques are template

matching18 and maximally stable extremal regions.17 Main issue of all

these works is their reliance on classic image processing which is

F IGURE 1 High-level overview of our
tool for semi-automatic inspection of
photovoltaics (PV) plants using
thermographic videos acquired by an
unmanned aerial vehicle (UAV) [Colour
figure can be viewed at wileyonlinelibrary.
com]
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based on manual priors and heuristics, needs extensive manual

tweaking of hyper parameters and generalizes poorly to unseen

imagery.

Deep learning overcomes these problems and is applied to PV

module detection by several works.21,26,27 Zhang et al27 perform

semantic segmentation with a combination of a ResNet-3423 and a

TABLE 1 Comparison of related works on PV module detection and thermal anomaly detection in aerial IR images of PV plants

Work

Test (train)

dataset
Module detection Anomaly detection

Images/modules/
plants Method Type F1/% Method Anomaly classes F1/%

17 20/240/1 Region proposal by

Maximally Stable Extremal

Regions (MSER) + filtering

by size

Boxes n.a. Segmentation by binary

thresholding

1 Hot spot n.a.

16 1171/—/1 Edge extraction by Hough

transform +

postprocessing

Lines n.a. Segmentation by binary

thresholding

1 Hot spot 59.0

13-15 34/—/1 Segmentation by binary

thresholding in HSV-space

Mask n.a. Segmentation by binary

thresholding with two

thresholds + classification

heuristics

3 Hot spot, hot

substring, hot

module

98.8†

19 37/1544/2 Segmentation by binary

thresholding with adaptive

threshold

Mask 92.8 Feature extraction +

classification with Grubb's

test and Dixon's Q test

3 Hot spot, hot

substring, hot

module

93.9†

24,25 3/204/1 Segmentation by binary

thresholding +

morphological operations

Mask 95.8 Feature extraction (mean &

std) + comparison with

neighboring modules

3 Hot spot, hot

substring, hot

module

92.9†

18 270/—/1 Template matching Boxes 83.0 Template matching 1 Hot spot 75.0†

12 —/14,215/>1 Canny edge detection +

Hough transform

Lines 87.0 Segmentation by water filling

algorithm + temporal

tracking with majority

voting

1 Hot spot 72.0

21 test: 20/—/3

train: 80/—/3

Rectangle extraction by

adaptive thresholding +

SVM classifier on texture

features

Boxes +

Masks

98.3 — — — —

20 test: 77/—/3

train: 306/—/3

— — — SIFT feature extraction +

Random Forest classifier

4 Sh, Sp, Mp, Cs+

(see

Figure 11)

77.2†

21 test: 20/—/3

train: 80/—/3

DL instance segmentation

(Mask R-CNN) +

postprocessing

Boxes +

Masks

98.9 — — — —

26 test: —/14,499/

>1 train:

—/36,000/>1

DL object detection

(YOLOv3)

Boxes 95.0 — — — —

27 test: 19/—/1

train: 216/—/1

DL semantic segmentation

(ResNet-34 + U-Net)

Mask 97.1 — — — —

28 —/—/1 — — — Segmentation by VGG-16

based DL model

3 Hot spot, hot

substring, hot

string

n.a.

29 test: 318/—/1

train:

1304/—/1

— — — DL classification (VGG-16) of

entire video frame

1 Binary 75.0

20 test: 77/—/3

train: 306/—/3

— — — DL classification (MobileNet,

VGG-16)

4 Sh, Sp, Mp, Cs+

(see

Figure 11)

89.5†

Note.: F1 scores are taken from the original works and are not directly comparable due to different test datasets and different definitions of the F1-score

(pixel-based, bounding box-based, choice of IoU threshold). A unification is out of the scope of this work. F1vscores defined in the same way as in our

work are demarked with a †
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U-Net.32 A weakness of semantic segmentation is that it does not dis-

tinguish between individual PV modules. Greco et al26 employ the

YOLO object detector33 which does not have this problem. However,

it suffers from the imprecise representation of PV modules by

bounding boxes instead of segmentation masks. Similar to our work,

Vega Díaz et al21 solve both problems by utilizing the Mask R-CNN

instance segmentation model. It outputs an individual segmentation

mask for each PV module which allows for accurate localization of PV

modules in thermographic images.

2.2 | Thermal anomaly detection

Similar to the PV module detection many works use binary

thresholding to segment hot regions of PV modules in thermographic

images which correspond to thermal anomalies.13,14,16,17,34 Carletti

et al12 and Alsafasfeh et al35 iteratively grow segmentation masks of

hot spots starting from local intensity maxima. In Addabbo et al18 hot

spots are found by template matching. Another approach is to extract

features, such as mean and standard deviation, for each PV module

and finding outliers with statistical tests19 or by comparing with

neighboring modules.25

Several recent works explore deep learning for anomaly detection

to overcome the limitations of classic image processing.20,28,29 In

Oliveira et al28 a segmentation model based on VGG-16 is used to

segment three different anomalies directly in the thermographic

image. VGG-16 is also used by Pierdicca et al29 to classify whether an

image contains an anomalous module or not. Problem of this method

is the inability to accurately localize the anomalous module. In Dun-

derdale et al20 four different anomalies are classified using MobileNet

and VGG-16. The authors find that both deep learning methods out-

perform a SVM and a Random Forest classifier using SIFT features.

Problem of the current methods is that the list of anomalies clas-

sified is by no means complete. Further, small datasets with only

360 to 3336 images are used.

Similar to Dunderdale et al20 we utilize a deep convolutional clas-

sifier, in our case ResNet-50. However, we obtain a significantly larger

anomaly classification dataset with more than 450,000 images and

perform a much more fine-grained classification of ten thermal

anomalies. In addition, we employ majority voting over subsequent

video frames to enhance classification accuracy.

2.3 | Localization of PV modules in the plant

To localize PV modules in the PV plant several studies create pano-

rama images of each row, detect modules and assign an ID to each

module.13,14,30 This way, module locations are defined relative to

other modules. Niccolai et al15 use the same technique and addition-

ally match each row panorama to a CAD plan by means of GPS posi-

tions. Problematic is the need for an accurate flight path with

specified overlap of individual images which makes the UAV operation

more complicated. Further, CAD files are not always available and the

format can vary for different PV plants.

Several works create an orthophoto of the entire PV plant from a

higher altitude.36–38 This requires nadiral images with a suitable over-

lap which may not always be feasible in case of nearby power lines,

streets or train tracks. Spatial resolution of a high-altitude image is

low making fine-grained anomaly classification of PV modules

difficult.

Other works use direct georeferencing to estimate the GPS posi-

tion of each PV module in the image.18,39 This requires an expensive

Real Time Kinematics system to accurately estimate the UAVs

position.

In Henry et al40 GPS positions of the video frames containing an

anomalous PV module are marked on a map. While this is straightfor-

ward it still requires manual localization of the anomalous module

within the frame.

Our work uses relative mapping similar to previous works.13,14,30

Instead of creating a panorama, we encode the spatial relationship of

PV modules in a graph that is matched with a standardized plant file

containing module identifiers. This allows for easy integration of other

data modalities, such as electrical measurements. The plant file needs

to be created only once for each plant which saves time when

inspecting the same plant multiple times. We further do not require

nadiral images or a specific overlap of adjacent frames and a standard

GPS receiver is sufficient. This reduces cost and allows for a more

flexible operation of the UAV.

F IGURE 2 Example video frames
of the seven PV plants in our dataset
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3 | VIDEO DATASET

For this work we acquire thermographic videos of seven utility-scale

PV plants containing a combined 122,865 PV modules (ranging from

2850 to 35,360 modules per plant). As can be seen in Figure 2 the

plants in our dataset cover a variety of row layouts, module sizes,

module orientations and module technologies. Plant D comprises of

thin-film modules while the others use crystalline silicon modules. In

total our dataset contains 8 hours of video footage (231,172 frames)

with on average 21.8 PV modules per frame. Videos were acquired by

a UAV of type DJI Matrice 210 and a DJI Zenmuse XT2 camera which

has a resolution of 640 � 512 pixels and a frame rate of 8 Hz. Acqui-

sition took place under clearsky conditions and solar irradiance above

700 W m�1.

4 | PV MODULE EXTRACTION

This section introduces our tool for semi-automatic extraction of PV

modules from thermographic videos. An overview can be found in

Figure 3. First, the tool splits thermographic videos into individual

frames and extracts their GPS coordinates. Aided by the GPS coordi-

nates the user manually specifies which frames belong to which row

of the PV plant. PV modules are segmented by Mask R-CNN,

extracted, rectified and stored to disk. A tracking algorithm associates

each PV module in subsequent video frames with a unique track ID.

This way the extracted patches of each PV module can be grouped

together. Finally, track IDs are associated with plant IDs. Plant IDs are

specified in a standardized plant file and describe the electrical wiring

and the location of each module in the plant. We chose a semi-

automatic approach to achieve a high degree of flexibility and good

generalization to different PV plants.

The rest of this section explains the tool in detail.

4.1 | Video acquisition and preprocessing

Thermographic videos can be captured with any UAV or camera as

long as the following requirements are fullfilled:

• Each row of the PV plant is scanned individually.

• The camera moves monotonically along the row; that is, there is no

significant backward movement.

• The current row must be fully visible and always the frontmost

(bottommost) one in each frame.

• The row must lie approximately horizontal or vertical in each

frame.

Our tool is robust to changes of the flight velocity, altitude, and

camera angle. This allows the operator to manually track rows with

varying elevation (e.g., hillsides) and choose the optimal camera angle

to reduce sun reflections. Additional rows which may become visible

in the background due to low camera angles are filtered out.

After acquisition thermal IR videos are split into individual

frames and stored as 16-bit grayscale TIFFs. The GPS position of

each frame is extracted and stored in CSV and KML files. They are

needed during the manual grouping of frames that follows in the

next step. In case the PV rows are vertical we rotate the video

frames by 90� to enable equal treatment of both cases in the

remaining processing steps.

F IGURE 3 Overview of our tool for semi-automatic extraction of PV modules from thermographic videos [Colour figure can be viewed at
wileyonlinelibrary.com]
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4.2 | Grouping of frames into rows

For maximum flexibility our tool processes each row of the PV

plant independently. To this end, the user has to manually specify

which video frames belong to which row of the PV plant. Specifi-

cally, he has to provide the plant IDs of the bottom left and top

right modules and the index of the first and last frame of each

row. A graphical tool (see Figure 4) for browsing frames based on

their GPS position simplifies this process. The user can skip parts

of the video and rows do not need to be scanned in any particular

order. It is also possible to scan rows partially, e.g. when a row

contains multiple strings of which only a subset needs to be

inspected. Further, single frames can be processed which is useful

for short rows.

4.3 | PV module segmentation

To locate PV modules in each video frame we use the Mask R-CNN

instance segmentation framework. It outputs an axis-aligned bounding

box and a binary segmentation mask for each PV module. We train it

to segment only fully visible PV modules. Example outputs are shown

in Figure 5.

4.3.1 | Dataset

For fine-tuning of Mask R-CNN we annotate segmentation masks and

bounding boxes of 26,612 PV modules in 862 video frames of PV

plants A, B, C and D. For this we developed a custom annotation tool,

however any annotation tool for instance segmentation can be used.

We select 60 frames (15 of each PV plant) with a total of 2104 PV

modules for validation and the remaining 802 frames for training. For

compatibility with Mask R-CNN we convert the 16-bit grayscale

frames to Celsius scale, normalize the values to the interval [0, 255],

convert to 8-bit, maximize contrast by means of a histogram equaliza-

tion, convert to RGB and subtract the channel means estimated from

the training set. In addition, each frame is padded with zeros to a

square of size 640 � 640 pixels.

4.3.2 | Training

Starting from MS COCO-pretrained weights41 we train the segmenta-

tion and classification heads of Mask R-CNN for 59 epochs using sto-

chastic gradient descent with a batch size of 2, learning rate 0.001,

momentum 0.9 and weight decay 0.0001. Subsequently, all weights

are fine-tuned for additional 60 epochs with 1/10th of the previous

F IGURE 4 Graphical tool for associating frames with PV plant rows [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Example results of the PV module segmentation with Mask R-CNN [Colour figure can be viewed at wileyonlinelibrary.com]
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learning rate. During both training stages frames are augmented by

random up-down and left-right flips and (in 50% of the cases) rotation

by a uniform random angle between -10� and 10�. We additionally

rotate images by ± 90� in 50% of the cases to reduce differences

between landscape and portrait orientation of modules.

4.3.3 | Validation metrics

We evaluate Mask R-CNN in terms of F1-score and average precision

(AP) metric from the MS COCO benchmark.41 To this end, all pairs of

predicted and ground truth module bounding boxes in a validation

frame are formed and the intersection over union (IoU) of each pair is

computed. Pairs with an IoU larger than a specified threshold are true

positives (TP). False positives (FP) are predictions not matched with

any ground truth box and false negatives (FN) ground truths without

predictions. From this, precision TP/(TP + FP), recall TP/(TP + FN)

and F1-score 2TP/(2TP + FP + FN) are computed at ten IoU thresh-

olds {0.5, 0.55, … , 0.95}. AP is the area under the resulting precision

recall curve. Finally, F1-score and AP are averaged over all validation

frames.

4.3.4 | Results

After fine-tuning Mask R-CNN achieves an AP of 90.01% and an

F1-score of 90.51%. At IoU threshold 0.5 the AP and F1-score are

99.55% and 98.92%, respectively. This very good segmentation accu-

racy allows us to skip any additional filtering and post-processing of

the segmentations. Later, in sec. 5.2 and 5.3 we will analyze how

Mask R-CNN generalizes to different PV plants and how segmenta-

tion errors affect the PV module extraction.

4.4 | Extraction of module patches

This step extracts segmented PV modules from the thermographic

frames and stores the resulting patches to disk. Due to perspective

distortion and irregular shape of the segmentation masks direct

cropping and storing is not possible. Instead, we fit a minimum-

perimeter enclosing quadrilateral to each segmentation mask and

obtain a homography which maps the quadrilateral to a rectangle.

Width and height of this rectangle correspond to the maximum width

and height of the quadrilateral. This yields variable-sized patches

which retain most of the information of the source frame without

wasting storage space. To ensure each pixel within the quadrilateral is

valid we restrict it to lie within the frame. If the IoU of a segmentation

mask and the fitted quadrilateral is below 0.9 the segmentation mask

is most likely incorrect and filtered out.

4.5 | PV module tracking

Multiple object tracking is performed to associate segmentation

masks of the same PV module in subsequent video frames. This

enables grouping of the extracted patches by their associated PV

module. To this end, mask centers are projected from frame t � 1 into

frame t using a homography that is estimated by extracting and

matching ORB keypoints42 in both frames. We also tried a

Kanade–Lucas–Tomasi tracker but found that it fails due to large

motion magnitude whenever the IR camera recalibrates. Each

projected mask center is then matched with the nearest segmentation

mask center in frame t and its track ID is propagated. If multiple

projected mask centers are matched with the same segmentation

mask center only the match with the smallest Euclidean distance is

considered. The other matches typically correspond to PV modules

that left the frame. Whenever a segmentation mask center in frame t

is not matched with any of the projected mask centers, a new unique

and random track ID is assigned to it. This usually occurs when a new

PV module enters the frame.

4.6 | Filtering of the front row

For low camera angles additional rows of PV modules may be visible

in the background of the frame. We develop a filter which discards

these background rows and the corresponding patches. It operates

independently on each frame and assumes that the currently

F IGURE 6 Result of the front row filtering. Segmentation masks in the front row are colored red, all others blue [Colour figure can be viewed
at wileyonlinelibrary.com]
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processed row is the frontmost row (for nadiral videos the bottom-

most row) in the frame.

The filter iteratively fits a line into the set of segmentation

mask centers using RANSAC, removes the inlier mask centers and

repeats until no more lines can be fit. Each line must deviate at

most ± 20� from the horizontal. During iterative fitting outlier lines

can occur which intersect the other lines. We remove them by

iteratively removing the line which intersects most other lines until

no more intersecting lines are present. Given the number N of ver-

tically stacked PV modules in each row we can retrieve the N lines

with largest y intercept (the image y axis points downward). The

segmentation masks associated with these lines represent the

front row and thus are the ones of interest for the further

processing steps. Figure 6 shows some example outputs of the

row filter.

4.7 | Association of track IDs and plant IDs

In this step the random track IDs of PV modules are mapped to plant

IDs which encode the electrical wiring of the modules and their loca-

tion in the plant. The algorithm involves three steps: (i) track graph

creation, (ii) plant graph creation, and (iii) graph matching.

Both track graph and plant graph encode the spatial relation of all

PV modules in a single row of the PV plant. Nodes contain the track

IDs and plant IDs, respectively. Edges connect IDs of adjacent

modules.

4.7.1 | Track graph creation

The track graph is built iteratively based on all frames associated with

the row. For each new frame previously unseen track IDs are added

as nodes to the track graph. However, track IDs of spurious tracks

(track ID occurring in less than five successive frames) are ignored.

Edges are added whenever the overlap, that is, the number of shared

pixels, of two segmentation masks exceeds a threshold. Prior to that

all masks are dilated to ensure sufficient overlaps. For PV plants with

gaps between module tables adjacent modules are found by addition-

ally searching along a horizontal line passing through the segmenta-

tion mask center. In the end, all but the largest connected component

of the track graph are removed. The smaller components correspond

to background rows resulting from occasional row filtering failures.

Additionally, nodes with degree one are removed since they corre-

spond to spurious detections.

4.7.2 | Plant graph creation

Plant graphs are created as one-to-one mappings of the rows in the

plant file which contain plant IDs and correspond directly to the plant

layout.

4.7.3 | Graph matching

The final mapping between plant IDs and track IDs of a row is

obtained by finding all isomorphisms of the two graphs and selecting

the one compatible with a provided seed match between the track ID

and plant ID of the bottom left module in the row. The plant ID of this

module is provided by the user in an earlier step. Its track ID is found

by searching for the bottom left module in the first or last frame of

the row using the multi-line fitting approach from above. Whether the

first or last frame is used depends on the scan direction (leftward or

rightward) which is estimated from the horizontal motion of the

tracked modules. As the track graph can contain imperfections an iso-

morphism can not always be found and instead a subgraph isomor-

phism is computed. In the seldom case that this also fails the row can

not be processed further.

4.8 | Filtering patches with sun reflections

For some camera angles sun reflections occur which distort the tem-

perature measurement in the thermographic video and the extracted

patches (see Figure 7). Due to the non-stationary nature of the reflec-

tion typically only a subset of the patches of a given PV module is

affected. We need to filter them out to prevent issues in the down-

stream anomaly classification.

The filter finds the maximum temperature ðTiÞi¼1,…,N and its coor-

dinates (xi, yi) in all N subsequent patches of a module. Patches in

which Ti and (xi, yi) deviate significantly from a reference value most

likely contain a sun reflection and are filtered out. More specifically,

patch i is filtered out if jTi� �Tj>5K and jðxi� �x,yi� �yÞj jj2 > 10px. The
reference values �T and ð�x, �yÞ are median values computed from a sub-

sequence of the patches which is obtained as follows. First, the dis-

crete difference pi+1� pi of the Euclidean norm pi ¼ jðxi,yiÞj jj2 is

binarized at a threshold of 10px. All zero-subsequences of pi which

are longer than 0.3N are obtained (the longest is used if none exceeds

0.3N). Finally, the zero-subsequence with the smallest variance of the

maximum temperature Ti is selected for computation of the reference

values.

F IGURE 7 Left: Sun reflection in the
thermographic video. Right: Extracted patches
of a PV plant row with and without the sun
reflection filter [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 7 demonstrates the effectiveness of our filter.

5 | ANALYSIS OF PV MODULE
EXTRACTION

In this section we present the dataset created by our PV module extraction

tool and analyze failure cases, processing time and generalization ability.

5.1 | Extracted dataset

We run our PV module extraction tool on the seven PV plants in the

video dataset and obtain a large-scale dataset with 4.3 million thermo-

graphic patches of 107,842 PV modules (on average 40 patches per

module). The tool successfully processed 512 out of the 561 PV plant

rows (91.3%) and extracted 87.8% of all PV modules from the videos.

Table 2 shows details of the extracted dataset and success rates. For

plants E and F we use the sun reflection filter which removed 52,929

and 61,923 patches (6.5% and 22.7% of the plant total), respectively.

The table reports numbers after filtering. Apart from this the same

hyper parameters are used for all seven plants indicating a good gen-

eralization ability of our extraction tool.

5.2 | Generalization of the PV module
segmentation

In this experiment we analyze how well Mask R-CNN generalizes to

new PV plants. This is practically relevant as fine-tuning on a new

plant is time and cost intensive.

To this end, we create training and validation datasets for PV

plants A, B, C, and D. Validation uses 25 video frames of each plant,

training around 2380 PV modules per plant. Mask R-CNN is trained

on all combinations of the training sets and its AP (mean of IoU

thresholds {0.5, 0.55, … , 0.95}) is evaluated on each validation set.

Training follows sec. 4.3, however, to speed up the experiment we

pretrain and fine-tune for at most 25 epochs each and always select

the model with lowest validation loss.

While the results in Figure 8 show an increase in validation AP

with more training data, they also indicate that plant C differs

TABLE 2 Numbers of PV modules and patches extracted by our tool from the video dataset

Plant Sector

# Modules # Patches

Total Extracted Failures Extracted ;/Module

A S0 5280 5280 (100.0 %) 0 (0.0 %) 205,488 38.9

S1 5808 5632 (97.0 %) 176 (3.0 %) 219,653 39.0

S2 3564 3300 (92.6 %) 264 (7.4 %) 120,100 36.4

S3 12,760 11,148 (87.4 %) 1612 (12.6 %) 430,359 38.6

Total 27,412 25,360 (92.5 %) 2052 (7.5 %) 975,600 38.5

B S0 9297 9020 (97.0 %) 277 (3.0 %) 232,973 25.8

S1 10,990 10,529 (95.8 %) 461 (4.2 %) 370,440 35.2

S2 11,478 10,974 (95.6 %) 504 (4.4 %) 364,750 33.2

Total 31,765 30,523 (96.1 %) 1242 (3.9 %) 968,163 31.7

C 2850 2850 (100.0 %) 0 (0.0 %) 154,476 54.2

D 3510 2115 (60.3 %) 1395 (39.7 %) 128,461 60.7

E 14,688 14,679 (99.9 %) 9 (0.1 %) 766,901 52.2

F 7280 5015 (68.9 %) 2265 (31.1 %) 211,454 42.2

G 35,360 27,300 (77.2 %) 8060 (22.8 %) 1,107,711 40.6

Total 122,865 107,842 (87.8 %) 15,023 (12.2 %) 4,312,766 40.0

F IGURE 8 Average precision of the PV module segmentation for
all combinations of training sets from PV plants A, B, C, and D. The
plot on the right shows the mean and standard deviation of the AP
when using training data from one, two, three, and all four PV plants,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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significantly from plants A, B, and D. This is because PV modules are

oriented in landscape in plant C and in portrait in plants A, B and

D. We validate this by re-running the experiment without randomly

rotating frames by ± 90� during training. This leads to a lower AP of

2.1% to 43.7% on plant C whenever plant C is not in the training set.

Thus, to achieve a high AP Mask R-CNN must be trained on plant C

and at least one of the plants A, B, or D. At this point we can not fully

explain the low sensitivity of AP for plant D to the training data. We

assume distinctive visual features of the PV modules, such as clear

boundaries, simplify segmentation.

Figure 8 also reports the mean and standard deviation of all APs

when training on one, two, three, and four PV plants, respectively.

While the standard deviation decreases the mean of the AP increases

with more training data. As the AP asymptotically approaches a satu-

ration value the benefit of adding more training data decreases. We

found a segmentation model trained on at least three PV plants

(of which one is plant C) achieves good results.

5.3 | Failure cases

Previously, we reported that our tool fails to process 49 out of

561 PV plant rows in our video dataset corresponding to 12.2% of

all PV modules. We identify four common causes: (1) the UAV flight

path violates the requirements from sec. 4.1, (2) the PV module seg-

mentation can fail, (3) rows have an irregular layout, and (4) the row

filtering can fail. Figure 9 shows examples for each failure and

Table 3 contains the relative frequencies. We report missed rows

instead of missed modules because rows contain varying numbers

of modules and an error in a single frame usually leads to loss of

the entire row.

The majority of rows (22 out of 49) can not be processed due to

an inadequate UAV trajectory. This is because some older videos in

our dataset were acquired before we established the requirements on

the UAV trajectory. Another 14 rows are missed due to false nega-

tives of the PV module segmentation. They occur mostly in plants

F and G on which Mask R-CNN is not fine-tuned and which contain

PV modules in landscape orientation. In a few cases segmentation also

fails due to sun reflections or occlusion of modules by vegetation.

Fine-tuning Mask R-CNN on more data can mitigate segmentation

failures. Irregular row layouts cause failures in six rows. While our tool

can handle missing modules some failures still occur because Mask R-

CNN fills gaps in the grid of modules. Further six rows are missed due

to failures of the front row filter. They occur only for plants F and

G and are related to the lower module segmentation accuracy. A more

robust line-fitting method can solve this issue.

F IGURE 9 Failure cases of our tool: (A, B) Irregular row layout. (C–E) Inadequate UAV trajectory. (F, G) Segmentation error. (H) Row filtering
error [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Numbers of PV plant rows
which our extraction tool failed to
process

Failure Cause Plant A B C D E F G All plants

UAV trajectory 9 2 0 4 2 5 0 22

Segmentation error 0 1 0 0 0 3 10 14

Irregular row layout 0 4 0 0 0 2 0 6

Row filter error 0 0 0 0 0 2 4 6

Track graph error 0 1 0 0 0 0 0 1

All failure causes 9 8 0 4 2 12 14 49
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For now we tolerate these failures as our extracted dataset is

large enough for downstream tasks.

5.4 | Timing analysis

Processing time is a critical factor for scaling our tool to larger PV

plants. Figure 10 reports timings of both manual and automatic steps

of our tool. Automatic steps are timed on a workstation with an Intel

Core i9-9900K, 64 GB of DDR4 RAM, a 4 TB Seagate IronWolf HDD

and a GeForce RTX 2080 Ti running Ubuntu 20.04 LTS. Manual steps

comprise of UAV flight, frame grouping and plant file creation. The

flight duration is estimated from the number of video frames and the

frame rate. This underestimates the true duration slightly as battery

changes and row changes of the UAV are not considered. For the

manual frame grouping we estimate that the user can configure

30 groups per hour. Due to a lack of accurate measurements

Figure 10 omits manual plant file creation. It takes 2 to 8 hours for a

3 MWp plant (10,000 modules) depending on the regularity of its

layout.

Timing differences between the plants are due to different

video file formats, different plant and row layouts and different

UAV flight altitudes and velocities. Track graph creation is faster for

plants A, B and C because we can deactivate gap handling. In total,

extracting 10,000 modules from a 3 MWp plant takes 8 to

21.7 hours, depending on the plant layout. In here, automatic steps

account for 3.8 to 12.1 hours which could be significantly reduced

by parallelizing the currently sequential processing of PV plant rows.

A further speedup is possible by increasing UAV flight velocity and

altitude.

6 | THERMAL ANOMALY CLASSIFICATION

In this section we use the extracted thermographic patches for super-

vised classification of thermal anomalies in PV modules. To this end,

we label the patches and train a ResNet-50 classifier to predict

whether a patch is nominal or exhibits one of ten common anomalies.

As our dataset contains on average 40 patches per PV module, we

choose the majority class across those patches as the final class label

for each module.

6.1 | Dataset

An expert in our group labels each of the PV modules in our thermo-

graphic patch dataset with one out of the ten thermal anomaly classes

shown in Figure 11. The class scheme is based on experience and

includes relevant module anomalies encountered in previous studies.

It is deliberately not optimized for machine learning as the intention is

to see how closely the classification of an expert can be reproduced.

The structure of our dataset allows to label modules instead of indi-

vidual patches which speeds up labeling. Note, that we ignore mod-

ules of plant D because they are thin-film modules which exhibit

different thermal anomalies than the crystalline silicon modules in the

other plants. We further exclude all patches with sun reflections from

F IGURE 10 Time needed by our tool to
process one PV module. (A) Compares manual
and automatic steps. (B) Time distribution of the
automatic steps [Colour figure can be viewed at
wileyonlinelibrary.com]
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the anomaly dataset and ignore sectors S1 and S2 of plant B to reduce

the labeling workload. To reduce class imbalance (only 6.91% of all

modules are anomalous) we balance the numbers of healthy and

anomalous modules separately for each plant. Finally, we select 70%

of the PV modules for training, 20% for testing and 10% for validation.

By splitting the data on module-level we ensure that patches of the

same module do not occur in multiple splits. The resulting classifica-

tion dataset (see Table 4) contains 453,511 patches of 11,644 PV

modules half of which are anomalous. There are on average 38.95

patches per module which act as different augmented views. Note

that the distribution of anomalies differs significantly between the PV

plants.

6.2 | Classifier training

We initialize ResNet-50 with ImageNet 1.4M pretrained weights and

replace the original fully connected (FC) classification layer with a ran-

domly initialized FC layer containing 11 neurons. We fix the base

model and train only the FC layer for 10 epochs using Adam optimizer

with learning rate 0.001 and batch size 32. Afterwards, we fine-tune

all layers starting from layer 101 for another 20 epochs using

RMSprop optimizer with learning rate 1e-5. During training patches

are augmented by random left-right and up-down flips. Preprocessing

is similar to the one for segmentation (see sec. 4.3), however histo-

gram equalization is skipped and patches are resized to 224 � 224

F IGURE 11 Example patches for the ten
anomaly classes in our dataset. Severity
decreases from left to right and top to bottom.
Temperature ranges from 30�C (black) to 60�C
(white). All patches except for class Cm+ are
taken from plant A

TABLE 4 Class distributions of modules and thermographic patches in our anomaly classification dataset

Class

# Modules # Patches

Plant

A B l E F G

All

plants A B C E F G

All

plants

Mh 5 87 4 0 1 494 591 212 2636 112 0 38 19,968 22,966

Mp 2 0 2 5 1 1 11 74 0 151 272 62 26 585

Sh 61 31 1 1 1 4 99 2421 804 43 73 13 145 3499

Sp 9 5 0 33 5 37 89 360 118 0 1802 217 1573 4070

Pid 980 341 0 0 0 0 1321 40,422 9143 0 0 0 0 49,565

Cm+ 1 10 0 11 6 0 28 26 243 0 477 352 0 1098

Cs+ 12 25 0 11 27 0 75 468 742 0 582 1348 0 3140

C 902 184 0 229 570 6 1891 36,955 4630 0 11,618 23,539 256 76,998

D 608 1 0 0 3 1024 1636 24,891 26 0 0 197 41,210 66,324

Chs 51 17 0 6 1 6 81 1957 465 0 350 75 205 3052

Healthy 2631 701 7 296 615 1572 5822 100,725 17,960 302 15,129 25,839 62,259 222,214

All

classes

5262 1402 14 592 1230 3144 11,644 20,8511 36,767 608 30,303 51,680 125,642 453,511
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pixels without any padding and without maintaining the aspect ratio.

During training we do not address class imbalance explicitly.

6.3 | Results

6.3.1 | Validation metrics

The ResNet-50 classifier is evaluated on the test set by means of

accuracy and per-class F1-scores averaged over all classes. Both the

unweighted average and the average weighted by class support are

reported. We further distinguish patch-level and module-level metrics

which are obtained before and after majority voting, respectively. For

all metrics we report mean and standard deviation over three

training runs.

6.3.2 | Test performance

After fine-tuning ResNet-50 achieves 89.40% test accuracy on patch-

level (see Table 5). Majority voting improves it to 90.91%. The results

are stable over three independent training runs. Training the classifier

only on the first patch of each module instead of all patches reduces

test accuracy by 5.4%. This confirms the benefit of collecting multiple

patches per PV module.

As can be seen from the per-class metrics in Table 6 and the con-

fusion matrix in Figure 12 the classifier performs well on most anom-

aly classes, however is less accurate on classes Mp, Cm+, Cs+ and

Chs. Reason for this is the under-representation of these classes in

our dataset leading to poor generalization from training to test set.

Other low-resource classes, such as Sh and Sp, are classified more

accurately because the underlying visual patterns are less variable and

can be learned accurately from a small number of patches. In some

cases, the classifier confuses classes C and D with the healthy mod-

ules due to high visual similarity of these classes. Similarly, Pid and C

are confused. This is because some Pid modules have comparably

little overheated cells and some C modules comparably many of them

leading to overlap of the two classes. High visual similarity between

some classes also makes labeling difficult and may be a source for

considerable amount of noise in the ground truth labels.

TABLE 5 Test performance of the
ResNet-50 classifier on patch- and
module-level versus a baseline using only
a single patch per PV module

Accuracy Unweighted F1-score Weighted F1-score

Single patch 84.00 ± 0.52 58.15 ± 0.64 83.38 ± 0.55

Patch-level 89.40 ± 0.17 68.73 ± 1.06 89.18 ± 0.15

Module-level 90.91 ± 0.23 70.15 ± 1.98 90.68 ± 0.24

TABLE 6 Per-class module-level
metrics of the ResNet-50 classifier on
the test set. Shown are mean and
standard deviation over three training
runs

Class Precision Recall F1 score # Patches

Healthy 95.35 ± 0.21 96.31 ± 0.19 95.83 ± 0.16 1,164

Mh 98.83 ± 0.42 95.76 ± 1.38 97.27 ± 0.90 118

Mp 66.67 ± 47.14 33.33 ± 23.57 44.45 ± 31.43 2

Sh 100.00 ± 0.00 87.72 ± 2.48 93.44 ± 1.42 19

Sp 83.30 ± 0.76 88.24 ± 4.81 85.65 ± 2.67 17

Pid 86.59 ± 1.75 83.71 ± 0.54 85.12 ± 0.75 264

Cm+ 33.33 ± 23.57 13.33 ± 9.43 19.05 ± 13.47 5

Cs+ 57.41 ± 6.93 28.89 ± 3.14 38.18 ± 2.81 15

C 80.39 ± 0.26 83.16 ± 1.75 81.74 ± 0.97 378

D 90.06 ± 0.55 92.35 ± 0.43 91.19 ± 0.35 327

Chs 57.07 ± 7.04 31.25 ± 5.10 39.75 ± 3.42 16

F IGURE 12 Module-level confusion matrix of the ResNet-50
classifier on the test set. Values are obtained from the first out of
three training runs [Colour figure can be viewed at wileyonlinelibrary.
com]
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6.3.3 | Classifier visualization

To understand if the classifier bases its predictions on meaningful fea-

tures of the patches we compute class activations maps (CAMs).

Figure 13 shows a selection of CAMs. Each CAM visualizes the contri-

bution of a particular image region to the classifier's final prediction.

The high correlation between CAMs and temperature anomalies indi-

cates that the classifier draws its confidence mainly from the hot

regions in the patch. This is sensible and confirms that the high accu-

racy of the classifier is based on meaningful image features.

To gain additional insight into the classifier we visualize embed-

dings of the test set patches in Figure 14. A few large clusters can be

observed which correspond to the six PV plants and most of the

anomaly classes. For plant A there are two clusters each because

modules in the top row are rotated by 180� as compared to those in

the bottom row. In addition, several smaller clusters occur which cor-

respond to individual PV modules. Some of them are outliers, others

represent classes, such as Cs+ and Sp, which do not form compact

clusters due to low sample count and high intra-class variance. The

embedding space reflects the classifier's confusion of some classes,

for example, Pid/C and C/D/Healthy, as partial overlap of the respec-

tive clusters. Similarly, the low accuracy of some classes, such as Cm+

and Chs, can be explained by the almost complete overlap of the

respective clusters with other clusters.

7 | DISCUSSION AND CONCLUSION

7.1 | Summary

In this work, we developed a computer vision tool for semi-automatic

processing of UAV thermographic videos. It handles the large amounts

of thermographic images acquired during inspection of PV plants,

extracts individual PV modules and classifies ten common module

anomalies with an accuracy of more than 90% using a ResNet-50 classi-

fier. It further provides the exact location of defective modules in a plant

allowing for targeted repairs. Videos are used instead of single images

for faster inspection and increased flexibility of UAV operation. Our tool

can be used for automated inspection of PV plants superseding an

expensive and time-consuming manual inspection. This can reduce cost

of PV plant maintenance, ensures safe operation and maximizes yield.

Furthermore, our tool efficiently creates large-scale thermo-

graphic datasets by exploiting redundancy in the video. We use this

capability to curate a dataset with 4.3 million thermographic images

of 107,842 PV modules from seven PV plants. Modules in the dataset

are automatically indexed based on their electrical wiring and location

in the plant. This unique index and the large size of the dataset enable

F IGURE 13 Class activation
maps of the ResNet-50 classifier
obtained with Grad-CAM++.43 The
patches correspond to Figure 11
[Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 14 ResNet-50 embeddings of the test dataset after
dimensionality reduction with UMAP.44 Embeddings are obtained
from the last convolutional layer. Colors represent the ground truth
class. For better visualization we show only 5% of all data points
[Colour figure can be viewed at wileyonlinelibrary.com]
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research on other downstream machine learning tasks, such as power

prediction, which are essential for the safe and profitable operation of

future PV plants of ever-growing size.

7.2 | State-of-the-art improvements

As compared to many of the related works we use deep learning for

PV module detection which improves accuracy and generalization. No

hyper parameters had to be adjusted to extract modules from the

seven different PV plants. By using a deep convolutional classifier for

supervised classification of thermal anomalies we followed a recent

trend in the field. However, our dataset is significantly larger and we

distinguish ten anomaly classes as opposed to at most four classes in

the related works. Distinguishing many anomaly classes is not only of

value for research datasets but also for plant operators as it facilitates

more detailed cataloging of anomalies in a plant. This is important

because some anomalies can worsen over time eventually causing

power losses or outages. Despite the larger number of classes test

accuracy of our classifier is on par with the related works. However,

we also found that classification accuracy is lower for some under-

represented classes in our dataset which confirms the need for very

large datasets. This also shows that large-scale datasets are required

to detect rare anomalies which affect only a handful out of thousands

of modules. Smaller datasets as used in many related works do not

sufficiently cover such rare anomalies. To allow for even more accu-

rate and fine-grained classification in future we will expand our

dataset and explore other deep learning methods which overcome the

issue of low accuracy on under-represented classes.

7.3 | Future relevance

Our work is a first step toward the ultimate goal of automatically char-

acterizing gigawatt-scale PV plants with millions of modules in a day. It

shows a way to organize and process the large amounts of data accrued

during inspection. However, to achieve full automation and scale up to

gigawatt plants multiple UAVs should be used and UAV operation has

to be automated. This leads to a predictable scanning order of plant

rows which renders most of the manual steps of our tool unnecessary.

Scaling up also requires reducing processing time. Given full automation,

the worst case throughput of our tool is 19,800 modules per day on a

single workstation. To process 3.5 million modules in a 1GWp plant in a

day requires a 177-fold speedup. This speedup is practically feasible by

parallelizing the currently sequential processing of PV plant rows. While

this demands for a parallel implementation on a small compute cluster it

does not require principle changes to the vision algorithms.

7.4 | Future challenges

Some challenges remain for future works. For example, the detection

of string-level anomalies or faults of non-module components, such as

inverters. To this end, multimodal datasets (imagery and electrical) as

produced by our tool can be used in combination with machine learn-

ing. Future work should also consider additional image sources, such

as visual and electroluminescence imagery. For wider applicability

anomaly classification could be extended to thin-film, bifacial and

half-cell modules, and PV module extraction to plants with non-row

layouts, as common in floating PV. Furthermore, methods are needed

which predict the PV plant's future health state based on historic data.

Finally, the dependency of the anomaly classification on ambient con-

ditions should be explored. We have indications for such a depen-

dency but not yet enough data for a systematic analysis.
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