

Master Thesis

Shopfloor Monitor: Multi-Camera-Based Detection and
Tracking System for a Manufacturing Environment

Lukas Bommes
Matriculation Number: 4367361

Technische Universität Braunschweig
Faculty of Mechanical Engineering

Institute of Machine Tools and Production Technology

and

Agency for Science, Technology and Research
Singapore Institute of Manufacturing Technology

Department of Manufacturing Execution and Control

Examiner: Prof. Dr.-Ing. Christoph Herrmann
Supervisors: Dr. Lee Kee Jin, Artem Turetskyy M.Sc.

Submitted on 10th March 2019

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources used
are acknowledged as references. I am aware that the thesis in digital form can be examined for the use
of unauthorized aid and in order to determine whether the thesis as a whole or parts incorporated in it
may be deemed as plagiarism. For the comparison of my work with existing sources I agree that it shall
be entered in a database where it shall also remain after examination to enable comparison with future
theses submitted. Further rights of reproduction and usage, however, are not granted here. This paper
was not previously presented to another examination board and has not been published. [1

.

]

Singapore, 10thMarch 2019

(Lukas Bommes)

II

Abstract

Objective: This thesis aims at implementing and evaluating the Shopfloor Monitor, a software for multi-
camera-based tracking of humans in a manufacturing environment and real-time visualization of the
results in a virtual 2D floorplan.

Implementation Methods: Humans are tracked in multiple parallel video streams by means of multiple
single-target trackers, such as MOSSE, KCF or CSRT. A deep learning-based object detector is used to
localize humans in regularly sampled video frames. The detection results are then matched with existing
trackers to update the tracker state and prevent drift of the tracker. This matching is performed by
maximizing the total intersection over union (IoU) of detected bounding boxes and boxes predicted by
the existing trackers. Here, the Hungarian algorithm is used. A low-pass filter is used to reduce the effect
of false positive and false negative detections on the tracking results and stabilize the assigned target
IDs. Camera calibration provides intrinsic camera parameters and homography matrices between the
image planes and the factory ground-plane. These are used to transform the target locations from image
coordinates to the factory floor. The target locations are stored in a database and sent to a web app for
real-time visualization on a 2D floorplan of the factory.

Evaluation Methods: To evaluate accuracy and processing speed of the tracking system, a systematic
parameter study is designed. A script automatically varies 7 hyperparameters, including the object
detection and tracking algorithms, and reports the results. Tracking performance is quantified by the
processing frame rate and by the metrics specified in the MOT benchmark. These metrics are computed
on a specifically created video dataset, which contains 5 video sequences with a total of 888 frames and
12192 manually annotated targets.

Findings: The study provided deep insights into the developed detection and tracking system, which
helped to choose three different sets of hyperparameters, yielding either a more accurate or a faster
tracking system. The study also showed that the developed Shopfloor Monitor is fully functional and
provides reasonable performance. State-of-the-art tracking performance was not reached. However, the
work presented new application possibilities for such a system in manufacturing technology and successfully
implemented a demonstrator for the selected use case of an immersive real-time visualization.

Keywords: Manufacturing, Object Detection, Object Tracking, Multi-Camera Multi-Target Tracking,
Bounding Box, Camera Calibration, Visualization, Augmented Reality, Video Surveillance, Deep Learning,
Machine Learning, Big Data, Database, Websocket, Web Programming, Software Architecture, Multi-Pro-
cessing, Multi-Threading, GPU Computing, Python, Javascript, OpenCV, Tensorflor, MySQL, Hungarian
Algorithm, Parameter Study, Dataset, Labeling, SORT, DeepSORT, MOSSE, KCF, CSRT, Faster R-CNN,
R-FCN, SSD

III

Contents

Abstract

.

. III

Contents

.

. IV

List of Figures

.

. VIII

List of Tables

.

. X

List of Algorithms

.

. XII

1 Introduction

.

. 1

2 Use Case

.

. 4
2.1 Environment Analysis

.

. 4
2.2 System Requirements

.

. 5
2.3 System Specification

.

. 6
2.4 Conclusion

.

. 7

3 Fundamentals

.

. 8
3.1 Object Detection

.

. 8
3.2 Object Tracking

.

. 9
3.3 Differences between Tracker and Detector

.

. 10
3.4 Combining Tracker and Detector

.

. 11
3.5 Conclusion

.

. 11

4 Related Work

.

. 12
4.1 Multi-Target Tracking Solutions

.

. 12
4.1.1 General Framework

.

. 12
4.1.2 Camera Types

.

. 13
4.1.3 Detection and Tracking

.

. 13
4.1.4 Coordinate Mapping and Camera Calibration

.

. 14
4.1.5 Creation of the Virtual Scene Model

.

. 14
4.1.6 Target Representation in the Virtual Model

.

. 14
4.1.7 User Interaction with the Virtual Model

.

. 15
4.2 Limitations of the Existing Solutions

.

. 15
4.3 Conclusion

.

. 15

5 System Implementation

.

. 17
5.1 Full System Architecture

.

. 17
5.2 Main Process

.

. 18

IV

5.3 Detection and Tracking Framework

.

. 20
5.3.1 Detection

.

. 22
5.3.2 Tracking

.

. 23
5.4 Database Layout

.

. 30
5.5 Web Applications

.

. 30
5.5.1 App Framework

.

. 31
5.5.2 Visualization App

.

. 32
5.6 Camera Setup

.

. 33
5.7 Camera Calibration

.

. 34
5.7.1 Camera Model

.

. 34
5.7.2 Ground Plane Homography

.

. 36
5.7.3 Estimating Intrinsic Parameters

.

. 36
5.7.4 Estimating Ground Plane Homographies

.

. 37
5.7.5 Mapping of Image to World Coordinates

.

. 39
5.7.6 Validation of Calibration Results

.

. 39
5.7.7 Calibration Interval

.

. 43
5.8 Future Improvements

.

. 43
5.9 Conclusion

.

. 44

6 Experiments

.

. 45
6.1 Evaluation Dataset

.

. 45
6.2 Evaluation Metrics

.

. 47
6.3 Design of Experiments

.

. 50
6.4 Analysis Results

.

. 53
6.4.1 Detection Algorithm

.

. 54
6.4.2 Tracking Algorithm

.

. 56
6.4.3 Detector Cycle Frequency

.

. 57
6.4.4 Frame Scaling Factor

.

. 58
6.4.5 Match IoU Threshold

.

. 58
6.4.6 Hypothesis Thresholds

.

. 59
6.5 Qualitative Results

.

. 60
6.6 Conclusion

.

. 60

7 Discussion

.

. 64
7.1 Interpretation of the Results

.

. 64
7.1.1 Detection Algorithm

.

. 64
7.1.2 Tracking Algorithm

.

. 65
7.1.3 Detector Cycle Frequency

.

. 65
7.1.4 Frame Scaling Factor

.

. 66
7.1.5 Match IoU Threshold

.

. 66
7.1.6 Hypothesis Thresholds

.

. 66
7.1.7 Qualitative Results

.

. 67
7.2 Parameter Importance

.

. 68
7.3 Invalid Parameters

.

. 68
7.4 Useful Parameter Configurations

.

. 69
7.5 Critical Review of the Experiments

.

. 69
7.6 Conclusion

.

. 70

8 Applications

.

. 71
8.1 Occupancy Detection

.

. 71

V

8.2 Machine Waiting Queue

.

. 71
8.3 Staff Activity Recognition

.

. 72
8.4 Emergency Assistance

.

. 72
8.5 Automatic Risk Assessment

.

. 72
8.6 Smart Access Control

.

. 73
8.7 Control of Autonomous Ground Vehicles

.

. 73
8.8 Safety System for Industrial Robots

.

. 74
8.9 Indoor Positioning System

.

. 74
8.10 Product and Resource Tracing

.

. 74
8.11 Automatic Quality Control

.

. 75
8.12 Automatic Reporting

.

. 75
8.13 Process and Factory Analysis

.

. 75
8.14 Virtual Factory Model

.

. 76
8.15 Virtual Product Model

.

. 77
8.16 Conclusion

.

. 77

9 Privacy Concerns

.

. 78

10 Conclusion

.

. 79

Bibliography

.

. 82

A Object Detection (Supplementary Material)

.

. 104
A.1 CNN Base-Architectures

.

. 104
A.2 Detection Datasets

.

. 104
A.3 Performance Metrics

.

. 105
A.4 Convolutional Object Detectors

.

. 106

B Object Tracking (Supplementary Material)

.

. 114
B.1 Challenges of Tracking

.

. 114
B.2 Features for Tracking

.

. 114
B.3 Classical Tracking Algorithms

.

. 115
B.4 Correlation Filter Based Tracking Algorithms

.

. 117
B.4.1 Basic Correlation Filter Trackers

.

. 118
B.4.2 Regularized Correlation Filter Trackers

.

. 119
B.4.3 Part-Based Correlation Filter Trackers

.

. 119
B.5 Deep Learning Based Tracking Algorithms

.

. 119
B.5.1 Deep Learning for Feature Extraction

.

. 120
B.5.2 End-to-End Deep Learning Models

.

. 122
B.5.3 Deep Learning for Target Association

.

. 125
B.5.4 Deep Learning for Motion Prediction

.

. 125

C Appendix

.

. 126
C.1 Server Hardware and Software

.

. 126
C.2 Full Results of Experimental Analysis

.

. 126
C.2.1 Full Results for Detection Algorithms

.

. 127
C.2.2 Full Results for Tracking Algorithms

.

. 128
C.2.3 Full Results for Detector Cycle Frequencies

.

. 129
C.2.4 Full Results for Frame Scaling Factors

.

. 129
C.2.5 Full Results for Match IoU Threshold

.

. 130

VI

C.2.6 Full Results for Hypothesis Thresholds

.

. 131
C.3 Camera Datasheets

.

. 132

VII

List of Figures

2.1 Specification of the Shopfloor Monitor.

.

. 6

3.1 Examples of visual object detection and tracking.

.

. 8
3.2 Common pipeline of object detection algorithms.

.

. 9
3.3 Common pipeline of object tracking algorithms.

.

. 10

5.1 Implementation-oriented architecture overview of the Shopfloor Monitor.

.

. 18
5.2 Architecture of the main process.

.

. 19
5.3 Visualization of the tracking results in an output video stream.

.

. 20
5.4 UML-diagram of the tracker, used as part of the detection and tracking framework.

.

. . . . 24
5.5 Example tracking output illustrating the low-pass filter in operation.

.

. 28
5.6 Screenshots of the visualization web app running in Google Chrome.

.

. 32
5.7 Overview of the three coordinate systems of the fisheye camera model.

.

. 36
5.8 The chessboard pattern used to calibrate the intrinsic camera parameters and an example

image of this pattern taken by camera C3.

.

. 37
5.9 Comparison of the original distorted camera image and the undistorted camera image.

.

. . 38
5.10 Markers for extrinsic calibration of both cameras on the ground plane.

.

. 38
5.11 Section of the floor plan of the factory with positions of extrinsic calibration markers.

.

. . 39
5.12 Transformation of a point from image to world coordinates.

.

. 41
5.13 Average intrinsic reprojection errors of intrinsic camera calibration per image.

.

. 41
5.14 Two, of the in total 5, example images for validation of the camera calibration results.

.

. . 43

6.1 Examples for annotated ground-truth bounding boxes and IDs in the five evaluation sequences.

.

47
6.2 Examples of a true positive, a false negative and two false positives.

.

. 48
6.3 Visualization of mostly tracked (MT), partly tracked (PT) and mostly lost (ML) ground-

truth trajectories.

.

. 49
6.4 Example showing the difference between the IDSW and IDP metric.

.

. 49
6.5 Resulting ID metrics, MOTA, MOTP and frame rate for all tested configurations.

.

. . . . 55
6.6 Resulting number of false positives, false negative, recall and precision for all tested

configurations.

.

. 56
6.7 Resulting track metrics as well as ID switch and fragmentation counts for all tested

configurations.

.

. 57
6.8 Qualitative results of the detection and tracking framework.

.

. 61
6.9 Target trajectories acquired by the Shopfloor Monitor.

.

. 62
6.10 Velocity distributions of all targets on the five evaluation sequences.

.

. 63

10.1 Screenshot of the developed Shopfloor Monitor.

.

. 81

A.1 Definitions of Intersection over Union (IoU) and average precision (AP) performance metrics
for quantitative analysis of object detection algorithms.

.

. 106
A.2 Timeline of the presented convolutional object detection algorithms.

.

. 106

VIII

B.1 Categorization of object tracking algorithms.

.

. 115

IX

List of Tables

5.1 Composition of the output data package D of the detection and tracking module.

.

. 21
5.2 Composition of the detector output D′.

.

. 23
5.3 Layout of the trajectories table in the MySQL database of the Shopfloor Monitor.

.

. . . . 30
5.4 Overview of the estimated intrinsic camera parameters for both cameras C3 and C7.

.

. . . 37
5.5 Positions of the calibration markers for extrinsic calibration of both cameras on the ground

plane, in the distorted image and in the undistorted image.

.

. 40
5.6 Measured and projected world positions of the extrinsic calibration markers of both cameras

as well as the according error.

.

. 42
5.7 Positions of the validation marker on the ground plane, in distorted image coordinates and

undistorted image coordinates.

.

. 42
5.8 Measured and projected world positions of the validation markers as well as the according

error.

.

. 43

6.1 Descriptive statistics of the evaluation dataset.

.

. 46
6.2 Advanced statistics of all bounding boxes in the evaluation sequences.

.

. 46
6.3 Overview of the utilized MOT evaluation metrics.

.

. 50
6.4 Description of the studied parameters of the Shopfloor Monitor.

.

. 52
6.5 Analysis results showing the tracking performance at different parameter values.

.

. 54
6.6 Official COCO mAP and inference time of the utilized object detectors of the Tensorflow

Object Detection library.

.

. 58

7.1 Impact of the analyzed system parameters on overall tracking performance and processing
speed.

.

. 68

A.1 Overview and statistics of frequently used datasets for object detection.

.

. 105

C.1 Hardware specification of the analysis server.

.

. 126
C.2 Results for the Faster R-CNN/NASNet detector.

.

. 127
C.3 Results for the Faster R-CNN/Inception-ResNet v2 detector.

.

. 127
C.4 Results for the Faster R-CNN/ResNet-101 detector.

.

. 127
C.5 Results for the Faster R-CNN/ResNet-101 (low proposals) detector.

.

. 127
C.6 Results for the Faster R-CNN/ResNet-50 detector.

.

. 127
C.7 Results for the R-FCN/ResNet-101 detector.

.

. 128
C.8 Results for the SSD/ResNet-50 detector.

.

. 128
C.9 Results for the MOSSE tracker.

.

. 128
C.10 Results for the KCF tracker.

.

. 128
C.11 Results for the CSRT tracker.

.

. 128
C.12 Results for the detector cycle frequency fd = 1.

.

. 129
C.13 Results for the detector cycle frequency fd = 2.

.

. 129
C.14 Results for the detector cycle frequency fd = 5.

.

. 129

X

C.15 Results for the detector cycle frequency fd = 10.

.

. 129
C.16 Results for the scaling factor s = 0.4.

.

. 129
C.17 Results for the scaling factor s = 0.6.

.

. 130
C.18 Results for the scaling factor s = 1.0.

.

. 130
C.19 Results for the match IoU threshold θIoU = 0.1.

.

. 130
C.20 Results for the match IoU threshold θIoU = 0.3.

.

. 130
C.21 Results for the match IoU threshold θIoU = 0.5.

.

. 130
C.22 Results for the match IoU threshold θIoU = 0.7.

.

. 131
C.23 Results for the match IoU threshold θIoU = 0.9.

.

. 131
C.24 Results for the hypothesis thresholds (0, 0).

.

. 131
C.25 Results for the hypothesis thresholds (2, 2).

.

. 131
C.26 Results for the hypothesis thresholds (5, 5).

.

. 131
C.27 Results for the hypothesis thresholds (5, 0).

.

. 132
C.28 Results for the hypothesis thresholds (0, 5).

.

. 132

XI

List of Algorithms

1 Basic detection and tracking framework.

.

. 22
2 Tracker initialization (t = 0).

.

. 25
3 Tracker prediction step (t > 0).

.

. 25
4 Tracker update with detections.

.

. 27
5 Retrieval of tracking results.

.

. 29
6 Dynamic drawing of target trajectories.

.

. 34

7 Computation of evaluation metrics.

.

. 53

XII

Chapter 1

Introduction

Modern smart factories are highly sophisticated cyberphysical systems, which generate large amounts
of process- and operations-related data. This data is utilized by powerful data analytics tools, for
example machine learning, to analyze, control and optimize manufacturing processes, and to drive business
decisions [2

.

–4

.

]. Although the smart factory concept strives to fully automate the entire manufacturing
process, human workers still play a major role in today’s factories because of their superior abilities
in terms of creativity, flexibility, problem-solving and learning of new tasks, which are unmatched by
machines. However, there are also downsides to employing human workers. For example lower reliability,
reproducibility, limited attention span and easy distractability, which can eventually lead to failures that
cause expensive downtimes and loss in product quality [5

.

]. To reduce human error and ensure a smooth
operation of the manufacturing plant, it is of paramount importance to consider humans as an important
factor of the manufacturing process. Unfortunately, humans are seldomly considered in modern factory
concepts. Usually, only plant-, machine- and operations-related data is collected and made available to
subsequent data analytics and control procedures. Monitoring human activity enables a company to keep
up with competitors in terms of productivity, cost and time-to-market of new products because it helps
to improve manufacturing and business processes. This eventually determines the success or failure of the
enterprise [6

.

].

The weak utilization of human-related data in modern manufacturing environments is lost potential and
thus motivates the initiation of a novel research project. It aims at collecting human-related data, and
places humans as an additional factor into the loop of process analytics, control and simulation. The
research question of this project is as follows.

Research Question: How can a system (called the Shopfloor Monitor) be implemented
which acquires and processes human-related data in manufacturing environments in
real-time using only a network of multiple surveillance cameras?

Restricting the sensory input to multiple surveillance cameras, ensures minimum cost, time and effort
when deploying the system at the customer’s facility, and thus eases customer acceptance for the Shopfloor
Monitor. Especially, if a network of surveillance cameras is already existent in a factory, no further
hardware or installation cost arises. Furthermore, a wide range of state-of-the-art computer vision and
data analytics tools are available and enable accurate localization of human workers on the shopfloor.
As compared to other sensory systems cameras enable, for example, identification of workers or activity
recognition.

To explore and answer the research question the following goals are defined for this thesis:

• Develop a specification for the Shopfloor Monitor.

1

Chapter 1 Introduction

• Review literature related to the specified system.

• Explain fundamentals of visual object detection and tracking needed for the implementation.

• Develop and implement a full-fledged prototype of the Shopfloor Monitor.

• Conduct experiments to evaluate performance of the Shopfloor Monitor and to understand the
impact of various sub-components on accuracy and processing speed.

• Present and critically discuss the experimental results.

• Explore possible applications of the system in the manufacturing domain.

To better understand the goal of the Shopfloor Monitor the specification developed in chapter 2

.

has
to be preempted. In the specification the scope of the Shopfloor Monitor is reduced to the task of
tracking humans in multiple parallel video streams of a manufacturing facility, visualizing their locations
in real-time on a 2D floorplan of the factory and storing the acquired trajectories for later analysis in
a database. To achieve this goal, the Shopfloor Monitor uses state-of-the-art deep learning algorithms
for the detection of humans in subsequent video frames, and modern tracking algorithms to associate
detections across time and maintain the identity of tracked persons. In doing so, the developed Shopfloor
Monitor pushes the state-of-the-art of solutions for multi-camera multi-target tracking and visualization,
which are analyzed in chapter 4

.

, and which use outdated detection and tracking algorithms. Apart
from implementing the detection and tracking system, goal of this thesis is also to develop the overall
architecture of the Shopfloor Monitor, in a way that allows easy extensibility of the system with further
features, such as activity and face recognition. The visualization app is developed as part of a web-based
app-framework, that allows for device- and location-independent access of the acquired data and easy
expandability with future applications. The experimental evaluation of the Shopfloor Monitor makes use of
the publicly available and commonly used Multiple Object Tracking (MOT) benchmark [7

.

] in combination
with an application-specific dataset. Methodically, an automated parameter study is conducted, which
systematically varies predefined hyperparameters of the detection and tracking system and examines the
resulting tracking accuracy and processing frame rate.

This work merges multiple sub-fields of computer science and manufacturing technology. While the
application relates to smart manufacturing and cyber-physical systems, the implementation utilizes
methods of camera calibration, visual object detection and tracking, and more specifically multi-camera
multi-target tracking. System implementation is mainly an engineering task and requires knowledge
about software architecture, the Tensorflow deep learning framework, the OpenCV library for video
processing, Python based web servers, web development in Hypertext Markup Language (HTML),
Cascading Style Sheets (CSS) and Javascript and the Web Graphics Library (WebGL) framework for
web-based visualization. This thesis is addressed to researchers, students and software engineers who
want to implement a multi-camera mulit-target tracking system which uses state-of-the-art methods for
detection and tracking. In this case chapter 5

.

might be most interesting. People who are mainly interested
in the applications of such a system without caring about the implementation, might skip chapter 5

.

and
chapter 6

.

and focus on chapter 8

.

.

The thesis is organized as follows. In chapter 2

.

requirements for the Shopfloor Monitor are derived and a
specification of the system is developed. Chapter 3

.

explains the fundamentals of visual object detection
and tracking that are needed to understand the subsequent chapters. In chapter 4

.

a literature review of
publications closely related to the Shopfloor Monitor is performed. Chapter 5

.

describes the implementation
of the Shopfloor Monitor in a top-down manner by breaking down the high-level system architecture into
smaller sub-components. It provides details about the detection and tracking framework, the visualization
web app and the camera calibration. In chapter 6

.

experiments on the detection and tracking module of
the Shopfloor Monitor are conducted and results are presented. These results are thoroughly discussed in

2

Chapter 1 Introduction

chapter 7

.

. Possible applications of the Shopfloor Monitor in the context of manufacturing are introduced
in chapter 8

.

. Afterwards, privacy concerns arising from the use of the Shopfloor Monitor are presented in
chapter 9

.

. Modifications of the developed system are described to enable compliance with strict data
privacy regulations of some countries. Chapter 10

.

concludes the research conducted in this work. It
provides a critical review of the achievements and proposes future research directions.

3

Chapter 2

Use Case

This chapter aims at deriving a specification for the Shopfloor Monitor which is developed in the course of
this work. First, the deployment environment of the system is analyzed in section 2.1

.

. Here, special focus
is laid on the practical challenges for development and operation of the system. Based on the identified
challenges and the initial research question, requirements are discussed in section 2.2

.

and a specification
of the Shopfloor Monitor is derived in section 2.3

.

.

2.1 Environment Analysis

Before a specification of the Shopfloor Monitor can be developed it is necessary to analyze the environment
in which the system is set up and identify associated challenges.

Even though the Shopfloor Monitor can be deployed to arbitrary sites, its intended use is in manufacturing.
Thus, some assumptions about the environment can be made. For example, most companies already
have a network of surveillance cameras installed or installation of a camera network is possible. These
camera networks usually provide coverage of large areas of the manufacturing site and camera streams
are aggregated by a central device, such as a network video recorder (NVR) or a PC. In many cases, IP
cameras are used which can be directly accessed by their IP address. Furthermore, manufacturing sites
are usually well illuminated and the brightness is constant. This simplifies data acquisition by means of
cameras.

The described environment poses several challenges for the development of a multi-camera-based multi-
target tracking system. Since an existing camera network shall be used, if available, no assumption about
the exact camera model, the optical characteristics, frame rate, resolution, compression algorithm or
transfer protocol can be made. Often network cameras are used which can be subject to connection
problems and low network bandwidth, limiting image quality and introducing severe jitter. Thus, the
Shopfloor Monitor must not rely on guaranteed arrival times of camera frames and be able to handle
delayed or dropped frames and disconnected cameras. The cameras might also not remain static throughout
system operation. In many cases pan-tilt-zoom (PTZ) cameras are used which can be moved via remote
commands. This is challenging, because a mapping between image coordinates of localized targets and
their true position in world coordinates can not easily be provided or has to be updated in real-time.
Most surveillance cameras also do not provide any calibration parameters which are needed to compute
such a mapping. Thus, calibration parameters must be determined by an extensive calibration procedure.
Other challenges of using existing surveillance cameras are a potentially incomplete coverage of the
manufacturing site, sub-optimal placement of cameras and occlusion of areas by obstacles. In other cases
the view fields of multiple cameras may overlap. Problematic is also that the target’s resolution depends
on its distance to the camera. Targets further away from the camera have a lower resolution and, thus, it
is more difficult to accurately infer knowledge about the target. Further problems arise from the fact
that motion and activity of human targets are unpredictable and diverse. The appearance of individuals

4

Chapter 2 Use Case

can change quickly and the number of people within a camera’s field of view (FOV) can vary greatly.
In crowded scenarios people are likely to be occluded by objects or other people. There might also be
additional distractors, such as autonomous vehicles or other moving objects. Challenging is also that
acquisition and processing of human-related data have to take place in real-time. This poses a minimal
constraint on the computing hardware which competes with the goal of providing a low-cost solution.

2.2 System Requirements

Having analyzed the deployment environment and accompanying challenges, requirements for the Shopfloor
Monitor can now be derived. There are several competing requirements:

• High accuracy of the acquired data.

• High speed of data acquisition and processing.

• Low overall cost.

• Modularity and scalability of the system architecture.

Achieving high accuracy relates to finding solutions for the challenges of incomplete site coverage,
overlapping camera FOVs, occlusion, low target resolution, appearance changes of targets, crowded scenes
and visual distractors. Solving these issues is mainly a question of the algorithms used to extract knowledge
from the raw camera footage.

High acquisition and processing speed is needed to maximize throughput and minimize latency of the
data extraction and to prevent data loss. High speed also allows to accurately detect events of short
duration or high frequency, such as fast moving objects. This is especially crucial if the extracted data is
used to drive safety-relevant systems, for example in fence-less robot operation or control of autonomous
vehicles.

Achieving low cost eases customer acceptance and is an important factor for selling the final product. To
keep the cost low, the Shopfloor Monitor has to utilize existing infrastructure, such as already installed
surveillance cameras, and must not require installation of additional hardware. Furthermore, reliability of
the system has to be high to reduce maintenance cost and cost due to breakdown or malfunction.

Modularity ensures easy extension of the system with further functions while maximizing utilization of
existing software components. It also means, the system can be individualized based on the needs and the
application of a customer and it widens the range of possible applications. Scalability implies a system
architecture which allows to observe arbitrarily large manufacturing sites and arbitrary size of the camera
network. Additionally, the system must be able to cope with a varying number people in each camera
FOV.

Further requirements for the Shopfloor Monitor are compatibility with industrial safety standards and
high software security. Moreover, a standard Linux operating system should be used to implement the
system. This makes many reliable and mature software frameworks and tools available and simplifies the
development process as well as system maintenance.

With regard to user interaction the Shoopfloor Monitor has to provide an easy-to-use interface for
configuration of the system and visualization of the extracted data. This interface must be platform-
independent and also run on mobile devices. Extracted data has to be stored long-term and must be
easily accessible by other applications.

5

Chapter 2 Use Case

2.3 System Specification

Based on the list of requirements the specification of the Shopfloor Monitor can be developed. It is shown
in fig. 2.1

.

.

Manufacturing Environment

Human and
Object Tracking

Trajectories
(World Coord.)

Coordinate
Mapping

Activity
Recognition

Face Identi-
fication

User

Action Indentity

Object
Detection

Object
Type

Surveillance Cameras

Visualization App Data Analytics App

Storage

App Layer

Data Layer

Process Layer

Fig. 2.1: Specification of the Shopfloor Monitor. Using a network of surveillance cameras, diverse human-related
data can be extracted from the camera streams by applying state of the art methods of visual object
detection and tracking, human activity recognition and face identification, enabling a broad range of
applications.

The system has a layered architecture with the manufacturing environment and the surveillance cameras
at the top level. The process layer combines several state-of-the-art algorithms to extract human-related
data from the incoming raw video streams. These algorithms have to satisfy the requirements of high
speed, high accuracy and scalability. Extracted data is aggregated and stored in the data layer and passed
on to the app layer. The app layer contains web apps which utilize the extracted data for various tasks,
such as indoor positioning, control of safety systems, accident detection or vehicle and robot control.

The layered design of the system and partitioning of tasks into modules ensures the required modularity
and scalability. Customers can decide for which application they need the Shopfloor Monitor and,
correspondingly, only modules needed for this application are activated. Scalability can be achieved by
copying modules or entire layers onto multiple processing PCs.

Since development of such a broad spectrum of algorithms and apps exceeds the scope of this work, only
one application is chosen to be realized in the next chapters. This application is the detection and tracking
of humans and visualization of their trajectories on a virtual floorplan of the factory. One reason for
choosing this application is the need for high processing speeds with rates close to the camera frame rate
and the demand for high accuracy of the extracted positions. If this application can be realized, so can

6

Chapter 2 Use Case

other with lower speed and accuracy requirements. Furthermore, a virtual floorplan is easily presentable
and highlights the capabilities and opportunities of the Shopfloor Monitor in an illustrative way. Finally,
a lot of algorithms for detection and tracking are available which simplifies and speeds up the development
process.

Apart from restricting the scope to a single application, further simplifying assumptions are made.
Overlapping camera FOVs are neglected and static cameras are assumed. Furthermore, only two cameras
are utilized to reduce the computational demand and allow for processing on a single PC.

2.4 Conclusion

In this chapter a specification of the Shopfloor Monitor was developed. First, the deployment environment
was analyzed and challenges posed onto the development and the operation of a camera-based data
acquisition and processing system were identified. Based on these challenges and the initial research
question, requirements were derived which led to the final specification of the system. Finally, the scope
of the specification was reduced to the application of people detection and tracking. In the next chapter,
fundamentals of object detection and tracking, which are needed to implement the Shopfloor Monitor, are
explained.

7

Chapter 3

Fundamentals

The following chapter briefly introduces the foundations of visual object detection and tracking, which are
needed for the subsequent implementation of the Shopfloor Monitor. Both detection and tracking are well
studied subfields of computer vision research and are used in many practical applications, such as face
recognition, video surveillance, self driving cars and cashier-less stores. Both methods are characterized as
follows:

Object Detection: The input image contains several objects of different classes. The task is to find
bounding boxes for all distinct objects in the image and assign one class label out of a set of possible
labels and a confidence score for this label to each object (see fig. 3.1a

.

). [8

.

–11

.

]

Object Tracking: The input is a video, containing one or multiple moving objects. The task is to
find bounding boxes around the objects in each frame and assign a constant ID to each object.
Information about the object’s appearance and motion from previous video frames is used (see
fig. 3.1b

.

). [12

.

–15

.

]

Girl Dog

(a) Object detection.

ID 0

ID 1

(b) Object tracking.

Fig. 3.1: Examples of visual object detection and tracking. Object detection is used to localize and classify objects
in an image. Object tracking locates objects in subsequent frames of a video, creates a trajectory and
assigns a constant ID. (Background images from [16

.

, 17

.

])

In section 3.1

.

and section 3.2

.

functional pipelines for both object detection and tracking are explained.
Section 3.3

.

highlights differences between object detection and tracking and explains how the two tasks
complement each other. Based on this, section 3.4

.

explaines how both methods can be used in combination
to achieve superior tracking accuracy and speed. Supplementary material, including a thorough literature
overview of state-of-the-art methods for object detection and tracking, can be found in appendix A

.

and
appendix B

.

.

3.1 Object Detection

The common framework of object detection algorithms is presented in fig. 3.2

.

. The first step of the
detection pipeline is the proposal of possible bounding box regions. This is done either by sliding a

8

Chapter 3 Fundamentals

fixed-size window over a multi-scale image pyramid of the input image [18

.

, 19

.

], or by means of the selective
search algorithm [20

.

]. The latter is computationally less expensive and uses a clustering algorithm to
iteratively merge proposed regions based on their similarity in color, texture, size and shape. After region
proposal, robust features of every proposed region are extracted. Typically such features are obtained via
Histograms of Oriented Gradients (HOG) [18

.

], Scale-Invariant Feature Transform (SIFT) [21

.

], as Haar
features [22

.

] or as deep convolutional features [23

.

]. The extracted features are used in the next step to
classify the object within each proposed bounding box. Bounding boxes with low-confidence labels are
filtered out as they are likely to not contain any valid object. Features are also used for bounding box
regression, whereby box dimensions and positions are modified to better fit the object. This is needed
because the region proposal algorithm usually returns boxes of fixed sizes and aspect ratios which do not
fit the object well. After this step, the image usually still contains a high number of largely overlapping
bounding boxes because the proposal algorithm tends to propose multiple bounding boxes for the same
object. Non-maximum-supression (NMS) [24

.

–27

.

] removes these duplicate bounding boxes and leaves only
one box per object. The output of this detector pipeline is a set of bounding boxes containing one object
each. Every box contains an according class label and a confidence score.

+

Region
Proposal

Feature
Extraction

Classifi-
cation

NMS

Overlapping B-Boxes

Image ROIs Features

B-Box
Regression

Girl Dog

B-Boxes B-Boxes + Labels

Girl

Labels

98 %

Dog 93 %

Fig. 3.2: Common pipeline of object detection algorithms. The actual implementation of each step varies for each
individual algorithm. Newer models try to merge all steps in a single deep neural network to reduce
computational cost and simplify training. [28

.

] (Background image from [16

.

])

3.2 Object Tracking

The scope of object tracking is to predict bounding boxes for all objects in a given video frame at time tn
based on the objects’ motion and appearance in previous frames at times t0, t1, . . . , tn−1. The tracked
objects are also referred to as targets. Tracking yields the trajectory of each target in a video sequence and
preserves the identity of targets over time. The following explanation refers to single-target trackers [29

.

,
30

.

], but can easily be expanded to multi-target trackers [31

.

–36

.

]. A typical single-target tracker contains a
motion predictor, a feature extractor, a classifier and a model updater, which have the following functions
according to [37

.

–39

.

].

Motion Predictor: This module contains a motion model of the target. It predicts the most likely
bounding box of the target in the next frame, based on the previous box dimension and box velocity.

Feature Extractor: The feature extractor extracts features from the image patch within the target’s
bounding box to represent the target in a robust way. These features are more robust to occlusion
and changes of appearance, such as illumination or scale.

9

Chapter 3 Fundamentals

Classifier: The classifier compares features of the bounding boxes proposed by the motion model with a
template of the target and determines which box most likely contains the target.

Model Updater: The model updater renews the target template based on the prediction result of the
previous tracking cycle. This allows the tracker to account for appearance changes of the target
throughout the video.

The typical object tracking pipeline is shown in fig. 3.3

.

. Before being able to track a target, the tracker
has to be initialized. This is done by providing the initial frame and the initial bounding box of the target,
which is either created manually or found by an object detector. The feature extractor extracts features
of the target’s bounding box region, which serve as a template for the tracking target. This template is
not constant, but updated by the model updater in subsequent cycles of the tracker. After initialization,
the tracker receives a new frame and uses the motion model to predict candidate bounding boxes for the
target. In the beginning, the motion model is inaccurate, but it becomes more accurate after a few frames.
In the next step, a featureset is extracted from each candidate region and compared to the template
features by the classifier. The bounding box with features most similar to the template is predicted as the
new bounding box of the target. [37

.

, 38

.

, 40

.

]

Motion
Prediction F

ea
tu

re
 E

x
tr

a
ct

io
n

Classifi-
cation

Locations PredictionCandidates

Init

Template Features

Cand. Features

Update

Input Frame Target Template

Fig. 3.3: Common pipeline of object tracking algorithms. The actual implementation of each step varies for each
individual algorithm. Newer deep learning models merge some or even all of the individual steps in a
single deep neural network to increase tracking accuracy. [37

.

, 38

.

, 41

.

, 42

.

] (Background image from [16

.

])

Tracking multiple targets requires keeping track of the target identities, which is done by assigning a
unique ID to each target. An additional data association step is needed to ensure that IDs stay constant.
During this step proposed bounding boxes are assigned to existing target trajectories and IDs. Popular
methods for data association are Joint Integrated Probabilistic Data Association (JIPDA) [43

.

], Multiple
Hypotheses Tracking (MHT) [44

.

], Probability Hypothesis Density filters (PHD) [45

.

] and Siamese neural
networks [46

.

–48

.

]. Multi-target trackers can easily be realized by using an individual single-target tracker
for every target. The trackers operate independently and without any cross-optimization [49

.

].

3.3 Differences between Tracker and Detector

The different operational principles lead to complementary characteristics of object detectors and trackers.
The object detector is trained offline on a large set of examples. Thus, it generalizes well and prevails at
finding new targets in a frame. However, modern object detectors are complex, computationally expensive
and they take a significant amount of time to find targets in a single video frame. Detection also does not

10

Chapter 3 Fundamentals

perform any matching of targets across frames. It simply returns an unordered set of bounding boxes for
each frame.

Object trackers are different as they utilize information about the target’s motion and appearance in
previous frames. This allows them to preserve the identity of targets across time. Under the assumption
of small inter-frame motion, the tracker can perform a local search around the previous known location to
find the target. This makes the tracker much faster than the detector. However, as the tracker is trained
online on an individual target, it is less generalized and can not be used to find new target instances.
Online training makes the tracker also prone to drift, as small localization errors accumulate over time
(see appendix B.1

.

). Thus, using only a tracker leads to poor accuracy of tracking results.

3.4 Combining Tracker and Detector

To leverage both speed of the tracker and high accuracy of the detector, it is best to combine both
methods. This is called tracking-by-detection [50

.

–53

.

]. The first method is to run the detector on every
video frame and use a tracker only for data association. Detections are matched across frames, preserving
identity of targets and forming trajectories. Methods used for matching are the Hungarian method [54

.

],
linear programming [55

.

, 56

.

], k-shortest path optimization [32

.

] or Siamese neural networks [57

.

]. However,
running the detector on every frame is computationally expensive and slow.

A better method is to run the detector only on every nth frame and use a tracker to predict target
bounding boxes in the n− 1 intermediate frames [40

.

, 58

.

]. After every nth frame detections are matched
to an existing trajectory, and the according tracker is reinitialized based on the detection. This prevents
tracker drift as errors do not have time to accumulate. Because of the lower computational complexity of
the tracker, this approach is faster than running the detector in every frame. The Shopfloor Monitor uses
this approach. Instead of running the detector in fixed intervals, it can also be scheduled adaptively based
on the tracking quality [59

.

].

3.5 Conclusion

This chapter briefly introduced visual object detection and tracking. After a high-level explanation, a
functional pipeline of each method was described. These pipelines contained the basic building blocks
and processing steps, found in most detection and tracking algorithms. They helped to build a general
understanding of both tasks without going too much into detail of individual algorithms (see appendix A

.

and appendix B

.

). Afterwards, the differences between object detection and tracking were highlighted.
This clarified how both methods complement each other and can be used in combination to achieve
both high accuracy and speed. The foundations presented in this chapter are needed to understand
the implementation details of the Shopfloor Monitor in chapter 5

.

. However, before this, publications of
tracking and visualization solutions similar to the Shopfloor Monitor are reviewed in the next chapter.

11

Chapter 4

Related Work

This chapter provides a literature overview of existing solutions for multi-target tracking and visualization
in multi-camera environments, which are related to the Shopfloor Monitor. Research in this field is a
sub-topic of multi-camera multi-target tracking [60

.

, 61

.

]. First, the general concepts of these and related
solutions are explained and the scope of the literature review is defined. Afterwards, a framework common
to all tracking systems is presented. The subsequent analysis is oriented at this framework and explains,
how the different solutions implement various aspects of the framework. In the end of this chapter,
limitations of the presented solutions and further research directions for this work are identified.

4.1 Multi-Target Tracking Solutions

Aim of the analyzed multi-camera multi-target tracking solutions is to capture a scene containing multiple
moving targets, such as humans or objects, with multiple cameras simultaneously and reconstruct this
scene in real-time within a virtual 2D or 3D model. The virtual model condenses the information carried
within a large number of simultaneously acquired video feeds. It lets the user experience the captured
scene more naturally and prevents him from missing important events. Thus, the presented tracking
solutions improve the limited capabilities of classical multi-camera visualizations, which simply show
each acquired video feed on a separate monitor. Prior work has been done to improve these classical
solutions, so as to enhance the situational awareness and reduce the cognitive strain of the observer
[62

.

–70

.

]. However, these solutions still follow a more classical approach and do not utilize a virtual model
to represent the camera feeds. Thus, the following analysis focuses on solutions, which reconstruct the
observed scene and tracking targets within a virtual model [71

.

–81

.

]. A similar class of tracking solutions
embed the raw video streams as textures into the 3D model [82

.

–90

.

]. However, as these solutions are less
similar to the Shopfloor Monitor, they are not covered in this review. Similarly, this review excludes
publications related to multi-camera multi-target tracking, which focus exclusively on the detection and
tracking subsystem, without implementing any visualization of the tracking results [91

.

–98

.

].

4.1.1 General Framework

Most of the tracking solutions implement the same basic framework. It has a high similarity to the
framework of the Shopfloor Monitor presented in fig. 2.1

.

. Video streams are acquired from multiple
synchronized cameras, which may or may not have overlapping fields of view. Object detection is used in
conjuncture with multi-target tracking to localize people and objects within each new frame of the video
streams and assign them to an existing trajectory. Targets are then visualized in a virtual model of the
real scene. To map from image to world coordinates, either the camera pose or a homography matrix is
estimated, based on point correspondences between the camera images and the real world. Apart from
these basic functions, some of the solutions incorporate more advanced features, such as face recognition
[71

.

], activity recognition [72

.

, 73

.

, 77

.

], object classification or human motion analysis [72

.

].

12

Chapter 4 Related Work

4.1.2 Camera Types

The analyzed literature utilizes a broad range of cameras types. Most commonly used are multiple static
cameras [71

.

, 74

.

, 77

.

], which have a constant pose and focal length. Thus, they have to be set up and
calibrated only once, and enable the use of background subtraction as simple object detection method.
The cameras have either overlapping fields of view (FOV) as in [77

.

] or separate FOVs as in [71

.

]. All
approaches use monocular cameras except for the one presented in [81

.

], which makes use of multiple
stereo-cameras to track an object in three dimensions. The cameras can be either wide-angle cameras,
which use a lens with a small focal length, as in [76

.

], or a camera with a normal lens as in [74

.

, 78

.

]. Instead
of using multiple equivalent cameras, the VSAM tracking system [72

.

, 99

.

–101

.

] comprises different camera
types, such as five statically mounted cameras, a hemisperical camera, two mobile cameras mounted
on a van and an aerial drone and several indoor surveillance cameras. Another execption is the system
developed in [78

.

]. It uses only a single static camera instead of multiple camera, as as all other solutions
do. Some of the systems also use pan-tilt-zoom (PTZ) cameras instead of statically mounted cameras [75

.

,
76

.

]. PTZ cameras allow for dynamic adjustment of the camera pose and the focal length. They can be
used in a master-slave configuration, where one wide-angle camera, the master, observes the whole scene
and controls several PTZ cameras, the slaves. These slaves follow a target and capture close-up shots of it
[76

.

, 100

.

]. The last difference between the cameras used, refers to the level of integration of processing
components. Usually, simple IP cameras are used and all visual processing tasks are executed on either a
centralized PC or an individual PC for each camera. However, some works utilize smart cameras, which
have an embedded field-programmable gate array (FPGA), digital signal processor (DSP) or PC, on
which the video processing is performed [73

.

, 74

.

].

4.1.3 Detection and Tracking

Object detection is mostly realized via simple background subtraction. Here, a statistical background model
is created and subtracted from each frame, leaving only interesting foreground pixels, which correspond
to the moving targets. This is possible, because the cameras are static and, thus, the background stays
unchanged between subsequent frames. The bounding box of extracted foreground pixels is computed
and a point within this box used to represent the target [74

.

, 77

.

, 78

.

]. Instead of background subtraction
[78

.

] extracts HOG cascades with a sliding window and classifies them into target and background via a
state vector machine (SVM), and [76

.

] uses motion history image (MHI) [102

.

] for combined detection and
tracking.

Detected targets are then tracked either by multiple individual single-target trackers [74

.

] or by a central
multi-target tracker [77

.

, 79

.

], which performs cross-optimization between targets. Tracking is performed in
two steps. The first is the association of detections to existing tracks by algorithms, such as JPDAF [77

.

],
correlation matching [101

.

] or the auction algorithm [78

.

]. Matching is performed based on spatial proximity
and appearance features. The second step is the prediction of the future target location based on a simple
motion model and a Kalman filter [78

.

] or particle filter [74

.

, 77

.

]. While tracking is usually performed
in image coordinates, the tool developed in [77

.

], first maps target locations into world coordinates and
then performs tracking in world coordinates. The DOTS system [71

.

, 103

.

–106

.

] improves tracking through
occlusion by explicitly handling split and merge scenarios of multiple targets. Most tools perform target
handover between adjacent camera views by extracting and matching appearance features upon redetection
of the same target in a new camera view [71

.

, 101

.

]. Moreover, redundant views of the same target are
merged to get a consistent representation of each target in world coordinates [74

.

]. The system presented
in [73

.

] goes even further and uses logical reasoning about interactions of targets with the environment to
generate a consistent representation of the target in the virtual model.

13

Chapter 4 Related Work

4.1.4 Coordinate Mapping and Camera Calibration

Mapping target locations from image coordinates to the virtual model is usually achieved by means of the
intrinsic and extrinsic camera parameters [73

.

–75

.

, 79

.

, 101

.

, 103

.

], which are estimated via camera calibration
in a prior step. During calibration, known point correspondences between the image and the virtual model
are used to estimate the camera parameters. Some solutions provide auxiliary tools for this calibration
step [71

.

, 72

.

, 74

.

]. The tracking systems using PTZ cameras [75

.

, 76

.

] have to update the extrinsic camera
parameters after every new camera adjustment. Since the adjustment is known, new parameters can be
computed automatically and no manual re-calibration is necessary. Instead of using extrinsic camera
parameters, other solutions use a homography matrix to describe the perspective transformation between
a camera image and the planar ground-plane of the virtual model [77

.

, 78

.

, 80

.

, 107

.

]. Similar to the extrinsic
camera parameters, the homography is estimated from point correspondences. The planar ground-plane
assumption is made by almost all tracking systems to enable computation of the target locations on this
plane from a single camera view. Without this assumption, the target must be visible in at least two
camera views simultaneously at every time. A special solution for camera calibration is proposed in [76

.

].
Because, here, the virtual model is built directly from images of the cameras in the system, the extrinsic
camera parameters are known, superseding the need for a separate calibration procedure.

4.1.5 Creation of the Virtual Scene Model

The analyzed tracking systems vary greatly in terms of how the virtual model of the observed scene is
created. This is either done manually via computer-aided design (CAD) software [77

.

, 103

.

] or via 3D
rendering engines, such as OpenGL [81

.

] or the Unity 3D game engine [73

.

]. Alternatively, the 3D model
can be photogrammetically reconstructed from multiple images of the scene with different methods. For
example, [79

.

] uses Structure-from-Motion [108

.

], and [78

.

] utilizes city dense modeling [109

.

] in combination
with a 3D CAD model. Both methods require previous acquisition of multiple images of the scene via
external cameras. The approach in [74

.

] works similarly, however makes use of three additional laser
scanners and an attitude sensor to register image positions and orientations in the world coordinate system.
The method for photogrammetric reconstruction in [76

.

] differs from the previous solutions, as it uses the
native system cameras instead of an external camera to acquire images. Instead of manually creating a
virtual model, the solutions in [72

.

, 75

.

, 80

.

, 107

.

] use available models from Geographic Information Systems
(GIS), such as Google Earth. Finally, DOTS [71

.

] provides not only a virtual 3D model, but also displays
tracking targets and camera FOVs in a 2D floorplan.

Some of the tracking systems not only visualize the current location and past trajectories of the targets,
but incorporate additional functions. For example, [72

.

] embeds a raw video of an aerial view acquired
from a drone into the virtual model to provide an additional overview of the scene. The simulation tool in
[78

.

] uses heat maps as wall textures to visualize how frequent pedestrians look at a certain area of the
wall. This is used to determine effective positions for advertisements. The virtual model in [77

.

] provides
advanced weather and lighting animations, such as sunlight, rain and fog as well as day and night cycles.
These animations are synchronized with the prevalent conditions to enhance conformity of the model
with the real scene. This makes it more tangible for the observer.

4.1.6 Target Representation in the Virtual Model

All tracking solutions represent the tracking targets within the virtual model either as a simple geometric
shape [71

.

, 75

.

], as an animated virtual actor, or as a live texture. The virtual actor concept is implemented
in [72

.

, 73

.

, 77

.

] and requires a module for recognition of the activities performed by the targets. Live

14

Chapter 4 Related Work

textures are extracted foreground pixels of each target, which are mapped onto a planar box in the virtual
model, located at the predicted target location. This representation is implemented in [74

.

, 76

.

, 80

.

, 107

.

].
The tracking software presented in [79

.

] provides both a simple symbolic representation and live textures.
The tool in [78

.

] is an exception, as it does not represent the current targets in real-time as all other
solution do, but instead visualizes only historic trajectories.

4.1.7 User Interaction with the Virtual Model

An important aspect of the virtual model is the interaction with the human user, as it determines how
much information the user can obtain from it. As the observed scene is abstracted from the raw video
streams and reconstructed in an immersive virtual model, it is possible to re-render the scene from any
desired viewpoint. This viewpoint does not need to coincide with any of the original camera views. Some
of the solutions allow for arbitrary movement with 6 degrees of freedom through the model [71

.

, 74

.

, 75

.

,
77

.

, 80

.

, 107

.

]. Others allow the user to place a virtual agent into the model and observe the scene from
his viewpoint [72

.

, 79

.

]. The solutions presented in [74

.

, 77

.

, 79

.

] additionally visualize the scene from the
viewpoint of any of the tracking targets. A slightly simpler visualization mode with predefined zoom
levels and viewing positions and angles is described in [81

.

]. Apart from live-monitoring of the scene, most
tracking systems also allow for replay of past content. This enables the user to navigate forward and
backward in time. The DOTS system [71

.

] takes this concept further and provides a non-linear timeline
with markers indicating automatically detected events. The user can additionally drag objects on the 2D
floorplan or in the raw videos along their trajecoties to navigate through time [106

.

].

4.2 Limitations of the Existing Solutions

The presented solutions are fully functional multi-camera multi-target tracking solutions and some of
them, such as DOTS [71

.

] and VSAM [72

.

] were developed over the course of many years, thus being
mature, market-ready systems with a large number of features. Some of those system are even patented
[110

.

, 111

.

]. Thus, it is not surprising, that research in this field has stagnated and 15 out of the 19 analyzed
solutions were published before 2012. Due to this, most of the presented solutions utilize detection
and tracking algorithms, which lag behind the state of the art significantly. Even in the four recent
publication from 2015 to 2017, object detection is performed with the outdated background subtraction
approach. To advance research in this field, the present work uses state-of-the-art deep learning models
for object detection and fast correlation filter-based object trackers. A methodological issue with some of
the works [73

.

–76

.

, 78

.

–80

.

, 107

.

] is the missing evaluation of the tracking performance. To provide a better
understanding of the detection and tracking system, an in-depth analysis of the tracking performance shall
be part of this work. The biggest issue of the presented solutions is their limited scope of applications.
All solutions aim at summarizing multiple parallel video streams into the condensed representation of
a virtual 2D or 3D model, which is then simply observed by the user for surveillance. None of the
publications explores further applications of the created virtual model. Thus, this work aims at providing
the infrastructure for the much broader range of applications presented in chapter 2

.

.

4.3 Conclusion

In this chapter a literature review of full-fledged multi-camera multi-target tracking solutions was conducted.
Hereby, the focus was narrowed down to a small subset of only 19 publications, which presented entire
software solutions, considering not only object detection and tracking, but also camera calibration,
coordinate transformation and visualization. Common to all publications was the reconstruction of the

15

Chapter 4 Related Work

observed scene in form of a virtual 2D or 3D model. This model visualized tracking targets in real-time
and allowed unrestricted observation of the scene by the user. At the end of the chapter limitations of
the presented solutions were described and suitable research directions for this work were identified to
advance the state of the art. The next chapter covers the implementation of the Shopfloor Monitor.

16

Chapter 5

System Implementation

The aim of this chapter is to describe the realization of the Shopfloor Monitor and its components in
a top-down fashion. It starts with an overview of the system architecture and subsequently breaks it
down into smaller sub-systems, which are then explained in detail. Apart from describing the software,
additional emphasis is laid on the camera calibration.

First, section 5.1

.

gives a high-level overview of the system architecture and its modules. Section 5.2

.

expands on the main server process, which implements the majority of the system functions, such as data
input and output as well as the tracking of targets. The detection and tracking framework as the core
component of the Shopfloor Monitor and part of the main process is explained in depth in section 5.3

.

.
Subsequently, section 5.4

.

describes the MySQL database used for long-term storage of tracking results.
Section 5.5

.

goes into detail about the web app framework for building client apps, which make use of the
generated tracking data. It introduces an app for real-time visualization of target locations and trajectories
on a 2D floorplan of the factory. In section 5.6

.

the cameras used in the prototype of the Shopfloor Monitor
are set up, and subsequently their calibration is described in section 5.7

.

. Finally, section 5.8

.

critically
reviews issues of the current realization of the Shopfloor Monitor and suggests future improvements.

5.1 Full System Architecture

The Shopfloor Monitor consists of three major modules, a pool of arbitrary many IP cameras, an on-site
analysis PC and a remote client. Details about the hardware specification and the software environment
of the analysis PC can be found in appendix C.1

.

. The overall architecture of the Shopfloor Monitor
is shown in fig. 5.1

.

. All IP cameras and the analysis PC are required to be part of the same network,
which can be either the Internet or a local network. This way, camera streams can be acquired by the
main process on the analysis PC via real-time streaming protocol (RTSP) (see section 5.6

.

). The main
process also executes algorithms for detection and tracking of humans and sends results to the MySQL
database server [112

.

] and to the web apps running on a remote client. This client can be any device with
a web browser and represents the interactive user interface. Web apps are served over the Internet by an
Eventlet [113

.

] webserver running within a Python Flask [114

.

] app. Client web apps might be used, for
example, to visualize or analyze tracking data.

Although being suitable as a long term storage for tracking results, the MySQL database is not sufficient
for low-latency communication between the main process and the client web apps. Thus, websockets
based on Flask-SocketIO [115

.

], which are managed by the Flask app, are used to pass messages between
the main process and the client. These messages contain, for example, the world positions and IDs of all
tracking targets. They are sent with a frequency of approximately 15 Hz and, upon receipt, trigger an
event in the client for updating the visualization with the new tracking data. Other messages notify the
client when the main process has terminated.

17

Chapter 5 System Implementation

Main Process

MySQL Server

DB

IP Cameras

User

Web Applications

Internet (HTTP)

Socket

Socket

A
n
a
ly

si
s

P
C

LAN (RTSP)

Flask + Flask-SocketIO

Redis Server

Eventlet Webserver

Fig. 5.1: Implementation-oriented architecture overview of the Shopfloor Monitor. Camera streams are acquired
over the network via the local analysis PC to detect and track people (main process). A MySQL database
and websockets are used to communicate the results to the remote client apps, which are served by an
Eventlet webserver running within a Python Flask app.

Even though the Flask app could be integrated directly into the main process, a much cleaner and easier
to maintain solution is executing it in a separate process. A Redis messages broker [116

.

] is then used to
realize inter-process communication between the main process as well as the Flask app. This enables both
processes to be run completely decoupled, while maintaining their ability to act as servers. Thus, data
can be passed on to the client apps from either of the two processes.

Websockets allow for bidirectional data transfer between the main process or the Flask app and the client
apps. Hence, they can be used not only for passing tracking data from the two server processes to the
client, but also for passing user inputs in the opposite direction. This can be useful, if a client app does
not only passively visualize data, but allows for user inputs which affect execution of the main process or
the Flask app.

The combination of an SQL database and websockets provides a flexible interface for the development
of arbitrarily complex web apps. These apps enable interaction with the resulting tracking data of the
Shopfloor Monitor. On one hand, the database stores this data in the long term and enables web apps to
retrieve historic information about targets and trajectories, which can be used for analysis purposes. On
the other hand, websockets enable fast, event-based communication between the main process or Flask
app and the client web apps. When developing new client apps, the existing socket interface can easily be
reused, and extended with additional events to handle user-interaction and data visualization.

5.2 Main Process

The main process on the analysis PC is the most important component of the Shopfloor Monitor. It
acquires the camera streams, runs the detection and tracking algorithms and communicates with the
client web apps and the database. Figure 5.2

.

shows the architecture of the main process, which comprises
a number of different threads. These threads can be executed virtually parallel. Each of the N cameras
C1, C2, . . . , CN is assigned to an individual acquisition thread which captures and resizes every new frame
Fj , provided by the camera Cj at the discrete time step t > 0, in an infinite loop. A threading barrier is

18

Chapter 5 System Implementation

used to synchronize the acquisition threads. This guarantees that all acquisition threads have captured
their according frame at time step t before capturing the next frame for t+ 1. In case any camera fails
to capture the next frame, the program raises an error message and halts. Each successfully captured
frame Fj is inserted into a first-in-first-out-queue (FIFO-queue) Qj , which is associated with the jth
acquisition thread and capable of storing at most 128 subsequent frames. As these queues are thread-safe,
stored frames can be safely read from within the main thread for further processing. This is done in an
infinite loop, which first collects frames Fj of all cameras at a certain time step t and aggregates them in a
single array F = (F1, F2, . . . , FN). This frame array is then fed into the detection and tracking framework,
which outputs the data package D containing, inter alia, target locations in world coordinates, associated
target IDs and bounding boxes in image coordinates. Generated data packages D are then inserted into
another FIFO-queue QD for transfer to the output thread. Here, data packages are first read from the
queue QD, and then written to the logfile, inserted into the MySQL database and sent to the client web
apps via websockets.

Main Process

Cameras

C2

CN

C1

L
A

N

N Acquisition
Threads

Q1

Main Thread Output Thread

Q2

QN

Q𝒟

Detect/Track

Cleanup

Init Init

Log to File

Write to DB

Socket Emit

Get Data 𝒟

Show Frames

Out Data 𝒟

Frames F
Read

Frame F1

Read
Frame F2

Read
Frame FN

Logfile

SQL Server

Client Apps

Fig. 5.2: Architecture of the main process. This process simultaneously acquires N parallel camera streams, detects
and tracks people, and visualizes and broadcasts tracking results.

The output queue QD serves as a buffer, which allows for a relatively constant output rate despite
significantly varying cycle times of the main thread. Maintaining a constant output rate requires the
output queue to always contain enough elements to bridge delays in the supply of new output data
packages D. To achieve this, the output thread employs an adaptive strategy for polling of the output
queue. By choosing the delay between two subsequent reads to be inversely proportional to the momentary
length of the output queue and by keeping at least 15 elements in the queue at all times, a relatively
constant length of the output queue, and thus an output rate of approximately 15 Hz, can be ensured.

In addition to computing and transferring tracking results D to the output thread, the main thread
directly draws some of the tracking results, such as bounding boxes and box IDs, onto the according
frames and displays, respectively stores them for debugging purposes. Two example output frames are
shown in fig. 5.3a

.

. This output also enables the user to safely stop the main process with a keyboard
shortcut. Upon receipt of this shortcut a cleanup procedure is initiated, which terminates the output
and acquisition threads, garbage-collects remaining queue elements and closes camera connections. Part
of the main thread is also an init procedure, which is run once at the start of the main process. Here,
command line arguments are parsed, the camera connections are established and calibration parameters
are loaded. Furthermore, output and acquisition threads are started, queues are created and the detection
and tracking framework is initialized. Finally, it is ensured, that the Redis and MySQL servers are running.

19

Chapter 5 System Implementation

Similarly to this, the output thread also has an init procedure, in which the logging directory is created,
if not already existent, and the database and socket connections are established.

(a) Tracker output frame at step n = 50. (b) Tracker output frame at step n = 70.

Fig. 5.3: Visualization of the tracking results in an output video stream. Every tracking target has a bounding
box in either green, if the target is valid, or orange, in case of an invalid target. Red numbers are box
IDs and orange numbers are the current value of the target’s match counter (see section 5.3.2.3

.

for an
explanation). The foot point of each target is marked with a red circle. Additionally, the step number and
the momentary frame rate are shown in the top left corner. The detector label in the bottom left corner
indicates, that the detector is run on this frame and the trackers are updated with the detection results.

5.3 Detection and Tracking Framework

At the core of the Shopfloor Monitor’s main process is the detection and tracking framework, which
utilizes an object detector (see section 3.1

.

) and multiple single-target trackers (see section 3.2

.

) to locate
people on the factory floor and estimate their trajectories over time. The main reason for combining
the trackers with an object detector is to leverage both the high accuracy of the object detector and the
high processing speed of the object tracker (see section 3.4

.

). The trackers are updated with detections
in regular intervals to prevent drift by accumulation of tracking errors. Using only an object detector
is insufficient as the detector is too slow to be run on every frame. The detector also generates false
positives and false negatives, which have to be filtered out. Furthermore, trackers are needed to preserve
the identity of targets across subsequent frames. The framework developed here is inspired by the Simple
Online and Real-time Tracking (SORT) system [117

.

] and its improved version called DeepSORT [118

.

].
The following list summarizes the most important features of the detection and tracking framework:

• Detection of multiple targets every fd time steps and tracking of targets in intermediate time steps.

• Matching of detections and tracks via the Hungarian method applied to IoU of bounding boxes.

• State update of trackers based on detection results every fd steps.

• Low-pass filter for dampening the impact of false positive and false negative detections.

• Transformation of target locations from image to world coordinates.

• Assignment of a unique ID to each tracking target.

Each of these aspects is explained in more detail in the following section. However, before this, the
composition of the input and output data of the detection and tracking module, as well as its integration
into the main thread, are further clarified. The module takes a frame array F , which is composed of all

20

Chapter 5 System Implementation

Tab. 5.1: Composition of the output data package D of the detection and tracking module for a set of N input
frames F . Note the difference between the number K of both valid and invalid targets and the number
K̂ of only valid targets.

Variable Symbol Dimension Description

Timestamp t 1× 1 Unix time at the moment of the assembly of the data package in the main
thread.

Step Number n 1× 1 Number of discrete time steps (processed frame packets F) since start of
the main process.

Num Cameras N 1× 1 Number of cameras in the Shopfloor Monitor. Equivalent to the number of
frames in F .

Num Targets K N × 1 Number of all tracking targets (valid and invalid) in each of the N frames
in F .

Bounding Boxes B N ×K × 4 Bounding box coordinates (umin, νmin, w, h) for each of the K targets
within each of the N frames in F .

Box IDs I N ×K × 1 Identifier number for each bounding box, which is unique within the same
frame, but not unique across different frames.

Box Valid States V N ×K × 1 Boolean value for each bounding box, indicating whether a target is valid
or not.

Target IDs T K̂ × 1 Identifier for each valid target, which is unique across all frames.
World Positions W K̂ × 2 Position (X,Y) of each valid target on the ground plane of the factory in

world coordinates.

camera frames F1, F2, . . . , FN acquired at the same time t, as an input, and outputs a data package D
after each time step. This package contains tracking results, as specified in table 5.1

.

.

Algorithm 1

.

shows the basic framework of the detection and tracking module and illustrates its integration
into the main thread within the main process (see fig. 5.2

.

) of the Shopfloor Monitor (see fig. 5.1

.

).
Requirements for running the module are the frame queues Q = (Q1, Q2, . . . , QN), which buffer the input
frames of all cameras, and the output queue QD for buffering generated tracking data packages D for a
time step t. Additionally, the number of cameras N and the detector cycle frequency fd, which determines
how often the object detector is run, have to be specified. Initialization of the object detector and the
tracker requires several additional hyperparameters to be set. These are the detection algorithm Adet, the
tracking algorithm Atrk, the match IoU threshold θIoU and the hypothesis valid and deletion thresholds
θv and θd. The meaning of these parameters is explained in the course of this section. For transformation
of image to world coordinates the tracker needs the calibration parameters P = (P1, P2, . . . , PN) for
each of the N cameras. This includes the camera matrix M , the new camera matrix M ′, the distortion
coefficients k1, k2, k3 and k4, the scaling factor s and the homography matrix H. Computation of these
parameters is explained later in this chapter. After creation of the detector and tracker instances with the
according hyperparameters, the main thread enters an infinite loop, in which, first, the frame array F is
assembled by reading the oldest frame Fj from each frame queue Qj ∈ Q, and, second, the new target
locations within the frames of F are estimated via the predict method of the tracker. In addition to the
location prediction, the detector is run every fd steps yielding new target locations D′. These locations
are then used to update the trackers via the update method of the tracker. At the end of each main loop
iteration, the results of the tracking step are retrieved, assembled into the output package D and put
into the output queue QD. The following section 5.3.1

.

explains the detection of targets in more detail,
while section 5.3.2

.

elucidates the tracking, including the location prediction and the detection-based state
update of the trackers.

21

Chapter 5 System Implementation

Algorithm 1: Basic detection and tracking framework.
Data: Q, QD, fd, N
Data: Adet, Atrk, P , θIoU, θv, θd

. Create detector and tracker and set hyperparameters
detector ← new detector(Adet)
tracker ← new tracker(Atrk, P , θIoU, θv, θd)
cycle_counter ← 0
n← 0
while true do

. Get frames of all cameras and assemble packet F
F ← []N
for each j ∈ {1, 2, . . . , N} do

Fj ← Qj .pop()
end for

. Update tracker based on detections every fd cycles
if cycle_counter == fd then

cycle_counter ← 0
D′ ← detector.detect(F) (sec. 5.3.1

.

)
tracker.update(F , D′) (sec. 5.3.2.3

.

)
. Predict target locations in intermediate cycles

else
tracker.predict(F) (sec. 5.3.2.2

.

)
end if
cycle_counter ← cycle_counter +1
n← n+ 1

. Retrieve tracking results (sec. 5.3.2.4

.

)
W,T ← tracker.get_targets()
K,B, I, V ← tracker.get_state_info()

. Assemble output package and put it in output queue
D ← (t, n,N,K,B, I, V, T,W)
QD.put(D)

end while

5.3.1 Detection

The object detector can be any algorithm which takes an array of frames F as input and outputs a set of
bounding boxes for the objects in each frame. Potentially useful detectors are introduced in appendix A

.

.
In particular, the current implementation of the Shopfloor Monitor uses the detectors included in the
Tensorflow Object Detection library [119

.

]. This is because they share a common interface and, thus, can
be easily interchanged to enable usage of the detection algorithm which best meets the requirements.
Apart from returning the bounding box coordinates B′ of each object, the detector returns the number
K ′ of detected objects per frame as well as the classes C ′ and confidence scores S′ of all objects (see
table 5.2

.

). Objects with confidence levels S′ < 0.3 are discarded.

When instantiating the object detector, a frozen Tensorflow inference graph is loaded from its corresponding
file and de-serialized into a new compute graph in the memory of the graphics processing unit (GPU).
In addition to the model architecture, the frozen inference graph contains the pretrained weights of the
object detector. By calling the detect routine of the detector on an array of frames F , each individual
frame in F is fed into the compute graph for inference and the detection outputs are accumulated in D′.

22

Chapter 5 System Implementation

Tab. 5.2: Composition of the detector output D′ for a set of N input frames F .

Variable Symbol Dimension Description

Num Detections K′ N × 1 Number of detected objects in each of the N frames in F .
Bounding Boxes B′ N ×K′ × 4 Bounding box coordinates (umin, νmin, w, h) for each of the K′ detected

objects within each of the N frames in F .
Object Classes C′ N ×K′ × 1 Categorical class label, specifying the category of each detected object.
Confidence Scores S′ N ×K′ × 1 Confidence level of the class label of each detected object in percent.

Inference is computed on a single GeForce GTX 1080 TI GPU (see appendix C.1

.

).

Since the object detectors are trained on Microsoft’s Common Object in Context (COCO) dataset rather
than an application-specific dataset, the detector has to constantly generalize to unknown data when
being used in the Shopfloor Monitor. However, due to the lack of an application-specific training dataset
re-training of the detector is not possible, and thus a slightly increased number of faulty detections have
to be accepted. One of the most salient and frequent detection faults are oversized bounding boxes, which
fill almost the entire frame. Assuming that people in the observed scene can not exceed a specific size on
the frame, it is easy to filter out such oversized boxes by limiting the maximum allowed box size to 25 %
of the frame width and 60 % of the frame height.

In this work, the Shopfloor Monitor tracks only human targets. To achieve this, the object detector has
to be retrained on a ground-truth dataset containing only humans. Again, no such dataset is available,
which is why, instead of retraining, a simple filter is employed to remove all detections with predicted
class labels other than person. If this filter is removed, the object detector can distinguish between 80
different object categories making the Shopfloor Monitor applicable to other use cases.

5.3.2 Tracking

Task of the tracker is to predict the bounding boxes B of each target in a new set of frames F at time
step t based on the location of bounding boxes in previous frames at time step t − 1 (see section 3.2

.

).
Each target is assigned to its own single-target tracker, the core tracker, which is used to estimate the
location of this particular target in subsequent frames. No cross-optimization between the core trackers of
individual targets is performed to keep complexity of the tracking framework low. Note that the term
tracker is used for the ensemble of the core trackers of all targets in the frames F , whereas the term core
tracker refers to the single-target tracker associated with a sole target. In the detection and tracking
framework the OpenCV implementations of the Minimum Output Sum of Squared Error (MOSSE) tracker,
Kernelized Correlation Filter (KCF) tracker and Discriminative Correlation Filter with Channel and
Spatial Reliability (CSRT) tracker are used as core trackers, but can be replaced with any other tracking
algorithm as long as it has a compatible interface. As learned from algorithm 1

.

, the tracker has two
different operational modes. The first is the prediction mode, in which the locations of known targets in a
new set of frames F are estimated based on the previous target locations. The second is the update mode,
in which the core trackers are updated based on the results of the object detector. Prediction and update
mode are entered based on whether the predict or update method of the tracker is called.

The UML-diagram in fig. 5.4

.

shows the attributes and methods of the tracker, which is explained in
more detail in the following sections. Apart from the already explained predict and update methods,
the tracker has a constructor for setup of constants, such as the tracking algorithm Atrk, the calibration
parameters P , and the thresholds θIoU, θv and θd. The initialization method initializes all remaining
attributes of the tracker. get_state_info is used to retrieve the current values of the internal tracker

23

Chapter 5 System Implementation

attributes, and get_targets computes world positions W and unique target IDs T of the currently
tracked targets. The following sections explain the important methods of the tracker in more detail.

Tracker

+ Num Cameras 𝑁: array
+ Num Targets 𝐾: array
+ Bounding Boxes 𝐵: array
+ Box IDs 𝐼: array
+ Box Valid States 𝑉: array
+ core_trackers: array
+ match_count: array

+ Tracking Algorithm 𝒜𝑡𝑟𝑘: string
+ Calibration Parameters 𝑃: array
+ Hypothesis Valid Threshold 𝜃𝑣: float
+ Hypothesis Deletion Threshold 𝜃𝑑: float
+ Match IoU Threshold 𝜃IoU: float

+ Tracker(𝒜𝑡𝑟𝑘: string, 𝑃: array, 𝜃IoU: float, 𝜃𝑣: float, 𝜃𝑑: float)
+ INITIALIZE(𝐹: array, 𝒟′: array): void
+ PREDICT(𝐹): void
+ UPDATE(𝐹: array, 𝒟′: array): void
+ GET_TARGETS(): (𝑇: array, 𝑊: array)
+ GET_STATE_INFO(): (𝐾: array, 𝐵: array, 𝐼: array, 𝑉: array)

Fig. 5.4: UML-diagram of the tracker, used as part of the detection and tracking framework.

5.3.2.1 Tracker Initialization

Before being able to predict locations of the targets, the tracker needs to be initialized with new tracking
targets at time step t = 0. These targets are taken from the results D′ of an initial detector run. As
shown in more detail in algorithm 2

.

, first all attributes of the tracker, such as the number of cameras N ,
the numbers of targets K as well as the array of bounding boxes B, box IDs I and box valid states V are
inferred from the frame array F as well as the initial detection outputs B′ and K ′. Initially, all bounding
boxes are set to the invalid state, as they are only validated on multiple successful redetections in later
update steps. After this, a new core tracker is created and initialized for every bounding box in B in the
frames F at time step t = 0. The hyperparameter Atrk determines, whether MOSSE, KCF or CSRT is
used as tracking algorithm. Each core tracker has a related match counter, which is needed later. It is
initialized to 1. The notation []N×K stands for the initialization of an empty array with N subarrays of
length Kj for each j = 1, 2, . . . , N .

In the detection and tracking framework (see algorithm 1

.

), tracker initialization is not performed explicitly.
Instead it is integrated into the update method of the tracker, which is called in the first iteration of the
main loop (t = 0). The reason for this is, that the initialization needs to be performed not only at t = 0,
but also when new targets appear after all camera frames were empty for several subsequent time steps.

5.3.2.2 Tracker Prediction Step

After initialization, the tracker can predict target locations in a new set of frames F for t > 0 as shown
in algorithm 3

.

. In this prediction step, the number of targets K, the box IDs I, the box valid states V
and the match counter of each core tracker stay unchanged as compared to the previous time step t− 1.
Appearing and disappearing targets, which affect these quantities, are handled by the update mode of the

24

Chapter 5 System Implementation

Algorithm 2: Tracker initialization (t = 0).
procedure initialize(F,D′)

N ← length_first_dimension(F)
K ← K ′

B ← B′

I ← []N×K
V ← []N×K
core_trackers ← []N×K
match_count ← []N×K
for each j ∈ {1, 2, . . . , N} do

for each k ∈ {1, 2, . . . ,Kj} do
Ij,k ← k − 1
Vj,k ← false
core_trackersj,k ← new core_tracker(Atrk)
core_trackersj,k.init(Fj , Bj,k)
match_countj,k ← 1

end for
end for

end procedure

tracker. The only purpose of the prediction step is to predict the new bounding box coordinates B of
each target in the frames F by calling the predict method of the assigned core tracker. This method is
provided by the application programming interface (API) of the core tracker and not to be confused with
the predict method of the tracker itself, as used in algorithm 1

.

.

Algorithm 3: Tracker prediction step (t > 0).
procedure predict(F)

B ← []N×K
for each j ∈ {1, 2, . . . , N} do

for each k ∈ {1, 2, . . . ,Kj} do
Bj,k ← core_trackersj,k.predict(Fj)

end for
end for

end procedure

5.3.2.3 Tracker Update with Detections

To prevent accumulation of large tracking errors, the core trackers are updated every fd steps based on
the bounding boxes B′ returned by the object detector. Algorithm 4

.

shows this update procedure, which
is largely inspired by [120

.

]. As mentioned before, the update procedure implicitly handles initialization of
the tracker, whenever none of the camera scenes contained a tracking target in the previous time step t−1.
If there was at least one target in any of the camera scenes at t− 1, the tracker is first brought into the
next state via its predict method to match the time t of the detection results. Then, the match_boxes
method is called for each frame Fj ∈ F and tries to associate each detected bounding box in B′j with a
bounding box in Bj of an existing tracking target via the Hungarian method [54

.

]. Matching of bounding
boxes is performed separately for each frame in F and no cross-optimization between individual frames
is performed. Thus, three sets of indicesM,Mdet andMtrk are returned for each frame. The first set

25

Chapter 5 System Implementation

contains pairs of indices (δ, τ), which indicate, that the bounding box Bj,τ of the τth tracking target is
associated with the δth detected bounding box B′j,δ. The setMdet contains indices δ of detected bounding
boxes in B′j , which could not be matched with any bounding box Bj of the current tracking targets.
This might be due to a false positive detection or because a new target appeared and is detected for the
first time. Similarly, the setMtrk contains indices τ of tracked bounding boxes Bj , which could not be
matched with any of the detected bounding boxes in B′j . Reason for this can be a false negative detection
or a target, which left the scene and is not detected anymore. Each of the three cases has to be handled
separately during update of the tracker.

For every new detected target in Mdet, a new core tracker is created, initialized with the according
detected bounding box B′j,δ and appended to the list of all core trackers. Similarly, the detected bounding
box B′j,δ is appended to the list of tracked bounding boxes Bj and its validity state is set to false. The
match counter of the core tracker is initialized to 1 and the lowest unused box ID is found and assigned
to the new target. Finally, the number Kj of tracking targets for the jth frame in F is incremented by
one.

In case of a match between a detected bounding box B′j,δ and the bounding box Bj,τ of an already tracked
target, a state update of the corresponding core tracker has to be performed. This is done by calling the
init method of the core tracker with the according frame of F and the detection box B′j,δ. To prevent
a core tracker from being updated with a false positive detection, a state update is only performed, if
the target is valid. In case of an invalid target, instead the associated match counter is incremented by
one every time this target is matched to any detected bounding box. When the match counter reaches
the hypothesis valid threshold θv, the target becomes valid and an update of the assigned core tracker is
performed. Any further redetection of this target leads to an immediate state update of the according core
tracker without an increment of the match counter. This solution can be seen as a probation period of
length θv, that each newly created target has to undergo, before it can affect the overall tracking result.

If a target is not detected in an update step, that is its index τ is present inMtrk, its associated match
counter is decreased by one. If more than θd subsequent misses of a particular target occur, it is deleted.
Additionally, the core tracker, match counter, bounding box, box ID and box validity state associated
with this target are deleted.

In general, the match counter of each core tracker acts as a low-pass filter, which is parameterized by
the two hypothesis thresholds θv and θd. It prevents a state update of the corresponding core tracker
with faulty detections, which occur only in a single or a few subsequent frames. Without this low-pass
filter every false positive detection would result in the creation of a ghost target, which would exist in the
frame during the fd intermediate prediction steps and only disappear on the next update step. Likewise,
a missed detection of an existing target during the update step would lead to the immediate deletion of
the target. This is unwanted, because the target might still be visible in the scene, but was simply missed
by the object detector. The price to pay for the prevention of these effects by the low-pass filter is a
decreased reaction time for detecting newly appearing targets and deleting targets, which leave the scene.
This is because the match counters have to be increased or decreased according to the values θv and θd
before such an event can be registered. An example of a full run-in period of the filter is shown in fig. 5.5

.

.
First, all targets are invalid, indicated by orange bounding boxes. Most of them get redetected, when
the detector is run in every second frame, and the associated match counters are incremented. When
the counter values reach the hypothesis valid threshold θv = 3, the targets change their states to valid,
indicated by a green bounding box.

The mentioned match_boxes function associates bounding boxes B′j of detected targets with bounding
boxes Bj of existing tracking targets in each frame Fj ∈ F . It does so by first computing a cost matrix

Ĉj,δ,τ = −IoU
(
B′j,δ, Bj,τ

)
(5.1)

26

Chapter 5 System Implementation

Algorithm 4: Tracker update with detections.
procedure update(F,D′)

if Kj == 0 ∀ j ∈ {0, 1, . . . , N} then
tracker.initialize(F,D′) (sec. 5.3.2.1

.

)
else

tracker.predict(F) (sec. 5.3.2.2

.

)
for each j ∈ {1, 2, . . . , N} do

. Match detections and tracker predictions
M,Mdet,Mtrk = match_boxes(Bj , B′j , θIoU)

. Handle matchesM
for each (δ, τ) ∈M do

if match_countj,τ < θv then
match_countj,τ ← match_countj,τ + 1

else
core_trackersj,τ .init(Fj , B′j,δ)
Vj,τ ← true

end if
end for

. Handle new detectionsMdet
for each δ ∈Mdet do

k ← Kj ← Kj + 1
core_trackersj,k ← new core_tracker(Atrk)
core_trackersj,k.init(Fj , B′j,δ)
match_countj,k ← 1
Bj,k ← Bj,δ
Ij,k ← get_lowest_unused_box_id()
Vj,k ← false

end for
. Handle undetected tracking targetsMtrk

for each τ ∈Mtrk do
if match_countj,τ > θv − θd then

match_countj,τ ← match_countj,τ − 1
else

Kj ← Kj − 1
delete core_trackersj,τ
delete match_countj,τ
delete Bj,τ
delete Ij,τ
delete Vj,τ

end if
end for

end for
end if

end procedure

of the intersection over union (IoU) (see appendix A.3

.

) of each possible match between the two partite
sets of boxes in B′j and Bj . This yields a bipartite graph with the boxes in B′j and Bj as vertices of one
of the partite sets each, and the cost matrix Ĉj representing the weights of this graph. The negative sign

27

Chapter 5 System Implementation

(a) n = 0, Update, MC = 1. (b) n = 1, Predict, MC = 1. (c) n = 2, Update, MC = 2.

(d) n = 3, Predict, MC = 2. (e) n = 4, Update, MC = 3. (f) n = 5, Predict, MC = 3.

(g) n = 6, Update, MC = 3. (h) n = 7, Predict, MC = 3.

Fig. 5.5: Example tracking output illustrating the low-pass filter in operation. Depicted are the first 8 frames in
a video sequence acquired by camera C7. In every second frame, the detector is run (fd = 2) and the
trackers are updated based on the detection results. In each intermediate frame, the tracker predicts the
target location. On every successful redetection of a target, the match counter (MC) is incremented,
until it reaches the hypothesis valid threshold θv = 3. Then, the target states change from invalid (orange
bounding boxes) to valid (green bounding boxes). Note, that the match counter usually differs for every
target. However, in the initial frames (shown here), the match counters of most targets are equal. Thus,
the captions state only one global counter value for each frame. That some of the targets were not
redetected sucessfully, can be seen in frames 10 and 11, where two targets are still invalid.

indicates a high cost for low IoU of two boxes. Finding the optimal assignment of detected bounding
boxes B′j to boxes of existing targets Bj is equivalent to finding a complete assignment between the
two partite sets of minimal cost, that is maxmimum total IoU between the two sets. The Python Scipy
implementation of the Hungarian method [54

.

, 121

.

] is used to solve this classical linear sum assignment
problem [122

.

], yielding pairs of indices (δ, τ) indicating the matches between B′j,δ and Bj,τ . All pairs of
boxes with an IoU greater or equal than the match IoU threshold θIoU are filtered out and form the match
setM. Indices of detected bounding boxes in B′j , which could not be associated to any existing target
box in Bj are aggregated in the setMdet of new detections. Similarly, indices of tracked boxes in Bj ,
which were not assigned to any detected bounding box in B′j form the setMtrk of misses.

5.3.2.4 Retrieval of Tracking Results

The current status of the tracker can be retrieved by calling the methods get_state_info and get_-
targets after a prediction or update step. The first method simply returns the total number of tracking
targets K, bounding boxes B, their IDs I and validity states V for each frame Fj ∈ F . The second method

28

Chapter 5 System Implementation

computes the world positions W of valid targets and a set of unique target IDs T as shown in algorithm 5

.

.
While the other variables differ in every frame of F , W and T are unified across all frames. The world
position of a tracked person is represented by the location of the feet on the ground plane, which is
estimated by computing the lower middle point (u, ν) of the person’s bounding box. Retrieving the world
position is now as easy as mapping (u, ν) onto the undistorted image coordinates (u′, ν ′), by means of
the intrinsic camera parameters in Pj , and then perspectively transforming them onto the ground plane
via the homography matrix Hj ∈ Pj . Section 5.7.5

.

gives a more detailed explanation of this mapping
procedure. Next, invalid targets (Vj,k = false) are filtered out, and a unique ID for the kth target in the
jth frame of F is computed by means of Cantor’s pairing function [123

.

]. This function takes the frame
index j and the box id Ij,k of each target as an input and returns a target ID, which is unique across all
frames in F . Advantage of this encoding is, that the target ID carries the information about the original
frame index j and box ID Ij,k of a target, which can later easily be retrieved by computing the inverse of
the Cantor pairing function. Finally, world positions in W are merged across the frames in F , yielding
a single set of world positions for all targets. The current implementation stacks the individual world
positions in Wj ∈W vertically without handling multiple detections of the same target. This means, that
a target, which is visible in multiple camera FOVs simultaneously, occurs multiple times in W and T .

Algorithm 5: Retrieval of tracking results.
procedure get_targets

W ← []N×K
for each j ∈ {1, 2, . . . , N} do

for each k ∈ {1, 2, . . . ,Kj} do
. Compute foot point of each box as target location

(umin, νmin, w, h)← Bj,k
(u, ν)← (umin + 1/2w, νmin + h)

. Transform points to world coordinates
Wj,k ← image_to_world((u, ν), Pj)

end for
end for

. Filter out invalid targets and compute unique IDs
k̂ ← 1
for each j ∈ {1, 2, . . . , N} do

for each k ∈ {1, 2, . . . ,Kj} do
if Vj,k == true then

W
j,̂k
←Wj,k

T
j,̂k
← cantor_pairing(j, Ij,k)

k̂ ← k̂ + 1
end if

end for
end for

W ← merge_multiple_views(W)
return T,W

end procedure

29

Chapter 5 System Implementation

5.4 Database Layout

As mentioned in section 5.1

.

, a MySQL database is used to permanently store tracking results. This
database, called sfmt, uses the default InnoDB engine and contains a single table, named trajectories,
with the column layout shown in table 5.3

.

. Thus, each row in the database contains the world position
Wk ∈W and target ID Tk ∈ T of a single valid tracking target at time t and step number n, respectively.
An additional column stores an auto incremented integer value as primary key of each database entry. As
an example, consider a Monitoring system with 2 cameras and currently 3 and 4 valid targets in the first
and second camera view. This results in 7 database entries per tracking step, and, hence, 7 entries with
the same timestamp t and step number n, but unique primary keys. It is not necessary to store the frame
index j and box ID Ij,k of each valid target because they are encoded in the target ID Tk as explained in
the previous section. Similarly, the number of valid targets K̂ can easily be deduced from the target IDs
of rows with the same timestamp or step number. The number N of cameras is not stored either, because
it is assumed constant for the entire lifespan of the monitoring system. Inferring N from the target IDs T
is possible, but only when there is at least one valid target in every camera view. Furthermore, bounding
boxes B are omitted in the database, because they consume a large amount of storage space and are not
needed within the web apps.

To manage database access, a wrapper class based on the official MySQL Python connector [124

.

] is
implemented. This class has methods for the creation of the sfmt database and the trajectories table, as
well as for the insertion of a new tracking data package D. An instance of this wrapper class is used in
the output thread of the main process to establish a connection to the database and insert every new
tracking data package D (see section 5.2

.

).

Tab. 5.3: Layout of the trajectories table in the MySQL database of the Shopfloor Monitor. A row of this table
corresponds to the kth valid tracking target in the jth camera view.

Variable Symbol Column Name Data Type Not Null Auto Increment Primary Key

Primary Key – primary_key Bigint(20) Unsigned 3 3 3

Timestamp t timestamp Datetime(6) 3 7 7

Step Number n step_number Bigint(20) Unsigned 3 7 7

Target ID Tk target_id Int(10) Unsigned 3 7 7

World Position Xk x_pos Double 3 7 7

World Position Yk y_pos Double 3 7 7

5.5 Web Applications

Web apps were introduced as front ends for the Shopfloor Monitor in section 5.1

.

. They are served by
a Python Flask app and communicate with the main process on the analysis PC via websockets and
the MySQL database. Every client device with a modern web browser can access the web apps over the
Internet, enabling the user to view and interact with the results of the detection and tracking system.
Despite providing only a single visualization app at this stage of the project, the Shopfloor Monitor
shall provide a variety of web apps in future. Each app is specifically geared to a certain task, or the
requirements of a potential customer. Conceivable use cases of the Shopfloor Monitor and according web
apps are explored in chapter 2

.

. Each customer might purchase multiple web apps, which are bundled in a
single admin web page. Scope of this section is to explain the implementation of this central admin page in
detail, and this way, support the development of other web apps. Furthermore, the already implemented
visualization app is presented.

30

Chapter 5 System Implementation

5.5.1 App Framework

The admin page is a simple website based on HTML, CSS and Javascript, with the directory structure
shown in the following tree.

webapp
flask_server.py
templates

index.html
floormap.html

static
logo.png
style.css
floorplan

three.js
d3.min.js
detector.js
socket.io.min.js
floormap.js
floorplan.json

This directory is located in the base directory of the Shopfloor Monitor. The central element is the
flask_server.py file, which implements the Python Flask app for serving the admin page. In this script,
first a Flask-SocketIO instance is instantiated, which connects to the Redis message broker and enables a
socket connection between the client app and the main process of the Shopfloor Monitor. Task of the
Flask app is to serve the HTML files of the admin page, which are located in the templates subdirectory.
It uses an Eventlet webserver for doing so. This server can easily be configured to serve the app to any
client device over the Internet. However, this introduces new challenges to keep the system secure. Thus,
during development, apps are only served to localhost. Since only one template can be served at a time, a
specific Uniform Resource Locator (URL) is used to select a template. Each URL is routed to another
function within the Flask app, which serves one of the available templates. These functions also allow
to dynamically pass data from the Flask app to the client. Individual web apps are pages within the
admin website. That means, each HTML file within the templates subdirectory implements one web app.
Because each web app needs to display the same sidebar and the same footer, these elements are described
in a central index.hmtl file. The template inheritance feature of Flask’s Jinja template engine allows
to extend this central template by an app-specific template file, which implements its own page body,
while using sidebar and footer from the index.hmtl file. Currently, only one such app-specific template,
floormap.hmtl, file is used for the visualization app. A single style sheet is used to define element styles
for the visualization app and the central elements, such as header, footer and logo. It is located in the
static subdirectory. If more web apps are developed, each app should use an own style sheet to keep
the website modular. It can then be loaded in in the header of the HTML template file of the web app.
Apart from the style sheet, the static subdirectory contains more static files, which are served by the
Flask app, and which can be used within the template files of apps. For example, a Portable Network
Graphics (PNG) file of the logo is loaded in the index.hmtl file and displayed in the footer of every page.
Furthermore, the entire floorplan subdirectory, containing Javascript files needed by the visualization
app is statically served by the Flask app. These files are included in the header of the floormap.hmtl
template file.

Adding a new web app to the Shopfloor Monitor is as easy as creating a new HTML template file in
the templates subdirectory, routing a new url to this template by adding an according function to the

31

Chapter 5 System Implementation

flask_server.py, and placing a style sheet and necessary static files in the static subdirectory. Output
data of the detection and tracking system can easily be accessed either via the MySQL database or via
websockets. To use websockets, the web app needs to load the SocketIO Javascript library, located in
socket.io.min.js. The socket connection can not only be used to transmit tracking data, but also to
send other data between the client and the Flask server process. For example, a socket event is used to
notify the visualization app about start and termination of the main process.

5.5.2 Visualization App

Currently, only one web app exists. It visualizes world positions of tracking targets in real-time on a
rendered 2D floor plan of the factory. Figure 5.6

.

shows two screenshots of the visualization app at different
zoom levels. The current world position of each target is represented by a red circle, and the past 200
locations are visualized as a colored trace. These colors are allocated randomly, but stay constant as long
as the target ID stays the same. Mouse events, such as zoom and pan, allow the user to interact with the
floorplan and observe regions of interest in more detail. The reason for developing such a visualization
app first, is the illustrative presentation of the detection and tracking system, which aids the development
process.

(a) Zoom level showing the entire floor plan. (b) Zoomed into region of interest.

Fig. 5.6: Screenshots of the visualization web app running in Google Chrome. This app displays target trajectories
in real-time on a 2D floor plan and allows user interactions, such as zoom and pan.

To render the model of the factory floorplan within the client browser, the visualization app uses the
Javascript Library Three.js [125

.

]. This library is a wrapper around WebGL [126

.

], a cross-plattform,
low-level 3D graphics API, and provides convenient functions for the creation and rendering of arbitrary
2D and 3D scenes. Three.js is located in the three.js file in the static subdirectory along with the main
javascript file floormap.js. This main script implements the visualization of the floorplan as defined by
the Javascript Object Notation (JSON) file floorplan.json, as well as the dynamic plotting of target
locations. The SocketIO Javascript library is used to receive data from the Flask app via websockets.
Mouse events, such as pan and zoom, are captured with the help of the Data-Driven Documents Javascript
library (D3.js) [127

.

] and handled within the main Javascript. The Detector Javascript in Detector.js is
provided by Three.js and checks for availability of WebGL on the client device. All Javascript files are
loaded within the header of the template file floormap.html. Here, a single HTML canvas element is
created for the display of the rendered floorplan.

To draw an element, such as a line, within a Three.js model, first its geometry and a material have to be
specified. From this, the element instance can be created and added to the scene. In addition, the scene
is equipped with lights illuminating the model, and a camera capturing a view of the model. When all
elements have been added to the scene, a single call to the rendering engine renders a view of the model

32

Chapter 5 System Implementation

and outputs it to the HTML canvas. To allow for flexible floorplan models, the model is not hard-coded
within the floormap.js, but instead it is built dynamically from element definitions in the model file,
called floorplan.json. Here, the whole model is described as a list of dictionaries, which contain the
properties of one element each. Possible elements are lines, polygons, arcs, markers, arrows and text.
In this work, the model file is created manually from an AutoCAD drawing due to the absence of a
conversion plugin. Within the floormap.js, a loop iterates over all dictionaries in the model file and
creates according geometries, materials and elements, which are then added to the scene. To create a 2D
model, z coordinates of all elements are set to 0 and an orthographic camera, which does not introduce
any perspective distortion, is used. By updating the parameters of the camera viewport, the model view
can be zoomed and panned.

Besides creating and rendering the floorplan model, the floormap.js Javascript draws and updates
position markers and trajectories of the tracking targets, whenever a new data package D is received
from the main process via the websocket. This procedure is shown in algorithm 6

.

. On receive of a new
data package D, containing target IDs T and world positions W of the currently tracked targets, the
received_data_package event is called. Here, the diff function compares the received target IDs
with those of the last time step and classifies them into added, updated and removed IDs. For each target
ID in the list of added IDs, a new trajectory element is created and added to the scene. Such a trajectory
consists of a randomly colored line and a red circle at the current world position of the target. Each
target in the list of updated IDs already has an according trajectory element, which needs to be updated.
Thus, a new point at the current target location is added to the trajectory line and the red position
marker is shifted to this point. If the trajectory line exceeds a length of 200 points, the oldest point is
removed from the line. If a target ID is removed, its associated trajectory is not deleted immediately,
but instead decayed slowly. As long as the line contains points, the oldest point is removed, whenever
the decay_old_trajectories method is called. When the main process terminates, it triggers the
closed socket event, which is used to remove all trajectories and position markers from the scene.

5.6 Camera Setup

The Shopfloor Monitor utilizes two pan-tilt-zoom (PTZ) IP cameras of type Dahua DH-SD22204T-GN,
which are referred to as C3 and C7, relating to the channel numbers of the cameras in a larger camera
network. Both cameras have a resolution of 1920 × 1080 pixels. They are set to a fixed frame rate of
15 Hz and H.264H video codec with a variable bit rate of 640 kbit/s to 8192 kbit/s is used. Scalable Video
Coding (SVC) is disabled and image quality is fixed to the highest possible setting. The Intra Frame
(IFrame) Interval is set to a value of 50, which means, that only every 50th frame is transmitted entirely
without reference to other frames. All 49 subsequent frames are described by their differences from the
previous Intra Frame to reduce the amount of transferred data. Substreams are disabled to reduce the
produced amount of data further. This enables transmission of the main stream at a high bit rate and low
latency. Further details about the optical parameters, network protocols, power ratings, PTZ functions
and special functions, such as night vision, automatic white balance, gain control and noise reduction, are
listed in the datasheet in appendix C.3

.

. Both cameras allow dynamic setup of their fields of views (FOV)
by changing the camera orientation and focal length (zoom). The FOVs are manually set up to cover as
most of the ground plane of the factory as possible. Both FOV are slightly overlapping. The pan, tilt and
zoom settings are stored in a profile and can thus be easily recovered after a system shutdown, which
makes it possible to reuse the same calibration parameters without the need for recalibration. Since both
cameras provide a network interface based on the real-time streaming protocol (RTSP) [128

.

], their video
streams can be directly accessed with a compatible software module, skipping the installed network video
recorder (NVR) for the sake of a lower latency and a higher transmission bandwidth.

33

Chapter 5 System Implementation

Algorithm 6: Dynamic drawing of target trajectories.
Data: socket
id_pool ← []
procedure socket.received_data_package

(added, updated, removed) ← diff(id_pool, T)
for each added_id in added do

id_pool.put(added_id)
create_trajectory(added_id, Wadded_id)

end for
for each updated_id in updated do

update_trajectory(updated_id, Wupdated_id)
end for
for each removed_id in removed do

remove_trajectory(removed_id)
delete id_pool[removed_id]

end for
decay_old_trajectories()
render()

end procedure

procedure socket.closed
id_pool ← []
remove_all_elements_from_scene()
render()

end procedure

5.7 Camera Calibration

Camera calibration is performed to compute the set of parameters P needed to map target locations from
image coordinates to the factory ground plane. The parameters P are part of the non-linear algebraic
equation system, which models the image formation process in each camera. Parameters are estimated
iteratively based on corresponding points in the images and on the factory ground plane. All functions
descibed below are implemented in the OpenCV image processing library [49

.

].

Section 5.7.1

.

introduces the camera model. A simplification by means of using a homography is presented
in section 5.7.2

.

. Intrinsic camera parameters are estimated in section 5.7.3

.

and the ground plane
homographies are computed in section 5.7.4

.

. Section 5.7.5

.

explains the mapping procedure of target
locations form image to world coordinates. The calibration results are validated in section 5.7.6

.

, and
finally, section 5.7.7

.

discusses the optimal calibration interval.

5.7.1 Camera Model

The camera model describes the geometric relations between the factory ground plane and the camera
image. Having a horizontal angle of view of 93.5° (see appendix C.3

.

), the cameras used in the Shopfloor
Monitor introduce a significant image distortion. Thus, a fisheye camera model is used [129

.

]. This model
is implemented in the OpenCV fisheye calibration package [130

.

], which is used throughout the calibration
procedure.

34

Chapter 5 System Implementation

The camera model uses the three different coordinate systems shown in fig. 5.7

.

. First, the world coordinate
system, which describes the actual position (X,Y, Z) of an object in the observed scene. Second, the
camera coordinate system, which is fixed with respect to the camera body and describes the position
(x, y, z) of the same object with respect to the camera. And third, the image coordinate system, in which
the object occurs at the pixel positions (u, ν).

To map a point (X,Y, Z) from the world coordinate system to the same point (x, y, z) in the camera
coordinate system, a rotation and a translation are necessary as defined byxy

z

 = R

XY
Z

+ T . (5.2)

Here T ∈ R3 is a translation vector and R ∈ R3×3 a rotation matrix. These are the so called extrinsic
parameters of the camera.

To map the same point from the camera into the image coordinate system two effects have to be considered.
First is the characteristics of the projection of the light rays from the scene onto the image sensor, which
is modeled via a camera matrix M ∈ R3×4 and second is the radial and tangetial distortion of the image
due to the specific lens geometry. Especially in a wide angle camera as the one used here, image distortion
plays a significant role.

First, a pinhole camera model is assumed to project the point (x, y, z) from the camera coordinate system
onto the image plane, yielding the point (x′, y′) with respect to the camera coordinate system. The
projection is done by normalizing with the z-coordinate according to

x′ = x

z
, y′ = y

z
. (5.3)

To map the point (x′, y′) from camera coordinates to image coordinates (u, ν), first a fisheye distortion
has to be applied, yielding the new point (x′′, y′′) in camera coordinates with

x′′ = Θd

r
x′, y′′ = Θd

r
y′. (5.4)

The fisheye distortion is modeled as radial distortion, which means every pixel is moved outwards
perpendicular to a circle around the image center. The further away a pixel from the center is, the
further it is moved outwards. Therfore, the distortion coefficient Θd can be computed by the following
definitions

r2 = x′2 + y′2, (5.5)
Θ = arctan(r), (5.6)

Θd = Θ + k1Θ3 + k2Θ5 + k3Θ7 + k4Θ9. (5.7)
Here, k1, k2, k3 and k4 denote the four distortion coefficients. After application of the fisheye distortion, the
point (x′′, y′′) is still defined with respect to the camera coordinates system. Hence, a further transformation
has to be computed to get the image coordinates (u, ν) of this point. Such a transformation is defined as
follows

u = fx
(
x′ + αy′

)
+ cx, ν = fyy

′ + cy, (5.8)
whereby fx and fy are the focal length in x, respectively y direction of the camera coordinate system, cx
and cy define the principle point of the image and α is the skew coefficient. The first four parameters are
combined in the camera matrix M .

The distortion parameters k1, k2, k3, k4, the skew coefficient α and the parameters fx, fy, cx, cy of the
camera matrix M are known as the intrinsic parameters of the camera.

35

Chapter 5 System Implementation

𝑢

𝑣

𝑋

𝑌

𝑍

(𝑋, 𝑌, 𝑍)

𝑥

𝑦

𝑧

World Coordinates Camera Coordinates Image Coordinates

Extrinsic
Parameters

Intrinsic
Parameters

(𝑢, 𝑣)

Fig. 5.7: Overview of the three coordinate systems of the fisheye camera model. A point (X,Y, Z) is mapped from
world coordinates to the camera coordinates (x, y, z) as described by the extrinsic model parameters and
then mapped to the image coordinates (u, ν) via distortion and projection as described by the intrinsic
model parameters.

5.7.2 Ground Plane Homography

Many existing people-tracking systems assume a planar world constraint [131

.

–134

.

]. This means, i) the
ground is planar and ii) people always have contact to the ground (Z = 0). The constraint is needed, as it
is not possible to directly infer a target’s 3D world position from a single 2D image without making any
prior assumption about one of the world coordinates. This constraint also enables to model the mapping
from image coordinates to the factory ground plane via a homography matrix H ∈ R3×3. However, this
requires undistorted image coordinates (u′, ν ′), which can be computed from the original image coordinates
(u, ν) by reverting the effect of lens distortion. The homography can then be written as

s

u′ν ′
1

 = H

XY
1

 . (5.9)

Note, that the points are converted from Cartesian to homogenous coordinates, hence a 1 is appended.
The parameter s is a scaling factor. If the image size is changed, all parameters of the homography matrix
H have to be scaled accordingly.

In the following calibration process, first the intrinsic camera parameters of each camera in the Shopfloor
Monitor are determined to compute the undistorted image coordinates (u′, ν ′) from the original, distorted
image coordinates (u, ν). Afterwards, the homography matrices for both cameras are estimated.

5.7.3 Estimating Intrinsic Parameters

Estimation of the intrinsic camera parameters k1, k2, k3, k4, fx, fy, cx, cy and α requires a set of
corresponding points on a planar surface in world and image coordinates. These correspondences are
inserted into the camera equations. The unknown intrinsic parameters are obtained from these equations
by iteratively minimizing the reprojection error between observed world points and the corresponding
projected points with the Levenberg-Marquardt algorithm [129

.

, 135

.

, 136

.

].

Corresponding points are acquired with a planar 9 × 6 chessboard pattern, which is printed out in
A3-format and applied to a rigid cardboard to ensure planarity of the surface. The board is placed in
different distances and angles front of the cameras C3 and C7, and 87 respectively 65 calibration images
are taken. Figure 5.8

.

shows an example calibration image and the chessboard pattern.

The image points of the chessboard pattern are detected automatically with the OpenCV findChess-
boardCorners function and corresponding world coordinates are known with respect to the pattern

36

Chapter 5 System Implementation

(a) 9 × 6 chessboard pattern used for intrinsic
calibration.

(b) Example of an acquired calibration image.

Fig. 5.8: The chessboard pattern used to calibrate the intrinsic camera parameters and an example image of this
pattern taken by camera C3. The arrows in the chessboard indicate the pattern coordinate system and
the orange circles mark the calibration points.

coordinate system. Position and orientation of the pattern coordinate system with respect to the factory
ground plane are not needed for intrinsic calibration. The same holds for the exact scaling of the pattern.
Thus, unit length of the pattern squares is assumed. In total 4698 and 3510 point correspondences are
found for camera C3 and C7, respectively. They are fed into the calibrate method of the OpenCV
fisheye module, which returns an estimate of the intrinsic camera parameters (see table 5.4

.

).

Tab. 5.4: Overview of the estimated intrinsic camera parameters for both cameras C3 and C7.

Camera fx fy cx cy k1 k2 k3 k4 α

C3 1103.13 1103.25 995.160 510.188 −0.116781 0.00397668 −0.00304310 0.00159480 0
C7 1078.68 1078.64 982.458 450.170 −0.118950 0.00825041 −0.00245857 −0.00058231 0

The so computed intrinsic parameters can now be used to revert the distortion induced by the wide-angle
lens. For this, an inverse mapping is computed with the initUndistortRectifyMap function of the
fisheye calibration package. It returns maps, which can be used by the remap function to undistort
an image as shown in fig. 5.9

.

. Undistortion leads to black areas at the image boundaries. The size of
these areas can be controlled by the balance parameter αB ∈ [0, 1] in the estimateNewCameraMatrix-
ForUndistortRectify function, which is used to determine a new camera matrix M ′ ∈ R3×4 prior
to computing the undistortion maps. Setting the balance parameter to 0, crops the output image, so
that there are no black regions at the image boundaries. Setting it to 1 keeps all pixels from the original
distorted image and large black regions occur.

If only a sparse set of points rather than an entire image needs to be undistorted, the function undis-
tortPoints of the OpenCV fisheye module can be used with the according intrinsic parameters as
arguments.

5.7.4 Estimating Ground Plane Homographies

Estimation of the ground plane homography H for each camera requires a set of points in undistorted
image coordinates (u′, ν ′) and the corresponding world positions (X,Y) on the ground plane. Instead of
using a chessboard pattern, 17 calibration markers made from red tape are placed on the ground floor as
shown in fig. 5.10

.

. The corresponding locations on the ground plane are depicted in fig. 5.11

.

. This plan
also shows the world coordinate system, which originates at calibration point P0.

37

Chapter 5 System Implementation

(a) Original distorted Camera Image. (b) Camera Image after Undistortion.

Fig. 5.9: Comparison of the original distorted camera image (a) and the undistorted camera image (b). Lines,
which are straight in reality occur curved in the distorted image, whereby the curvature is greater at the
image boundaries. In the undistorted image those lines occur straight again as can be seen by means of
the red reference lines.

(a) Extrinsic calibration targets for camera C3. (b) Extrinsic calibration targets for camera C7.

Fig. 5.10: Markers for extrinsic calibration of both cameras on the ground plane. The marker positions in these
two images are used for the extrinsic calibration of both cameras.

To acquire calibration points a single image per camera is required and image coordinates (u, ν) of each
marker are read out with the help of an image editing program. These points are undistorted, yielding
the undistorted image points (u′, ν ′). Table 5.5

.

shows the positions of all calibration markers in world
coordinates (X,Y), image coordinates (u, ν) and undistorted image coordinates (u′, ν ′). The marker
points P7, P8 and P9 occur twice, because they are visible in both camera FOVs. Due to being measured
manually, the marker world positions have large errors of up to ±50 mm. The measurements in image
coordinates are more accurate with an error of ±1 pixel.

The homographies H3 and H7 for both cameras are computed from the corresponding world coordinates
(X,Y) and undistorted image coordinates (u′, ν ′) by means of the findHomography function in OpenCV.
This function uses the least median of squares (LMeDS) algorithm [137

.

] to find an initial estimate for
the homographies, which is further optimized by the Levenberg-Marquardt algorithm to minimize the
reprojection error. The resulting homography matrices for cameras C3 and C7 are

H3 =

 −1.58717 −16.1157 −16042.8
28.062 −12.7544 −27879.6

3.62252× 10−5 −0.00698769 1

 , H7 =

 30.6712 4.78286 −46547.6
23.1779 −85.44 6836.43

5.06243× 10−5 −0.00953415 1

 .

38

Chapter 5 System Implementation

Fig. 5.11: Section of the floor plan of the factory with positions of extrinsic calibration markers (red markings),
installed machines (orange shaded boxed) and the pedestrian way (blue lines).

5.7.5 Mapping of Image to World Coordinates

The estimated intrinsic camera parameters and the ground plane homographies can now be used to map
an image point (u, ν) to the according point (X,Y) on the factory ground plane. This process is shown
in fig. 5.12

.

. First, the image point (u, ν) is undistorted by means of the undistortPoints function of
the OpenCV fisheye module. This yields the undistorted image point (u′, ν ′). The undistortPoints
function reverts the mulitplication of the point with the camera matrix M as well as the radial and
tangential distortion introduced by the camera lens. The new camera matrix M ′ is used to project the
point into the undistorted image coordinates based on the balance parameter. The undistorted point
(u′, ν ′) is then projected onto the ground plane position (X,Y) by means of the ground plane homography
eq. (5.9

.

), which is realized with the OpenCV function perspectiveTransform.

5.7.6 Validation of Calibration Results

The calibration results need to be evaluated to ensure a sufficient accuracy when mapping target locations
from camera images onto the factory ground plane within the visualization app. First, intrinsic parameters
are evaluated, then the ground plane homography, and finally, accuracy is computed on an independent
set of validation points.

39

Chapter 5 System Implementation

Tab. 5.5: Positions of the calibration markers for extrinsic calibration of both cameras on the ground plane, in the
distorted image and in the undistorted image.

Camera Marker Ground Plane Distorted Image Undistorted Image

X/mm Y /mm u/pix. ν/pix. u′/pix. ν′/pix.

C7 P0 0 0 1649 467 1443.970 471.755
P1 0 3525 1587 788 1410.840 690.134
P2 0 5065 1493 1042 1376.740 897.275
P3 2200 −3030 1473 271 1298.850 351.387
P4 2200 0 1400 376 1243.700 417.255
P5 2200 3525 1200 631 1121.660 561.677
P6 2200 6540 776 1068 864.012 867.471
P7 6940 −200 924 228 967.661 337.666
P8 6940 3525 611 375 786.602 417.362
P9 6940 6540 278 555 513.349 532.962

C3 P7 6940 −200 1531 912 1383.720 787.912
P8 6940 3525 651 899 802.927 756.779
P9 6940 6540 193 779 373.200 729.825
P10 11940 −200 1329 406 1214.040 452.562
P11 11940 2150 1028 392 1036.560 447.173
P12 11940 5750 591 386 775.236 439.106
P13 15350 −200 1259 269 1173.290 371.827
P14 15350 2150 1038 257 1042.660 368.371
P15 20150 −200 1206 171 1143.730 311.562
P16 20150 2150 1046 163 1047.920 309.851

5.7.6.1 Validation of Intrinsic Calibration

To examine the accuracy of the intrinsic calibration, the average intrinsic reprojection error for each
calibration image can be calculated as follows

ek = 1
n

n−1∑
j=0
||pj − qj ||. (5.10)

Here, n = 54 denotes the number of calibration points per images, p ∈ R2 is the measured position of
a calibration point in image coordinates and q ∈ R2 is the corresponding reprojected point in image
coordinates. Reprojection of a point means, it is first projected from image to world coordinates and
then projected back from world to image coordinates by means of the estimated intrinsic and extrinsic
parameters for the given image. As the model parameters do not exactly represent the actual physical
parameters of the camera, an error remains. This is the reprojection error. If the model is very accurate,
the reprojected point q lies close to its measured position p, so the reprojection error is low. However, if
the model is inaccurate, the projected point q is far away from its measured position p and the error is
large.

Figure 5.13a

.

shows a plot of the intrinsic reprojection error for each of the 87 calibration images for
camera C3 and fig. 5.13b

.

the according plot of the 65 calibration images for camera C3. Additionally, the
mean reprojection errors for all images are shown as horizontal red dashed lines.

The average intrinsic reprojection errors for camera C3 and C7 are 2.561 pixel and 2.056 pixel, respectively.
The slightly larger error for camera C3 might be caused by the fact that the calibration images are slightly

40

Chapter 5 System Implementation

Image point
(𝑢, 𝑣)

World point
(𝑋, 𝑌)

Undistortion
undistortPoints()

Ground Plane Homography
perspectiveTransform()

Distortion coefficients
𝑘1, 𝑘2, 𝑘3, 𝑘4

Camera matrix 𝑀

New camera matrix 𝑀′

Homography matrix 𝐻

Undistorted
image point

(𝑢′, 𝑣′)

Scaling Factor 𝑠

Fig. 5.12: Transformation of a point from image to world coordinates.

0 20 40 60 80

Image No.

1

2

3

4

R
ep

ro
je

ct
io

n
E

rr
or
e k

(a) Intrinsic reprojection error of camera C3.

0 10 20 30 40 50 60

Image No.

1

2

3

4

R
ep

ro
je

ct
io

n
E

rr
or
e k

(b) Intrinsic reprojection error of camera C7.

Fig. 5.13: Average intrinsic reprojection errors of intrinsic camera calibration per image. The horizontal red lines
show the reprojection error averaged over all images.

blurry as the chessboard pattern was fixed to a long pole when taking the calibration images. However,
the errors are in both cases low enough to confirm sufficient accuracy of the intrinsic calibration.

5.7.6.2 Validation of the Ground Plane Homography

Accuracy of the ground plane homographies H can be determined by mapping the image positions (u, ν)
of the calibration markers onto the ground plane (X,Y) according to the method described earlier. Then,
the euclidean distance between the actual position of the marker on the ground plane and the projected
position can be computed and used as a measure for the error. Table 5.6

.

shows the actual world positions,
the projected world positions and the error for the calibration markers. The average errors for C3 and C7
are 13.158 mm and 26.085 mm, respectively. They contain the intrinsic errors, as the intrinsic parameters
are used to undistort points prior to mapping them to the ground plane. The errors directly influence,
how accurately the location of a tracked person can be mapped from the camera images to the ground
plane. As the errors are smaller than the error of the manually measured marker positions (±50 mm), the
homography matrices H3 and H7 enable a sufficiently accurate mapping from the camera images to the
factory ground plane.

5.7.6.3 Validation via Independent Point Set

To ensure a high calibration accuracy for positions different from those of the calibration markers, the
reprojection error is computed for an independent set of validation points. These validation points are
acquired by placing a validation target at 5 different locations V0, V1, . . . , V4 on the ground plane. This is
shown for the first two positions in fig. 5.14

.

. The marker position is measured both in world coordinates

41

Chapter 5 System Implementation

Tab. 5.6: Measured and projected world positions of the extrinsic calibration markers of both camera as well as
the according error, which is computed as the euclidean distance between the measured and projected
point coordinates.

Camera Marker Measured Position Projected Position Error

X/mm Y /mm X/mm Y /mm e/mm

C7 P0 0 0 0.881 0.633 1.085
P1 0 3525 −4.591 3527.030 5.018
P2 0 5065 3.992 5065.670 4.049
P3 2200 −3030 2201.720 −3028.560 2.244
P4 2200 0 2197.560 −4.249 4.900
P5 2200 3525 2200.550 3525.930 1.076
P6 2200 6540 2199.900 6538.710 1.299
P7 6940 −200 7027.990 −191.035 88.443
P8 6940 3525 6948.910 3603.220 78.729
P9 6940 6540 6966.970 6608.920 74.007

C3 P7 6940 −200 6943.410 −202.192 4.057
P8 6940 3525 6929.530 3521.950 10.900
P9 6940 6540 6949.320 6537.830 9.568
P10 11940 −200 11925.600 −196.669 14.752
P11 11940 2150 11927.500 2153.68 13.039
P12 11940 5750 11934.700 5747.070 6.079
P13 15350 −200 15361.000 −194.677 12.242
P14 15350 2150 15384.000 2160.230 35.505
P15 20150 −200 20146.000 −213.121 13.711
P16 20150 2150 20138.300 2151.170 11.725

(X,Y) as well as in distorted image coordinates (u, ν) (see table 5.7

.

). The image points are undistorted,
yielding the undistorted image points (u′, ν ′), which are projected onto the ground plane by means of
the estimated homography matrix H7. The euclidean distance between these reprojected points and
the measured world positions is a measure of the calibration error. Table 5.8

.

shows the measured and
estimated positions as well as the resulting error for all five validation points. Mean and variance of all
5 errors are 27.949 mm and 21.682 mm respectively. These errors are not larger than the errors at the
positions of the calibration markers (see table 5.6

.

). Thus, the calibration parameters can be used to
map any image point onto the ground plane with an accuracy sufficient for the intended use case of the
Shopfloor Monitor.

Tab. 5.7: Positions of the validation marker on the ground plane, in distorted image coordinates and undistorted
image coordinates.

Marker Ground Plane Distorted Image Undistorted Image

X/mm Y /mm u/pix. ν/pix. u′/pix. ν′/pix.

V0 1200 0 1516 416 1327.110 439.595
V1 2200 5125 1015 839 1018.760 684.753
V2 4700 3525 826 468 914.421 470.297
V3 4700 6540 417 732 632.638 643.638
V4 5000 0 1085 282 1056.390 368.053

42

Chapter 5 System Implementation

(a) Validation marker at position V1. (b) Validation marker at position V2.

Fig. 5.14: Two, of the in total 5, example images for validation of the camera calibration results. The validation
marker is a pink sponge with dimensions 10 cm times 10 cm, that is placed at different locations in the
viewport of camera C7.

Tab. 5.8: Measured and projected world positions of the validation markers as well as the according error, which is
computed as the euclidean distance between the measured and projected point coordinates.

Marker Measured Position Projected Position Error

X/mm Y /mm X/mm Y /mm e/mm

V0 1200 0 1197.530 −11.856 12.112
V1 2200 5125 2195.750 5122.580 4.889
V2 4700 3525 4727.700 3534.860 29.406
V3 4700 6540 4714.540 6561.400 25.872
V4 5000 0 5044.210 50.958 67.464

5.7.7 Calibration Interval

Camera recalibration is only needed, when position, orientation and focal lengths of the cameras change.
As these parameters are usually constant, it is sufficient to calibrate the cameras only once during setup of
the Shopfloor Monitor. If PTZ cameras are used, the calibration is only valid for a certain orientation and
zoom level, which can be stored in a preset. The camera can be moved back into the calibrated position
anytime via this preset superseding a recalibration. Recalibrating the cameras might become necessary
after some time due to exposure to other environmental factors, for example vibration or temperature
differences. Continuous monitoring of the reprojection error allows to determine, if the camera is still
properly calibrated or whether a recalibration is necessary.

5.8 Future Improvements

This section describes possible improvements of the current Shopfloor Monitor. Processing speed can
be drastically increased by utilizing all 12 available CPU cores to run the update and prediction steps
of the core trackers. The current single-core implementation limits the frame rate and prevents the use
of computationally more expensive, but more accurate KCF and CSRT core trackers. Only the fast
MOSSE tracker can be used. Similarly, the object detector can be sped up by running inference on both
available GPUs instead of only a single GPU. Additionally, Nvidia TensorRT [138

.

] can be used to speed
up inference by optimizing the inference graph and reducing the precision of numerical operations to

43

Chapter 5 System Implementation

float 16 bit. If inference is faster, computationally more complex, but also more accurate object detection
algorithms can be used.

To increase detection and tracking accuracy the object detector can be fine-tuned on an application-
specific dataset and the single-target trackers can be replaced with a true multi-target tracker. Leveraging
appearance features in addition to the bounding box IoU to match detections and existing trajectories
can further improve the tracking accuracy.

An issue of the detection and tracking framework is the redundant detection of the same physical target,
when this target occurs in more than one camera view. In future, such detections should be merged, if
their spatial distance in world coordinates is small and if the extracted appearance features are similar.

Another related problem is the missing handling of target handovers between adjacent frames. As soon as
a target leaves one camera view and enters another, its related target ID changes. A solution would be to
store a fingerprint for every target in a database and perform a lookup whenever a new target appears. If
the target is known, the previous target ID can be applied. This strategy also allows to re-identify targets
after a long time and built up target-specific statistics.

Further improvements are possible with regard to the visualization app. Rendering of the floorplan can be
sped up by using buffer geometries instead of normal geometries. Additional information for each target
can be displayed, for example the target ID, a speed vector, the source camera or the elapsed time since
the first detection. The visualization app can also be extended with basic analysis features, for example a
heatmap plot of the location and speed distributions of targets over different time periods. To enable fast
deployment of the Shopfloor Monitor in another factory, the model file of the floorplan should be created
automatically from a CAD model.

Apart from that, the camera calibration provides improvement potential as well. For example, measuring
positions of the extrinsic calibration markers with smaller errors than the current ±50 mm, can improve the
results of the camera calibration and the mapping accuracy from image to world coordinates. Furthermore,
automating the calibration procedure with one of the methods in [139

.

–141

.

] enables easier and faster
deployment of the Shopfloor Monitor in another factory.

5.9 Conclusion

In this chapter the Shopfloor Monitor was implemented. After a description of the overall system
architecture, individual components, such as the main server process, the MySQL database and the
client web apps were explained. The main process handles the acquisition of the video streams, run the
detection and tracking algorithms, maps from image to world coordinates, sends the tracking results
over websockets to the client web app and inserts it into a database. The next section expanded on the
detection and tracking framework. This framework tracks targets by means of multiple single-target
trackers, which are updated in regular intervals based on the results of an object detector. Afterwards,
the layout of the MySQL database for long-term storage of the tracking results and a general framework
for client web apps were presented. Finally, a web app for real-time visualization of targets on a 2D
floorplan of the factory was introduced. The second part of this chapter focused on the camera calibration.
First, a parametric model of the fisheye camera was introduced. The model parameters were estimated
from point correspondences between images and the observed scene and allowed to undistort the camera
images. Homographies between the image planes and the factory ground plane were estimated and used
to map target locations from undistorted image to world coordinates. Finally, camera calibration was
evaluated by computing reprojection errors and errors on a set of independent validation markers. The
chapter concluded with an overview of possible future improvements. In the next chapter experiments are
conducted to analyze different hyperparameter configurations of the Shopfloor Monitor.

44

Chapter 6

Experiments

The Shopfloor Monitor, being a detection and tracking system at its core, contains a variety of different
hyperparameters (see chapter 5

.

) which control the tracking behaviour of the system. Understanding
the influence of each parameter on the tracking performance helps to choose suitable values for the
parameters, which yield a good trade-off between the accuracy of estimated trajectories and the processing
frame rate. It also helps to determine how critical each individual parameter is for the performance, and
thus can give direction to further improvements of the system. Insensitivity of tracking performance to
certain parameters might also indicate a faulty implementation or an unnecessary feature of the tracking
system, which can be removed without negatively affecting performance. As opposed to often conducted
ablation studies [37

.

, 142

.

–145

.

], in which individual features are removed to determine their impact on the
performance, a parameter studies provides deeper insights as a feature is not simply removed, but its
impact modulated by choosing a variety of parameter values.

The aim of the study conducted in this chapter is not to exhaustively evaluate all possible parameter
combinations in form of a grid search or randomized search to find an optimal parameter combination,
but rather lies in gaining an understanding of the influence of different parameters on the tracking
performance. To conduct this study, an evaluation tool is developed that enables an automated execution
of all experiments and reporting of the results and allows to evaluate features added in future versions of
the monitoring system.

This chapter first introduces the dataset specifically created for evaluation of the monitoring system in
section 6.1

.

. In section 6.2

.

the utilized performance metrics are explained. The parameters under study
and the experimental design are described in section 6.3

.

. Experimental results are presented in section 6.4

.

.
Finally, section 6.5

.

shows qualitative results of the detection and tracking system.

6.1 Evaluation Dataset

Basis of the evaluation of the Shopfloor Monitor is a video dataset containing annotated ground-truth
bounding boxes for every person in every frame. There are several public datasets for visual object
tracking available, for example the Multi Object Tracking (MOT) dataset [7

.

] or the Visual Object Tracking
(VOT) dataset [146

.

]. However, as the aim of this evaluation is to understand the influence of the system
parameters under the given operating conditions in the factory, only a task-specific evaluation dataset,
based on the video footage acquired by the monitoring system itself guarantees transferability of the
analysis results, and therefore such a dataset is created and described in this section.

The evaluation dataset contains five video sequences with a resolution of 1920 × 1080 pixels, a frame
rate of 15 FPS and an average duration of 15.4 s. Further details can be found in table 6.1

.

. Additionally,
table 6.2

.

shows statistics about the width, height and aspect ratio of all bounding boxes in the dataset.
These sequences are manually extracted from a set of 22 videos with a total duration of 4 hours and 91
seconds, recorded by the two cameras used in the monitoring system (see section 5.6

.

) over the course of

45

Chapter 6 Experiments

one day. To simplify the analysis task and not consider any issues introduced through a multi-camera
setup, only recordings of a single camera C7 are considered. Furthermore, the sequences are continuous
and do not contain any cuts or abrupt scene changes. They are chosen based on criteria, such as high
number of people with varying activities (standing, walking or sitting), crowded scenes, occlusion events
and people entering or leaving the scene to provide a challenging and versatile test environment for the
tracking system, which helps to unveil weaknesses of the developed approach and retrieve rich analysis
results.

Tab. 6.1: Descriptive statistics of the evaluation dataset. IDs are the number of unique people in each sequence,
whereby entries and exits count the number of people entering and exiting the scene throughout the
sequence. Density is the average number of bounding boxes per frame.

Name Resolution FPS Length IDs Boxes Density Entries Exits Description

Seq-0 1920× 1080 15 226 (00:15) 18 3575 15.82 4 2 Crowd sitting + few people walk-
ing and standing

Seq-1 1920× 1080 15 120 (00:08) 13 1491 12.43 0 1 Crowd slowly walking
Seq-2 1920× 1080 15 175 (00:11) 19 2913 16.65 3 4 Crowd standing + few people walk-

ing
Seq-3 1920× 1080 15 188 (00:12) 17 2820 15.00 3 6 Large number of targets walking
Seq-4 1920× 1080 15 178 (00:11) 10 1393 7.83 1 4 Medium number of targets walking

Total – – 888 (00:57) 77 12192 13.73 11 17 -

Tab. 6.2: Advanced statistics of all bounding boxes in the evaluation sequences.

Name Box Width Box Height Box Aspect Ratio

Min Avg Max Min Avg Max Min Avg Max

Seq-0 35.40 146.74 328.20 159.89 318.59 400.00 0.09 0.46 2.05
Seq-1 60.80 128.03 258.87 42.50 278.09 450.80 0.13 0.46 6.09
Seq-2 21.85 88.33 293.30 55.72 227.95 417.82 0.05 0.39 5.26
Seq-3 40.80 153.41 345.85 84.66 284.30 451.53 0.09 0.54 4.09
Seq-4 51.00 141.87 282.10 167.73 303.69 415.53 0.12 0.47 1.68

Total 21.85 131.676 345.85 42.50 282.524 451.53 0.05 0.096 6.09

After extraction of the five sequences, ground-truth bounding boxes and IDs of every person in every
frame are annotated with the help of the Computer Vision Annotation Tool (CVAT) [147

.

] and exported
as XML files. This tool speeds up the annotation task by interpolating bounding box coordinates in
all frames between a lower number of manually annotated key frames. During annotation some rules
according to [7

.

] are followed to ensure consistent annotation of all frames. First, bounding boxes are
only drawn around humans. Every bounding box should envelope the entire person as tightly as possible,
whereby no body parts should protrude over the box edge. Clothing is counted as part of the person, but
not so any other accessories, such as phones, backpacks or notebooks. Each person is fully annotated
through occlusion as long as the body shape can be determined accurately. Very small people in the far
background of the scene as well as permanently occluded people are not annotated. People entering the
scene are annotated as soon as ca. 50 % of their body is visible. Accordingly, people leaving the scene are
marked as out-of-view when half of their body lies outside of the frame. In such cases bounding boxes
are not allowed to protrude over the frame edge and are cropped instead. Finally, people re-entering the
scene are always given a new ID. Some example frames annotated this way are shown in fig. 6.1

.

.

46

Chapter 6 Experiments

(a) Seq-0 frame 40. (b) Seq-1 frame 98. (c) Seq-2 frame 141.

(d) Seq-3 frame 71. (e) Seq-4 frame 57. (f) Seq-4 frame 136.

Fig. 6.1: Examples for annotated ground-truth bounding boxes and IDs in the five evaluation sequences.

6.2 Evaluation Metrics

In recent years a wide variety of performance metrics for object tracking has been presented. Several of
those metrics focus on single target tracking [146

.

, 148

.

], while others are used to assess performance of
multi-target trackers [149

.

–161

.

]. Some research provides application-specific metrics for video surveillance
[162

.

–168

.

], pedestrian tracking [169

.

] or vehicle tracking [170

.

]. More recent research provides benchmarks
with small numbers of descriptive performance metrics enabling a quantitative ranking of different tracking
algorithms. Examples for such benchmarks are the Visual Object Tracking (VOT) Challenge [146

.

], which
uses the accuracy and robustness metrics from [148

.

], the CLEAR challenge [171

.

], and the Multiple Object
Tracking (MOT) Benchmark [7

.

]. The following section briefly introduces the metrics included in the MOT
benchmark, which are used to evaluate the developed tracking framework on the previously described
evaluation dataset. As can be seen in table 6.3

.

, the MOT metrics comprise standard metrics, such as
precision and recall, the two CLEAR metrics multiple object tracking accuracy (MOTA) and multiple
object tracking precision (MOTP) [152

.

] and newer ID metrics proposed in [161

.

]. To ensure correctness of
the results, the official Python motmetrics package [172

.

] is used to compute all metrics.

All performance metrics are computed by comparing the set of bounding boxes predicted by the Shopfloor
Monitor and the set of manually annotated ground-truth bounding boxes in each frame of the evaluation
sequences. In literature, a ground-truth bounding box is often called the target, while the according
predicted bounding box is a hypothesis of the tracker [7

.

]. A well-performing tracker is able to predict
bounding boxes which mostly overlap with the according ground-truth boxes for most of the targets in
each frame. Such a match between hypothesis and ground-truth is a true positive (TP). In the MOT
benchmark a match is counted when the intersection over union (IoU) (see appendix A.3

.

) of the predicted
and ground-truth bounding box is larger than a threshold of 50 %. This is shown in fig. 6.2

.

. If the IoU is
smaller than this threshold or there is no hypothesis at all for a target, the target is called a miss or false
negative (FN). If a hypothesis can not be matched to any target, it is counted as a false positive (FP).
These measures can be computed frame by frame as they do not take any temporal dependencies between
the target locations into account [151

.

, 158

.

]. They allow computation of the precision (PRCN)

Precision = TP
TP + FP, (6.1)

47

Chapter 6 Experiments

which quantifies how many of the predictions made by the tracker are matches. Furthermore, the recall
(RCLL)

Recall = TP
TP + FN (6.2)

can be defined as the fraction of all correctly matched bounding boxes as compared to the total number
of ground-truth bounding boxes [159

.

].

TP

(a) A true positive (TP).

FN FP

(b) A false negative (FN) and two false positives (FP).

Fig. 6.2: Examples of a true positive, a false negative and two false positives. A true positive is a match of a
tracker hypothesis (dashed blue box) with a ground-truth target (solid red box), while a false positive is a
hypothesis, which could not be matched to any ground-truth target, and a false negative is a ground-truth
which could not be matched with any hypothesis. A match is established if the IoU of the hypothesis and
ground-truth box is larger than 0.5. [151

.

, 158

.

] (Background image from [173

.

])

Apart from these simple frame-based metrics, the MOT metrics comprise metrics specifically designed for
tracking, which consider temporal information about the association between predictions and ground-truth
targets as well as target IDs [7

.

]. To compute these measures, again each hypothesis has to be matched to
its according ground-truth target. This time, the matches are computed in a way to maximize the total
IoU of all predicted and ground-truth bounding boxes in all frames while simultaneously keeping track of
the matched IDs and preferring previously matched IDs for forming new matches [152

.

]. This way, IDs are
kept as constant as possible. The ID switch metric (IDSW) measures how often ID switches occur in a
sequence. Whenever a hypothesis is matched to a ground-truth target and the ID of the target differs
from the one in the previous frame, an ID switch is counted (see fig. 6.3

.

) [7

.

].

The multiple object tracking accuracy (MOTA)

MOTA = 1−
∑
t (FNt + FPt + IDSWt)∑

tGTt
(6.3)

is an intuitive measure for all errors made by the tracker, such as misses, false positives and ID switches
in relation to the total number GTt of ground-truth targets in each frame. The MOTA is computed in
percent and can lie in the range (−∞, 100], whereby it gets negative when the number of errors exceeds the
total number of targets in a sequence [7

.

, 152

.

]. Similarly, the multiple object tracking precision (MOTP)

MOTP =
∑
t,i dt,i∑
tTPt

. (6.4)

provides an intuitive measure for the average overlap of all matched bounding boxes and lies within the
range of 0 % to 100 %. In the equation, dt,i is the IoU of the ith hypothesis and the according ground-truth
bounding box and TPt are the true positives in frame t [7

.

, 152

.

].

48

Chapter 6 Experiments

Additional metrics in the MOT benchmark classify each ground-truth trajectory as mostly tracked (MT),
partly tracked (PT) or mostly lost (ML) based on the proportion of frames in which the target belonging
to this trajectory is properly tracked, meaning that a hypothesis with an IoU of more than 50 % is provided
[7

.

, 160

.

]. See fig. 6.3

.

for a visualization of this. If a target is tracked in more than 80 % of the frames
belonging to that trajectory, it is classified as MT. If it is tracked for less than 80 % and more than 20 % of
its length, a trajectory is classified as PT, and if it is tracked for less than 20 % of frames, it is categorized
as ML. ID switches are not considered in the computation of these measures. An additional measure is
the fragmentation (FM), which indicates the total number of gaps in each tracked ground-truth trajectory.
A gap occurs when a target that was tracked properly in the previous frame is lost in the new frame and
re-identified in one of the future frames [7

.

].

MT PT ML

FM

IDSW

Fig. 6.3: Visualization of mostly tracked (MT), partly tracked (PT) and mostly lost (ML) ground-truth trajectories
(solid lines). An ID switch (IDSW) and fragmentations (FM) are also shown. [7

.

, 160

.

]

The last set of evaluation metrics in the MOT benchmark are the ID metrics proposed in [161

.

]. They
comprise the ID false positive (IDFP), ID false negative (IDFN), ID true positive (IDTP) and allow
computation of ID precision (IDP) and ID recall (IDR) equal to eq. (6.1

.

) and eq. (6.2

.

). The IDF1
measure

IDF1 = 2IDTP
2IDTP + IDFP + IDFN (6.5)

is the harmonic mean of ID recall and ID precision and thus provides a balanced view of both measures.
As opposed to their non-ID counterparts, ID metrics do not count how often certain events, such as a miss,
false positive or ID switch, occur, but instead they describe over which portion of a sequence the identity
of a target is correctly tracked. This is done by jointly matching exactly one ground-truth trajectory to
every hypothesis trajectory in a way that maximizes the total number of frames in which the matched
ground-truth and hypothesis IDs remain unchanged. To clarify the difference, consider a sequence of 10
frames with a single ID switch in the 5th frame. The original IDSW metric would count only a single ID
switch despite the target being falsely identified over half of the sequence. The ID precision would yield
the more intuitive value of 50 %. For another example see fig. 6.4

.

. However, depending on the application,
both event based as well as ID-based metrics allow useful insights into the performance and possible
weaknesses of a tracker.

GT

1

2

GT

1

2

(a) IDSW: 1, IDP: 50 %
GT

1

2

GT

1

2

(b) IDSW: 6, IDP: 75 %

Fig. 6.4: Example showing the difference between the IDSW and IDP metric. IDSW counts the number of ID
switches, while IDP states the ratio of frames, in which ID 1 is correctly assigned to the ground-truth
trjectory. [161

.

]

A last metric, not included in the MOT benchmark, but of high interest for the task at hand, is the frame
rate at which the detection and tracking system can process frames of an incoming video stream. The

49

Chapter 6 Experiments

momentary frame rate fk of a video sequence at frame tk is computed as

fk = 1
tk+1 − tk

, k = {0, 1, . . . , n− 1} , (6.6)

whereby usually the mean over all n frames of the sequence is computed, yielding a scalar value (FPS) for
the frame rate.

Apart from the presented evaluation metrics, there exist further metrics, such as the false alarm rate
(FAR), false negative rate (FNR), F1-score [158

.

, 159

.

], multi-camera object tracking accuracy (MCTA)
[174

.

], time lag, object localization metrics and occlusion success rate (OSR) [159

.

]. Additionally, various
performance curves can be created by changing hyperparameters of the evaluation metrics, such as the
IoU threshold or location error threshold during matching. Examples are the precision-recall-curve [159

.

],
the overlap-sucess-curve [39

.

], showing sucess rate over the IoU threshold, or the precision-distance-curve,
which plots precision over the location error threshold [39

.

]. Furthermore, it is possible to compute
all presented performance metrics not only in image coordinates, but also in world coordinates after
applying the according mapping (see section 5.7.5

.

) to tracked image locations. However, these additional
performance metrics are not used to simplify the analysis task and obtain easily interpretable results in
the following experiments.

Tab. 6.3: Overview of the utilized MOT evaluation metrics [7

.

, 161

.

]. Desired optimal values are in bold. Note
however, that MT, PT and ML are dependent on each other.

Category Metric Symbol Range Unit

Detection Based True Positive TP [0,∞] -
False Negative (Miss) FN [0,∞] -
False Positive FP [0,∞] -
Precision PRCN [0,100] %
Recall RCLL [0,100] %

Tracking Based ID Switch IDSW [0,∞] -
Multiple Object Tracking Accuracy MOTA (−∞,100] %
Multiple Object Tracking Precision MOTP [0,100] %
Mostly Tracked MT [0,∞] -
Partly Tracked PT [0,∞] -
Mostly Lost ML [0,∞] -
Fragmentation FM [0,∞] -

ID Based ID True Positive IDTP [0,∞] -
ID False Negative IDFN [0,∞] -
ID False Positive IDFP [0,∞] -
ID Precision IDP [0,100] %
ID Recall IDR [0,100] %
ID F1-Score IDF1 [0,100] %

Speed Frame Rate FPS [0,∞] Hz

6.3 Design of Experiments

In this section a suitable evaluation strategy for the detection and tracking system is developed, with the
aim to provide an understanding of the connection between system parameters and the overall tracking
performance.

50

Chapter 6 Experiments

The parameters under consideration are summarized in table 6.4

.

. Apart from these, there are two fixed
parameters, the category filter, which filters out all non-person detections, and the box size filter, which
removes all boxes larger than 0.25 times the frame width and 0.6 times the frame height. As these
parameters are temporal solutions, which are likely to be removed in future versions of the monitoring
system, they are not of interest for the parameter study and thus excluded. All other parameters are
explained in detail in chapter 5

.

, however, shall be briefly recapitulated. The two most obvious parameters
are the object detector Adet and tracker Atrk, which are both utilized to predict bounding boxes around
humans in a scene. There are many different object detectors and trackers available (see appendix A

.

and appendix B

.

). Thus, a small subset of seven different object detectors and three tracking algorithms
are chosen for analysis. Five of the detectors are Faster R-CNN models [9

.

] with different base networks
[175

.

–177

.

], one is a R-FCN model [178

.

] and the last one a Single Shot Detector (SSD) [11

.

]. All of these
models are readily implemented and pretrained as part of the Tensorflow Object Detection library [119

.

].
As trackers MOSSE [12

.

], KCF [179

.

] and CSRT [13

.

] are used as they are the most up-to-date models
in the OpenCV library [49

.

]. The detection cycle frequency fd of the monitoring system controls how
frequently the object detector is run to generate bounding box proposals and update the states of the
object trackers. Here, four different values 1, 2, 5 and 10 are chosen, meaning the detector is run either
on every frame or on every 2nd, 5th or 10th frame. To reduce the computational cost of processing a
single frame, each frame is scaled down by a scaling factor s prior to processing. The effect of this on the
tracking performance is evaluated by choosing three different values, 0.4, 0.6 and 1.0, for the scaling factor,
whereby 1.0 will disable resizing and feed the tracker with the original 1920 × 1080 pixel input frame.
However, the scaling factor does not effect the size of input frames to the detector, which are resized
to a fixed size of either 300 × 300 pixels in case of SSD or 1024 × 600 pixels in case of Faster R-CNN
and R-FCN detectors. Another parameter of the tracking system is the match IoU threshold θIoU, which
specifies the minimum IoU needed to match a bounding box, proposed by the detector every fd frames,
with the bounding box of a tracker. On a successful match the tracker state is updated accordingly. By
default this IoU threshold is set to 30 %, but values of 10 %, 50 %, 70 % and 90 % are analyzed, too. The
last parameter observed in this study is a pair of two natural numbers θv and θd, named the hypothesis
valid and hypothesis deletion threshold, which are subsequently set to values (0, 0), (2, 2), (5, 5), (5, 0)
and (0, 5). The first parameter specifies the minimum number of subsequent frames in which a target
hypothesis needs to be confirmed by the object detector in order to mark this target as valid and create
a bounding box. The second threshold determines for how many subsequent frames a target might be
missed by the object detector before its related bounding box and tracker are deleted.

A full setup of the Shopfloor Monitor requires a valid value for each of the six parameters. By default a
Faster R-CNN/ResNet-101 detector is used in combination with a MOSSE tracker, a cycle frequency of
fd = 2, a scaling factor s = 0.4, an IoU threshold θIoU = 0.3 and hypothesis valid and deletion thresholds
of θv = 5 and θd = 5. To analyze the influence of each parameter on the tracking performance, the value
of a single parameter is changed at a time while all other parameters are set to their default values. This
way of alternating parameter values yields a relatively low and easy-to-handle number of 27 different
configurations of the monitoring system, whereby six of those are redundant and equal to the default
configuration. After each change the whole set of evaluation metrics introduced in section 6.2

.

is computed
for each of the five evaluation sequences created in section 6.1

.

. The exact procedure of this is shown
in algorithm 7

.

. First, all six parameters and the according values are defined along the five evaluation
sequences. For each of the parameters a single value is chosen out of the range of possible values, while
all other parameters are set to their default values. With the monitoring system setup like this, it is
run on each of the five evaluation sequences yielding a set of bounding box hypotheses for each frame
of each sequence. Afterwards, the manually annotated ground-truth bounding boxes for each frame are
loaded, and an accumulator object of the motmetrics package, which is needed for computation of the
evaluation metrics, is iteratively filled with the set of ground-truth bounding boxes and the according
hypotheses of each frame in the sequence. Here, only hypotheses which are marked as valid are considered.

51

Chapter 6 Experiments

Tab. 6.4: Description of the studied parameters of the Shopfloor Monitor. For a more in-depth explanation of the
meaning of each of those parameters, please refer to chapter 5

.

. Default parameters are in bold. FRCNN
stands for Faster R-CNN and the tag low proposals (lp) indicates a reduced amount of object proposals.
Detectors are given an alias in brackets, which is used in the analysis plots for easier plotting.

Parameter Symbol Description Values

Detector Adet Object detector and base architecture used for
detection of targets every fd frames

FRCNN/NASNet (Det-0)
FRCNN/Inception v2 (Det-1)
FRCNN/ResNet-101 (Det-2)
FRCNN/ResNet-101 (lp) (Det-3)
FRCNN/ResNet-50 (Det-4)
RFCN/ResNet-101 (Det-5)
SSD/ResNet-50 (Det-6)

Tracker Atrk Tracker used to track targets in intermediate
frames

MOSSE, KCF, CSRT

Cycle
Frequency

fd The detector is run every fd frames 1, 2, 5, 10

Scaling
Factor

s Each frame is resized with this factor previous
to processing

0.4, 0.6, 1.0

Match IoU
Threshold

θIoU Minimum IoU needed for a match between a
tracked target and detections made every fd

frames

0.1, 0.3, 0.5, 0.7, 0.9

Hypothesis
Thresholds

θv, θd Minimum number of matches needed before a
tracking hypothesis is valid and maximum
number of misses allowed before a hypothesis
is deleted

(0, 0), (2, 2), (5,5), (5, 0), (0, 5)

Finally, the accumulator is appended to a list. All five accumulators for a tracker configuration are then
passed to a function which computes and returns the evaluation metrics for logging. In addition to the
sequence-specific metrics, an average over all evaluation sequences is computed. In the following analysis
all stated metrics are such averages to reduce the amount of data and increase the robustness of results to
varying conditions in the evaluation sequences, such as a varying number of targets.

It is important to note that the analyzed detection and tracking system is entirely deterministic, yielding
the same results for all evaluation metrics when rerunning the described experiments. Thus, it is sufficient
to run all experiments only once and state a single scalar value for each evaluation metric, rather than
computing a distribution of results. The only exception is the frame rate, which varies depending on
how the operating system schedules execution of the program. Hence, it would be necessary to rerun
experiments multiple times to compute a distribution of frame rates. However, computation time of the
analysis increases linearly with the number of runs, which is why it is desirable to compute results for
only a single run. As the standard deviation of the frame rate within the six redundant configurations is
only 0.532 Hz, and thus relatively small compared to the variations of the frame rate between different
experiments, waiving the statistical nature of the frame rate and running the experiments only once
provides still useful, even though statistically not fully described results.

Although the detection and tracking system provides target locations both in image as well as in world
coordinates, evaluation metrics are solely computed based on the target locations in image coordinates.
All presented evaluation metrics could be easily computed in world coordinates as well, by replacing
the IoU-based distance metric for target association by another point-based distance metric, such as
the Euclidean distance. However, as manual annotation of targets is performed in the image domain,
it would be necessary to transform the ground-truth annotations from image to world coordinates by

52

Chapter 6 Experiments

Algorithm 7: Computation of evaluation metrics.
Data: parameters, values, evaluation_sequences

for each param in parameters do
for each value in values[param] do

accumulators ← []
for each seq in evaluation_sequences do

hyp_boxes ← run_tracker(seq)
gt_boxes ← load_ground_truth_boxes(seq)
acc ← new accumulator()
for each frame in seq do

acc.update(hyp_boxes[frame], gt_boxes[frame])
end for
accumulators[seq] ← acc

end for
metrics ← compute_metrics(accumulators)
print param, value, metrics

end for
end for

applying the according transformation (see section 5.7.5

.

). Since the same mapping is also performed in
the tracking software to compute world from image coordinates, skipping the coordinate transformation
and computing metrics directly on image locations yield the same results. This argumentation holds
not true, though, if advanced functions, such as merging of target occurrences across multiple camera
views, are considered. In this case, multiple image coordinates are mapped to the same world coordinate,
and thus evaluation metrics in image and world domain would differ. However, the evaluation follows a
multi-target single-camera approach wherefore this advanced case does not apply and computation of
evaluation metrics in image coordinates is sufficient.

6.4 Analysis Results

Running the experiments designed in the previous section, yields the 27 sets of evaluation metrics shown
in the rows of table 6.5

.

. Here, the first two columns specify the parameter and its according value
under analysis. The remaining parameter values are kept at their defaults, resulting in a full parameter
configuration for each row of the table. The rest of the columns reports the resulting evaluation metrics
for the given parameter configuration averaged over the results computed on the five individual evaluation
sequences. The full results, including those for the different evaluation sequences, can be found in
appendix C.2

.

.

To give a more lively illustration of the analysis results, all values are plotted as stemplots in fig. 6.5

.

,
fig. 6.6

.

and fig. 6.7

.

, whereby each diagram covers a portion of the evaluation metrics. The horizontal
axes show the 27 discrete parameter configurations, whereas the vertical axes displays the continuous
evaluation metrics. Coloring of the stems indicates which one of the six parameters, detector, tracker,
cycle frequency, scaling factor, match IoU threshold or hypothesis thresholds, is modulated. This is also
shown by the horizontal axis at the bottom of each set of plots. The number of stems per group relates
to to the number of possible values for each parameter. As an example, the second stem on the left of
each plot indicates the resulting metric for a configuration of the monitoring system with all parameter
values set to their defaults apart from the detector, which is a Faster R-CNN/Inception-ResNet v2 (Det-1)
model (see table 6.4

.

). The stems plotted in black correspond to the six redundant configurations equal to

53

Chapter 6 Experiments

Tab. 6.5: Analysis results showing the tracking performance at different parameter values. The single parameter,
which is varied, is stated alongside its value in the first two columns. All other parameters are set to
their defaults, as mentioned in the text. For specification of the detection algorithms refer to table 6.4

.

.
Units of the metrics are according to table 6.3

.

. The values in bold state the best result for a metric over
all possible values of a parameter.

Param. Value IDF1 IDP IDR RCLL PRCN MT PT ML FP FN IDSW FM MOTA MOTP FPS

Detector Det-0 70.0 76.3 64.6 74.5 87.9 36 35 6 1248 3115 50 78 63.8 19.0 53.19
Det-1 73.7 83.1 66.2 73.6 92.4 37 33 7 741 3217 36 86 67.2 20.0 56.18
Det-2 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 58.08
Det-3 67.4 79.7 58.4 67.0 91.5 26 38 13 756 4021 37 106 60.5 21.9 61.59
Det-4 66.5 77.3 58.3 67.3 89.3 30 34 13 987 3987 47 106 58.8 23.6 58.40
Det-5 66.5 72.1 61.7 69.3 81.1 36 29 12 1975 3737 39 128 52.8 23.6 52.68
Det-6 56.4 70.4 47.0 57.2 85.7 22 35 20 1160 5213 45 79 47.4 22.2 61.24

Tracker MOSSE 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 58.18
KCF 73.1 81.1 66.5 73.4 89.5 40 29 8 1052 3241 33 91 64.5 20.6 10.40
CSRT 73.6 81.1 67.3 74.8 90.1 41 29 7 1005 3076 36 100 66.2 20.6 3.34

Cycle
Frequency

1 73.4 79.5 68.1 78.0 91.0 44 26 7 936 2683 64 145 69.8 21.8 8.83
2 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 57.55
5 63.4 77.8 53.6 57.0 82.9 17 44 16 1434 5237 27 60 45.1 22.5 81.80
10 50.9 79.7 37.4 38.3 81.8 0 41 36 1043 7519 11 27 29.7 22.8 87.82

Scaling
Factor

0.4 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 58.84
0.6 69.3 78.1 62.3 70.4 88.2 32 37 8 1144 3613 31 108 60.7 22.1 37.30
1.0 69.9 78.8 62.9 71.2 89.2 32 38 7 1046 3515 33 113 62.3 22.6 16.85

Match
IoU
Threshold

0.1 76.0 83.6 69.7 74.3 89.1 37 31 9 1109 3130 34 107 65.0 22.0 59.48
0.3 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 57.92
0.5 66.4 75.5 59.3 69.7 88.8 29 42 6 1070 3690 53 81 60.5 22.1 56.63
0.7 56.4 71.6 46.6 59.5 91.5 24 37 16 673 4936 82 85 53.3 22.4 53.21
0.9 13.7 51.2 7.9 14.7 95.4 1 15 61 86 10397 47 46 13.6 19.2 42.77

Hypothesis
Thresholds

(0, 0) 69.7 74.6 65.5 79.0 90.0 45 25 7 1065 2563 91 158 69.5 22.3 61.10
(2, 2) 72.5 78.1 67.7 78.1 90.1 46 24 7 1043 2675 63 133 69.0 22.3 59.35
(5, 5) 73.4 81.6 66.7 72.7 89.0 36 34 7 1095 3332 33 93 63.4 22.0 59.10
(5, 0) 69.2 83.2 59.3 66.9 93.9 31 38 8 528 4032 55 121 62.1 21.8 61.19
(0, 5) 72.2 72.4 72.0 82.0 82.4 51 21 5 2130 2195 67 126 64.0 22.5 57.35

the default setup. Thus, all metrics of these six configurations, apart from the statistically natured frame
rate, are equal. They are only shown for the sake of completeness and to underline the experimental
strategy. In the following, the results presented in the table and stem plots will be described in detail for
every set of parameter values and important aspects will be highlighted.

6.4.1 Detection Algorithm

The choice of object detector used to update tracker states every fd frames has a large impact on the
evaluation metrics, as the models covered in the analysis exhibit diverse characteristics. Considering
the official values of the COCO mAP (see appendix A.3

.

) and inference times of each object detector
(see table 6.6

.

), it is shown that the Faster R-CNN models based on NASNet and Inception-ResNet v2
yield superior detection accuracy at the cost of higher inference time, while the other detectors achieve

54

Chapter 6 Experiments

25

50

75

ID
F

1
(%

)

60

80

ID
P

(%
)

25

50

75

ID
R

(%
)

25

50

75

M
O

T
A

(%
)

15

20

25

M
O

T
P

(%
)

D
et

-0

D
et

-1

D
et

-2

D
et

-3

D
et

-4

D
et

-5

D
et

-6

M
O

S
S

E

K
C

F

C
S

R
T 1 2 5

1
0

0
.4

0
.6

1
.0

0
.1

0
.3

0
.5

0
.7

0
.9

(0
,

0
)

(2
,

2
)

(5
,

5
)

(5
,

0
)

(0
,

5
)

0

50

F
P

S
(1
/
s)

Detector Tracker Cycle
Frequency

Scaling
Factor

Match IoU
Threshold

Hypothesis
Thresholds

Fig. 6.5: Resulting ID metrics (IDF1, IDP, IDR), MOTA, MOTP and frame rate (FPS) for all tested configurations
(see table 6.4

.

). Black stems correspond to the default configuration.

less accurate results, but operate at a higher processing speed. The results of the study mainly meet
these expectations, but also reveal some unexpected insights. The larger mAP of the first three analyzed
detectors is reflected in higher scores for the IDF1, IDP and IDR metrics, MOTA and recall as well
as a lower number of false negatives, fragmentations and ID switches. Moreover, less ground-truth
trajectories are mostly lost (ML) and more are mostly tracked (MT). Accordingly, the results for the
other four object detectors are slightly worse. The MOTP shows the opposite behavior and is lower for
the first three detectors than for the remaining detectors. For the precision and the number of false
positives there is no clear pattern discernible, however, here, the R-FCN yields especially bad scores
of 81.1 % for the precision and 1975 false positives. This detector also produces the highest number of
fragmentations (128) for all tested detectors. However, R-FCN achieves a high number of 36 mostly
tracked trajectories, which is almost on the level of the Faster R-CNN/Inception-ResNet v2 model, yielding
37 mostly tracked trajectories. Despite its high mAP of 35, the Single Shot Detector achieves shows

55

Chapter 6 Experiments

25

50

75

R
C

L
L

(%
)

80

90

100

P
R

C
N

(%
)

1000

2000

F
P

(-
)

D
et

-0

D
et

-1

D
et

-2

D
et

-3

D
et

-4

D
et

-5

D
et

-6

M
O

S
S

E

K
C

F

C
S

R
T 1 2 5

1
0

0
.4

0
.6

1
.0

0
.1

0
.3

0
.5

0
.7

0
.9

(0
,

0
)

(2
,

2
)

(5
,

5
)

(5
,

0
)

(0
,

5
)

5000

10000

F
N

(-
)

Detector Tracker Cycle
Frequency

Scaling
Factor

Match IoU
Threshold

Hypothesis
Thresholds

Fig. 6.6: Resulting number of false positives (FP), false negatives (FN), recall (RCLL) and precision (PRCN) for
all tested configurations (see table 6.4

.

). Black stems correspond to the default configuration.

relatively low performance across all evaluation metrics. It has a low IDF1 of 56.4 %, a low IDP of 70.4 %
and a low IDR of 47.0 %, tracks only 22 trajectories for more than 80.0 % of their length and mostly loses
20 trajectories. It produces a high number of 5213 false negatives and has a low MOTA of 47.4 %. Only
the achieved number of fragmentations (79) and the MOTP of 22.2 % are reasonable results. Another
detector, that does not match the expectations, is the Faster R-CNN/NASNet model, which yields lower
scores than the Faster R-CNN models based on Inception-ResNet v2 and ResNet-101 for almost all of the
metrics, despite having the highest mAP of 43 and highest inference time among all detectors. Another
metric failing short of the expectations is the frame rate, as it varies only very little among the tested
detectors, despite the inference times being different by orders of magnitude. However, qualitatively
the variations mostly meet the expectations. So, the frame rate for the Faster R-CNN/NASNet model
with 53.19 Hz is lower than that of the detectors based on Inception-ResNet v2 (56.18 Hz), ResNet-101
(58.08 Hz) and ResNet-50 (58.40 Hz). Moreover, the low proposal Faster R-CNN/ResNet-101 as well as the
Single Shot Detector achieve the highest frame rates of 61.59 Hz and 61.24 Hz, respectively. An exception
is the R-FCN detector, which yields the lowest frame rate among all detectors (52.68 Hz).

6.4.2 Tracking Algorithm

As compared to the other parameters, the tracker used to track individual bounding boxes in intermediate
frames shows only a small impact on most of the evaluation metrics. A slight increase in the MOTA
from 63.4 % to 66.2 % is observable when switching from MOSSE over KCF to CSRT. However, this

56

Chapter 6 Experiments

0

25

50

M
T

(-
)

20

40

P
T

(-
)

0

25

50

M
L

(-
)

25

50

75

ID
S

W
(-

)

D
et

-0

D
et

-1

D
et

-2

D
et

-3

D
et

-4

D
et

-5

D
et

-6

M
O

S
S

E

K
C

F

C
S

R
T 1 2 5

1
0

0
.4

0
.6

1
.0

0
.1

0
.3

0
.5

0
.7

0
.9

(0
,

0
)

(2
,

2
)

(5
,

5
)

(5
,

0
)

(0
,

5
)

50

100

150

F
M

(-
)

Detector Tracker Cycle
Frequency

Scaling
Factor

Match IoU
Threshold

Hypothesis
Thresholds

Fig. 6.7: Resulting track metrics (MT, PT, ML) as well as ID switch (IDSW) and fragmentation (FM) counts for
all tested configurations (see table 6.4

.

). Black stems correspond to the default configuration.

comes at the price of a decreased MOTP, which drops from 22.0 % to 20.6 %. CSRT provides slightly
higher values for precision (90.1 %) and recall (74.8 %) as compared to MOSSE with a precision of 89.0 %
and a recall of 72.7 % and generates less false positives and false negatives than the other two trackers.
Furthermore, it correctly tracks 41 of the 77 ground-truth tracks for more than 80 % of the sequence
length. But interestingly, CSRT generates 3 more ID switches and 9, respectively 7 more fragmentations
than KCF or MOSSE. Again, it should be noted that these are subtle differences as compared to other
experiments, such as changing the match IoU threshold. The only large impact can be noted with regard
to the frame rate, which drops from 58.18 Hz for MOSSE over 10.40 Hz for KCF to only from 3.34 Hz for
CSRT. This is notably the largest impact on the frame rate across all conducted experiments.

6.4.3 Detector Cycle Frequency

Changing the detection cycle frequency fd from 1 over 2 and 5 to 10 shows an interesting trend in most
of the metrics. Running the detector more frequently yields higher values for the IDF1, IDR, recall,
precision as well as MOTA and lower number of false positives and false negatives. It also leads to more
ground-truth tracks being mostly tracked (MT). Thus, there seems to be a strong correlation between

57

Chapter 6 Experiments

Tab. 6.6: Official mAP and inference time of the utilized object detectors of the Tensorflow Object Detection
library. [119

.

]

Detector mAP Time / ms

FRCNN/NASNet (Det-0) 43 1833
FRCNN/Inception v2 (Det-1) 37 620
FRCNN/ResNet-101 (Det-2) 32 106
FRCNN/ResNet-101 (lp) (Det-3) – 82
FRCNN/ResNet-50 (Det-4) 30 89
RFCN/ResNet-101 (Det-5) 30 92
SSD/ResNet-50 (Det-6) 35 76

these metrics and the detector cycle frequency. However, this is not given for the IDP metric, which
varies, but without any correlation to the cycle frequency. The highest IDP of 81.6 % is achieved for
fd = 2. In case of the MOTP the inverse effect is observable as the metric decreases when the detector is
run more frequently. Much stronger negative correlations with the cycle frequency seem to exist for the
IDSW and FM metrics, which decrease from 64 ID switches and 145 fragmentations for fd = 1 to only 11
ID switches and 27 fragmentations for fd = 10. The frame rate is again positively correlated to the cycle
frequency, yielding much higher frame rate values for less frequent operation of the detector (87.82 Hz for
fd = 10 compared to 8.83 Hz for fd = 1). It has to be noted that the resulting metrics, such as IDF1,
IDR, MOTA, recall, precision and the number of false negatives, for detector cycle frequencies of fd = 5
and fd = 10 are among the worst across all analyzed configurations.

6.4.4 Frame Scaling Factor

The frame scaling factor, which determines the size of the input frame to the tracking system, shows
a very interesting behavior as the highest scores for the IDF1, IDP and IDR metrics as well as recall
and MOTA are achieved for the lowest resolution of the input frame (s = 0.4). Additionally, this setting
mostly tracks 36 of the 77 ground-truth trajectories, which exceed the other two tested scaling values by
4. For s = 0.4 also the lowest number of false negatives and fragmentations are achieved. However, the
differences in the resulting metrics for the three tested values of the scaling factor are relatively small
compared to the differences occurring when changing, for example, the detector cycle frequency or the
match IoU threshold. Furthermore, there exist no apparent correlation between the scaling factor and the
mentioned metrics, as the results for IDF1, IDR, IDP, recall, precision, MOTA as well as the number of
false positives and false negatives are the worst for a scaling factor of s = 0.6, and slightly increase again
when the scaling factor is set to s = 1.0. In case of the precision, MOTP and number of false positives,
the system achieves the best results for s = 1.0. The lowest number of 31 ID switches occurs at s = 0.6,
while for s = 0.4 and s = 0.6 the number is 33. The only metric which shows a strong correlation with the
scaling factor is the frame rate. Here, the frame rate decreases from 58.84 Hz for s = 0.4 over 37.30 Hz for
s = 0.6 to 16.85 Hz for s = 1.0.

6.4.5 Match IoU Threshold

When increasing the value of the match IoU threshold θIoU from 0.1, over 0.3, 0.5 and 0.7 to 0.9, IDF1,
IDP, IDR, MOTA and recall decrease significantly, first marginally, then quickly to the lowest values of
all experiments for θIoU = 0.9. Here, the IDF1 is only 13.7 %, the IDP 51.2 %, the IDR 7.9 %, the MOTA
13.6 % and the recall 14.7 %. These results are significantly lower than the best results for θIoU = 0.1 with
an IDF1 of 76.0 %, an IDP of 83.6 %, an IDR of 66.7 %, a MOTA of 63.46 % and a recall of 74.3 %, where

58

Chapter 6 Experiments

the IDF1 and IDP are even the highest among all experiments. The number of mostly tracked (MT)
and mostly lost (ML) ground-truth behaves very similarly and for θIoU = 0.1 37 of 77 trajectories are
mostly tracked, while only 9 are mostly lost. For θIoU = 0.1 the situation is inverted and only a single
trajectory is mostly tracked, while 61 trajectories are mostly lost. The number of false positives stays at a
relatively constant level of around 1100 for θIoU = 0.1, 0.3 and 0.5 and then drops significantly to 673
and 86 for θIoU = 0.71 and 0.9 respectively. Accordingly, the precision reaches its maximum of 94.5 %
for θIoU = 0.9, decreasing for smaller values of the IoU threshold. However, for values of 0.1, 0.3 and
0.5 the differences in the precision are small. The MOTP shows similar properties and stays relatively
constant in the range of 22.0 % to 22.4 % for all match thresholds apart from θIoU = 0.9, where it drops
significantly to only 19.2 %. On the contrary, the number of false negatives increases only slightly from
3130 to 3690, when increasing the IoU threshold from 0.1 over 0.3 to 0.5, but then increases drastically to
4936 for θIoU = 0.7 and 10397 for θIoU = 0.9. This means for θIoU = 0.9 the system misses over 85 % of
all 12192 bounding boxes in the evaluation dataset. The number of fragmentations seems to correlate
weakly with the match IoU threshold and linearly decreases from 107 fragmentations at θIoU = 0.1 to 46
fragmentations at θIoU = 0.9, whereby the value of 85 for θIoU = 0.7 is slightly off the trend. The number
of ID switches first shows an increasing trend rising from 33 for an IoU threshold of 0.3 to 82 switches
for θIoU = 0.7, but drops to a much lower value of 47 for θIoU = 0.9. The frame rate also seems to be
affected by the IoU threshold and decreases first slowly, then much faster from its initial value of 59.48 Hz
for θIoU = 0.1 to 42.77 Hz for θIoU = 0.9. Changing the match IoU threshold also leads to an interesting
change with regard to how bounding boxes are marked as valid. For large values of the threshold fast
moving people are not marked as valid anymore and their bounding boxes stay in an invalid state.

6.4.6 Hypothesis Thresholds

Finally, a look at the impact of different values for the hypothesis validation and deletion thresholds θv
and θd on the tracking performance provides further useful insights. Compared to other parameters, these
two thresholds have no impact on the frame rate and only a small effect on the IDF1, IDP, IDR, MOTA
and MOTP metrics, although not as small as for the different tested tracking algorithms and scaling
factors. However, the impact on all other metrics is relatively large. In case of the three value pairs
(0, 0), (2, 2) and (5, 5) for θv and θd, the IDF1, IDP and IDR increase slightly. For the thresholds (5, 0),
the IDF1 and IDR decrease, while the IDP increases. For the thresholds (5, 0) it is the other way round
and the IDF1 and IDR increase, whereas the IDP drops significantly. The MOTA is at a relatively high
level of 69.5 % and 69.0 % for the thresholds (0, 0) and (2, 2) respectively, and by 5.0 % to 7.4 % lower
for the three other analyzed value pairs. The MOTP seems unaffected by the choice of the threshold
parameter apart from the parameter values (0, 5), which lead to an increase in the MOTP of 0.7 %. The
recall decreases slightly for increased values of the two thresholds from 79.0 % for the thresholds (0, 0)
to 66.9 % for the thresholds (5, 0), however it increases to 82.0 % for the thresholds (0, 5), which is the
highest recall value of all 27 experiments. The precision stays relatively constant for the thresholds (0, 0),
(2, 2) and (5, 5), but reaches a much higher value of 93.9 % for thresholds (5, 0) and drops to a very low
value of 82.4 % for thresholds (0, 5). Accordingly, the number of false positives is at a constant level of
around 1068 for the first three threshold pairs, while it drops to 528 for thresholds (5, 0) and increases to
2130 for thresholds (0, 5), which is the highest value observed in all experiments. The number of false
negatives shows a similar behavior as the IDP metric, increasing for the first four tested threshold pairs
and dropping again for the last pair (0, 5). The numbers of false negatives achieved for the thresholds
(0, 0), (2, 2) and (0, 5) are 2563, 2675 and 2195 respectively, and are the lowest of all experiments. Looking
at the numbers of mostly tracked, partly tracked and mostly lost ground-truth trajectories reveals that
the highest scoring configuration is (0, 5), which mostly tracks 51 out of all 77 ground-truth trajectories
and loses only 5 trajectories, which are the highest values for MT and ML of 27 tested configurations. The
MT drops to only 31, increasing the PT to 38, while maintaining a low ML of 8 for the thresholds (5, 0).

59

Chapter 6 Experiments

In terms of ID switches and fragmentations the qualitative behavior is equal, yielding high numbers of 91
and 63 ID switches as well as 158 and 133 fragmentations for the thresholds (0, 0) and (2, 2), respectively.
For thresholds (5, 5) the lowest number ID switches (33) and fragmentations (93) are achieved, however
they increase for thresholds (5, 0) and (0, 5), with IDSWs of 55 and 67 and FMs of 121 and 126. Thus,
setting the thresholds to values others than (5, 5) leads to numbers of ID switches and fragmentations,
which are higher than in almost any other experiment.

6.5 Qualitative Results

The system performance can not only be analyzed in terms of evaluation metrics, but also qualitatively
by looking at i) the frame-wise predictions for bounding boxes B and box IDs I and ii) the generated
output trajectories in world coordinates (X,Y). Analyzing the output data qualitatively helps to built a
better understanding of the system and reveals potential flaws which are not captured by the evaluation
metrics.

Some frame-wise system outputs were already shown in fig. 5.3

.

and fig. 5.5

.

, whereby the latter illustrated
the principle of the low-pass filter. Further output frames with predictions are depicted in fig. 6.8

.

. This
collection contains four common scenarios observed in the output video of the detection and tracking
system. The first one is the most frequent case in which all targets are correctly tracked and marked as
valid. The second group consists of frames containing at least one false positive, which is correctly marked
as invalid, and thus filtered out. The third common scenario are people entering the scene. As shown,
it takes a while until the match counter of the target has reached the hypothesis valid threshold and is
marked as valid. This leads to a delayed recognition of new targets. Not depicted, but similarly, it takes
a while before a target is deleted when leaving the scene. The fourth group of common events shows a
similar issue. Here, targets are marked as invalid, when moving too quickly.

As mentioned before, the Shopfloor Monitor stores target trajectories in a database. Visualizing these
trajectories allows for a quick validation of the correct function of the Shopfloor Monitor. As an example
fig. 6.9

.

shows the trajectories extracted from the five evaluation videos. The given trajectories can also be
derived with respect to the time, yielding the targets’ velocities. Figure 6.10

.

shows the distribution of
velocity magnitudes of all targets for each of the evaluation sequences. The output trajectories can be
further analyzed, which is used to improve the tracking performance, and support tasks, such as activity
recognition and person identification.

6.6 Conclusion

In this chapter a thorough experimental analysis of the detection and tracking subsystem of the Shopfloor
Monitor was performed. First, an application-specific evaluation dataset containing five video sequences
of a total length of 888 frames with over 12000 manually annotated bounding boxes was created to ensure
applicability of the evaluation results to the given use-case. The next step was a literature review on
evaluation metrics. Suitable metrics were identified and described in detail. Afterwards, the experimental
design of the study was developed and a tool for automatic execution and reporting of the experiments
was implemented. The experimental results were computed and then visualized and described in detail.
Additionally, qualitative outputs of the detection and tracking system were shown to gain a better
understanding of the practical performance. In the the next chapter the experimental results are discussed
in detail.

60

Chapter 6 Experiments

(a) All targets valid (C3, n = 300). (b) All targets valid (C7, n = 80).

(c) Some false positives correctly filtered out (C3, n = 260). (d) Some false positives correctly filtered out (C7, n = 700).

(e) Invalid targets due to entering (C3, n = 120). (f) Invalid targets due to entering (C7, n = 50).

(g) Invalid targets due to fast movements (C3, n = 460). (h) Invalid targets due to fast movements (C7, n = 450).

Fig. 6.8: Qualitative results of the detection and tracking framework. The left and right column contain frames of
camera C3 and C7, respectively. The frame number is given as n. In the first row, all targets are correctly
tracked and marked as valid. The second row contains some false positives, which are correctly marked
as invalid (orange box). In the third row, targets are marked as invalid because they have entered the
scene and the match counter has not reached the hypothesis valid threshold yet. The last row illustrates
an issue with fast moving targets which are incorrectly labeled as invalid.

61

Chapter 6 Experiments

X / m

6 7 8 9 10 11 12 13 14
Y

/
m

−2
0

2
4

6
8

T
im

e
S

te
p
n

25
50
75
100
125
150
175

200

225

(a) Target trajectories in Seq-0.

X / m

6
8

10
12

14
Y

/
m

−4
−2

0
2

4

T
im

e
S

te
p
n

20

40

60

80

100

(b) Target trajectories in Seq-1.

X / m

5
10

15
20

25
Y

/
m

−5

0

5

10

15

T
im

e
S

te
p
n

20
40
60

80

100

120

140

160

(c) Target trajectories in Seq-2.

X / m

6
8

10
12

14
16

Y
/

m
−2

0
2

4
6

8

T
im

e
S

te
p
n

20
40
60
80
100
120
140
160
180

(d) Target trajectories in Seq-3.

X / m

6
8

10
12

14
16

Y
/

m
0

2

4
6

T
im

e
S

te
p
n

20
40
60
80
100

120

140

160

(e) Target trajectories in Seq-4.

Fig. 6.9: Target trajectories acquired by the Shopfloor Monitor. World positions (X,Y) on the horizontal axis
are plot versus discrete time steps n on the vertical axis. Each subplot corresponds to one of the five
evaluation sequences. Different colors indicate different persons.

62

Chapter 6 Experiments

0 5 10 15 20 25

Velocity v / m s−1

0.0

0.1

0.2

0.3

P
D

F

(a) Velocity Distribution of targets in Seq-0.

0 5 10 15 20 25

Velocity v / m s−1

0.0

0.1

0.2

P
D

F

(b) Velocity Distribution of targets in Seq-1.

0 5 10 15 20 25

Velocity v / m s−1

0.00

0.05

0.10

0.15

P
D

F

(c) Velocity Distribution of targets in Seq-2.

0 5 10 15 20 25

Velocity v / m s−1

0.0

0.1

0.2

0.3

P
D

F

(d) Velocity Distribution of targets in Seq-3.

0 5 10 15 20 25

Velocity v / m s−1

0.00

0.05

0.10

P
D

F

(e) Velocity Distribution of targets in Seq-4.

Fig. 6.10: Velocity distributions of all targets on the five evaluation sequences. Each subplot corresponds to one of
the five evaluation sequences. Shown are univariate kernel density estimates. Velocities are computed as
v = dS/dt with dS2 = (Xn+1 −Xn)2 + (Yn+1 − Yn)2 and dt = tn+1 − tn. The mean of each distribution
is shown as a red dashed line.

63

Chapter 7

Discussion

This chapter discusses the experimental results presented in chapter 6

.

. The results are interpreted in
section 7.1

.

to build a profound understanding of the characteristics and potential problems of the developed
detection and tracking system. The importance of each individual system component for the overall
tracking performance and processing speed is examined in section 7.2

.

, and unsuitable parameter values
are identified in section 7.3

.

. Afterwards, section 7.4

.

proposes three sets of hyperparameters which yield
either a faster or a more accurate detection and tracking system. Finally, the experiments are critically
reflected in section 7.5

.

. This includes the utilized evaluation metrics and the created evaluation dataset.
Possible issues are highlighted and improvements are suggested.

7.1 Interpretation of the Results

This section interprets the analysis results presented in section 6.4

.

and follows the same structure. It
discusses the analysis results of different object detectors, tracking algorithms, detector cycle frequencies,
frame scaling factors, match IoU thresholds and hypothesis thresholds. Finally, the qualitative results
shown in section 6.5

.

are discussed.

7.1.1 Detection Algorithm

Interpreting the analysis results for the different object detectors is a challenging task because of the
black-box nature of the underlying deep neural networks, and the collected results are far from sufficient
to provide detailed explanations for most of the observations. However, detectors can be roughly classified
into high-, medium- and low-performing models. So, the Faster R-CNN models with NASNet, Inception-
ResNet v2 and ResNet-101 base networks perform best on most of the evaluation metrics, apart from the
frame rate and the MOTP. The high performance of these three models is facilitated by the superiority
of the Faster R-CNN meta-architecture in combination with the very large base networks. Using the
smaller ResNet-50 base network performance in most of the metrics immediately drops. Only the frame
rate increases because a smaller base networks means a lower amount of computations and thus shorter
inference time. A similar explanation holds for the Faster R-CNN/ResNet-101 model with a reduced
number of bounding box proposals. Here, the speed-up is caused by the lower amount of bounding boxes,
which have to be classified and regressed. This comes at the cost of an increase in the number of false
negatives and a drop in the precision because some targets might be missed. Accordingly, the number of
ID switches and fragmentations increases, while the MOTA and number of mostly tracked trajectories
drop. The comparably lower performance of the R-FCN/ResNet-101 model, especially the high number
of generated false positives and track fragmentations, can be explained by the fundamentally different
meta-architecture. The lowest performing object detector, with respect to most of the metrics, is the
SSD/ResNet-50 model, due to the small base network and also to the meta-architecture, which has been

64

Chapter 7 Discussion

designed with the goal of a high processing speed, at the expense of a decreased accuracy. Despite being
qualitatively correct, the measured frame rates for the different object detectors require special attention
because the quantitative differences are smaller than indicated by the official metrics in table 6.6

.

. The
reason for this is that the object detector is run only on every second frame, which largely eradicates the
differences in the processing times of the detector models.

7.1.2 Tracking Algorithm

The analysis results show that all metrics, apart from the frame rate, appear mostly unaffected by the
tracking algorithm used. This seems surprising at the first glance, considering the fact that MOSSE and
KCF are 8, respectively 2 years older than CSRT, and official metrics suggest that CSRT outperforms the
other two trackers by a large margin [13

.

]. However, the qualitative trend of CSRT being slightly better
than KCF, which itself marginally improves on the results of MOSSE, is indeed recognizable. The reason
for the small differences is that for all three tests the default parameter for the detection cycle frequency
is set to fd = 2, which means that the detector (Faster R-CNN/ResNet-101) is run on every second frame
and resets the tracker states accordingly. Thus, there is not enough time for tracking errors to accumulate
and the superiority of CSRT over KCF and MOSSE does not appear. The fact that the processing speed
of the tracker is not affected by how often its state is reset, explains the large drop in the frame rate when
switching from MOSSE over KCF to CSRT.

7.1.3 Detector Cycle Frequency

The results for different values of the detector cycle frequency fd seem mostly plausible. The less frequently
the object detector is run, the more ground-truth targets are missed, which is mirrored by the increasing
number of false negatives and the drop in the recall. Accordingly, the decreasing IDF1, IDR and MOTA
metrics for increasing fd can be explained. This also accounts for the decreasing number of mostly
tracked (MT) ground-truth trajectories and increasing number of partly tracked (PT) and mostly lost
(ML) trajectories. The string decrease in ID switches and fragmentations can be explained by the fact
that the number of misses is so large that less than half of the targets get detected at all, and if the
number of detections is very low, so is the number of ID switches and fragmentations. The change of the
number of false positives with different cycle frequencies is less intuitive as the number first increases
with increasing cycle frequency fd, but then drops again for fd = 10. An explanation for this might be
the accumulation of tracking errors for fd = 10, leading to less frequent redetections and thus a smaller
number of valid tracking targets (indicated by the MT metric) and less false positives. However, for fd = 1
to fd = 5 the accumulated tracking errors are small enough to lead to a high number of valid targets and
consequently more false positives. The precision directly correlates with the number of false positives and
true positives. Thus, the decreasing and for fd > 5 stagnating trend of the precision is understandable.
Equally comprehensible is the strong correlation between the detector cycle frequency and the frame rate
as the inference time of the object detector makes up a significant amount of the total processing time
of a single frame. Thus, running the detector less frequently increases the average frame rate. The IDP
drops slightly for cycle frequencies other than fd = 2, however does not show any systematic correlation
with the cycle frequency. Finding an explanation for this is as challenging as accounting for the slightly
increasing MOTP for less frequent runs of the detector. Further experiments are needed to find the causes
of this behavior.

65

Chapter 7 Discussion

7.1.4 Frame Scaling Factor

As mentioned in the results section, altering the frame scaling factor yields very counter-intuitive results,
whereby the highest scores for IDF1, IDP, IDR, MOTA, precision and recall are achieved for the smallest
frame size with scaling s = 0.4, being slightly lower than the results for the original frame size. The
worst scores occur for the intermediate frame size with scaling factor s = 0.6. The same qualitative
behavior recurred for the number of false positives and false negatives as well as the MT, PT and ML
scores. This behavior can not be explained on the basis of the current experimental results. Further
experiments with different scaling factors are needed to validate the trend or reveal the experiment for
s = 0.6 as outlier. Only a single metric, such as the number of false positives or false negatives, might
show a strange behavior and thus affect all other dependent metrics. Another reason could be a higher
accuracy of the detector on a smaller input frame. Despite the qualitatively strange behavior, it has
to be noted that the differences in the metrics due to varying the scaling factor are relatively small as
compared to varying other parameters. Thus, the scaling factor plays only a subordinate role for the
tracking performance. This does not apply to the frame rate, though, which depends significantly on the
scaling factor because tracking of targets in a larger image requires substantially more calculations and
thus more time. Moreover, increasing the scaling factor and hence the image size positively affects the
MOTP, which is comprehensible, because a larger image with a higher resolution allows for more precise
tracking of targets, and thus reduces localization errors.

7.1.5 Match IoU Threshold

As stated earlier, the match IoU threshold θIoU strongly correlates with most of the evaluation metrics
and shows a mostly consistent behavior. The higher the match IoU threshold, the larger the overlap
between a detected and a tracked bounding box has to be during an update step of the tracker to produce
a successful match. Thus, an increase of this threshold leads to a decrease in matches and accordingly
an increase in false negatives. The number of false positives drops with the threshold since there are
less valid tracking targets for higher IoU thresholds. As precision and recall directly correlate with the
number of true positives, false positives and false negatives, the resulting trends are intelligible. The
same applies for the MT, PT and ML metrics, as well as the IDF1, IDP, IDR and MOTA. The decrease
in the number of fragmentations with an increasing θIoU is apparently linked to the decreasing number
of successful matches, which leads to a low number of generated trajectories and consequently a low
probability for fragmentations of those trajectories. A similar explanation can be given for the number
of ID switches, which initially increases and then collapses for θIoU = 0.9 due to the low number of true
positives that could experience an ID switch. As this number is higher for the other tested values of
θIoU, the amount of ID switches is also larger, growing with an increasing θIoU due to the higher rate of
misses and redetections of targets leading to the assignment of a new ID. The drop in the, otherwise
constant, MOTP for θIoU = 0.9 is less obvious, but might be reasoned by a computational inaccuracy due
to the low number of true positives, which contribute to the calculation of the average IoU distance (see
eq. (6.4

.

)). The slight decrease of the frame rate for increasing values of θIoU indicates an increase in the
computational load. This is likely to be an implementation issue, causing the tracking system to use more
computing ressources in case of a low number of valid bounding boxes.

7.1.6 Hypothesis Thresholds

The hypothesis valid and deletion thresholds θv and θd act as a low-pass filter on the bounding boxes,
preventing them to erroneously pop into existence or disappear with every false positive or false negative
produced by the object detector. Thus, a large impact of these two thresholds on the performance metrics

66

Chapter 7 Discussion

is expected. This holds true for the number of ID switches and fragmentations of trajectories which
decrease for increasing values of θv and θd as bounding boxes and their IDs are temporally more stable.
Setting one of the thresholds back to zero disables the filters for either false positive or false negative
detections, and thus increases the number of fragmentations and ID switches. The impact of θv and
θd on other metrics, such as IDF1, IDP and IDR, is qualitatively as expected, although not as large as
initially assumed. This might be due to the fact that the detector is only run on every second frame, thus
reducing the impact of erroneous detections on the tracking result by itself and calling for the low pass
filter needed less urgently. The numbers of false positives and false negatives produced by the combined
detection and tracking system can be explained well with the filter analogy because the higher θv and
θd are, the more detections are filtered out and marked as false negatives. Keeping θv = 5 and setting
θd = 0 increases the number of false negatives even further as boxes are deleted immediately after being
missed by the detector. The next five detections of this target are then also missed because it becomes
valid only after five consecutive redetections. The number of false positives is low in this case because
trackers are immediately deleted after the first miss and thus can not produce any false positives. In case
of a higher θd, the system has to produce multiple false positives to decrease the deletion counter before
the target is deleted. This is especially true for the case θd = 5 and θv = 0, where bounding boxes are
spawned immediately, even for false positives of the detector, leading to many invalid bounding boxes
not assigned to any target, which accumulate many false positives during their decay. Here, the number
of false negatives is very low because bounding boxes are immediately created, missing only very little
detected targets. With these explanations the results for precision and recall as well as the MT, PT
and ML metrics can be justified, as those scores directly correlate with the numbers of false negatives
and positives. The same holds true for the MOTA, even though it is less obvious because the MOTA is
computed from not only the false negatives and false positives, but also the number of ID switches. The
decrease of the frame rate with an increase of θv and θd coincides with the previous assumption about an
increasing computational load for a larger number of false negatives. As the change in the number of
false negatives is only little, the frame rate also changes only slightly. If the implementation exhibited
a constant resource-utilization, the frame rate should not be affected at all by changing the hypothesis
thresholds.

7.1.7 Qualitative Results

This section discusses the qualitative results described in the first part of section 6.5

.

. As shown in fig. 6.8

.

,
targets entering or leaving the scene are not recognized or deleted immediately, but with a certain delay.
The delay when entering is caused by the fact that the match counter has to reach the hypothesis valid
threshold θv first. This means, the detector has to correctly detect the target θv times before it is marked
as valid. Similarly, when a target leaves the scene, its associated match counter has to decrease to the
hypothesis deletion threshold θd before it is deleted. Thus, the low-pass filter introduces a delay. This
delay can be minimized either by running the detector more frequently (smaller fd) or by reducing the
hypothesis valid and deletion thresholds. However, running the detector more frequently reduces the
processing speed, and reducing the hypothesis thresholds causes more false positives and misses. Thus, a
sensible choice for θv, θd and fd has to be made to achieve a reasonable performance. These parameters
also directly impact the tracking performance on fast moving targets. If the detector is run less frequently
(larger fd) and the hypothesis valid and deletion threshold are small, fast moving targets are more likely
to be incorrectly missed and marked as invalid. This is what happens when the tracker is unable to follow
a fast moving target. Thus, the tracked bounding box and detected bounding box have only a small IoU
and the target is not correctly redetected. Consequently, the match counter is decreased until it reaches
the hypothesis deletion threshold θd. In this case, the target is marked as invalid and becomes valid again
only upon slowing down its motion. Again, this problem can be reduced by choosing different settings
for θv, θd and fd. However, these changes will again increase the number of false positives and misses.

67

Chapter 7 Discussion

A solution to this problem would be adaptive scheduling of the detector as presented in [180

.

]. Instead
of running the detector in fixed intervals, a scheduler network observes the tracking quality and decides
to run the detector if the tracking quality decreases. This causes the detector to run more frequently if
a target moves fast and less frequently if all targets move slowly. Similarly, the delay when entering or
leaving the scene is reduced.

7.2 Parameter Importance

To wrap up the discussion, system parameters are classified by the extent of their impact on the overall
tracking performance and processing speed (see table 7.1

.

). This helps to decide which parameters of
the detection and tracking system have to be adjusted to change the operating point and achieve a
certain behavior. As can be seen from the table, all parameters have a large impact on either speed
or tracking performance or even both. This underlines the importance of all hyerparameters and the
modules controlled by those, and validates the design of the developed detection and tracking system.
The parameters with major impact on the processing speed are the detector cycle frequency, the tracking
algorithm and the frame scaling factor, whereby adjusting the latter two influences the other performance
metrics only little. Thus, to improve the processing frame rate of the system, these three parameters
should be optimized first. The object detector also has an impact on the processing speed, which, however,
strongly correlates with the detector cycle frequency. Thus, running the detector more frequently, increases
its impact on the overall processing speed. The match IoU threshold and hypothesis thresholds have
hardly any effect on the frame rate and, hence are not suitable for speed-optimization. But their impact
on the tracking performance is comparatively large, which also holds true for the object detector and
the cycle frequency. It is interesting that only the detector and the cycle frequency affect both tracking
performance and speed simultaneously, whereas the other four parameters have a decoupled impact on
tracking performance and speed. This allows for accurately adjusting the operating point of the monitoring
system.

Tab. 7.1: Impact of the analyzed system parameters on overall tracking performance and processing speed. Tracking
performance is used as a synonym for all performance metrics apart from the frame rate. A large impact
of the respective parameter is marked +, while a medium and small impact are indicated by ◦ and −,
respectively.

Parameter Performance Impact Speed Impact

Detector + ◦
Tracker − +
Cycle Frequency + +
Scaling Factor − +
Match IoU Threshold + −
Hypothesis Thresholds + −

7.3 Invalid Parameters

In addition to analyzing the qualitative influence of different parameters, the study also revealed limits
and disadvantageous values for some of the parameters, which lead to very low performance scores or an
insufficient processing speed. Most remarkable is the match IoU threshold θIoU = 0.9, and to some extent
also θIoU = 0.7, which results in a heavily diminished tracking performance. The same applies for the
detector cycle frequencies fd = 5 and fd = 10. The value fd = 1, on the other end of the spectrum, leads
to an inadequate processing speed, and the high numbers of fragmentations and ID switches render this
configuration useless. Other, in terms of processing speed, invalid configurations are the scaling factors

68

Chapter 7 Discussion

s = 0.6 and s = 1.0 as well as the use of KCF- or CSRT-trackers. The latter could be solved by running
trackers for individual targets in separate processes. Further configurations showing low or among the
different metrics less consistent scores are the ones that use R-FCN and SSD as detectors. The outstanding
numbers of ID switches and fragmentations of the hypothesis threshold (0, 0) illustrate the importance of
using a low-pass filter on target-detections. Not using the filter for delaying the acceptance of proposed
target-detections (θv = 0 and θd = 5) is not a solution given the high number of false positives.

7.4 Useful Parameter Configurations

Based on the analysis results and the knowledge gained in this section, three system configurations
with different emphasis on tracking performance and processing speed are selected. As most of the
tested values for the cycle frequency, scaling factor, match IoU threshold and validation thresholds have
turned out to produce unfavorable results, leaving only one valid value, all three configurations will
use a detector cycle frequency fd = 2, a scaling factor s = 0.4, a match IoU threshold θIoU = 0.3 and
hypothesis thresholds θv = 5 and θd = 5. Using KCF- or CSRT-trackers leads to a disqualifyingly low
frame rate due to the sequential updating of all trackers. Thus, all three configurations use MOSSE
as a tracker, leaving only the object detector as means to adjust the detection and tracking system
towards either a higher processing speed or higher tracking performance. The first configuration uses
Faster R-CNN/ResNet-101, which provides a balance of speed and tracking performance. Replacing
the detector with Faster R-CNN/Inception-ResNet v2 in the second configuration slightly increases the
tracking performance at a small cost of processing speed. The third configuration, finally, uses the Faster
R-CNN/ResNet-50 detector, rendering it the configuration with lowest tracking performance but highest
processing frame rate.

7.5 Critical Review of the Experiments

After having discussed the analysis results, the conducted parameter study itself has to be critically
examined with special focus on the design of experiments, the utilized evaluation metrics and the created
dataset. A minor issue of the design is the low number of 27 analyzed parameter combinations, which is
justified by the need for a low running time (≈ 1 h) of the evaluation tool to quickly assess the impact of
new features on the tracking performance. To improve this, the number of experiments and thus analyzed
parameter configurations could be increased, and a smaller, mutable subset of these experiments could
be selected when running the evaluation tool. This would provide a deeper insight into the behavior of
individual parameters. The generated data could be used to build a model of this behavior, which could
then assist in the search for better performing and more subtly balanced parameter configurations than
the ones presented above.

Allowing for more parameters would also facilitate a more fine-grained analysis of the utilized tracking and
detection algorithms, which have their own sets of hyperparameters. For example, the implementations of
KCF and CSRT in OpenCV have 17 and 26 tunable hyperparameters, respectively, and the object detection
models provide configuration files for adjusting the number of box proposals, non-maximum supression,
dimension of the input image and layer parameters, such as strides, kernel sizes and regularization.
However, in this study none of those parameters was modified and only the default configurations were
analyzed, thus withholding valuable insights which could assist in improving the tracking system.

Another aspect, which could be improved, is the quantitative analysis of parameter correlations, which
would yield an understanding of how parameters affect each other, and thus disclose possibly redundant
parameters, which could be combined, replaced by a simpler parameter or decoupled by a new set of
parameters to gain more control of system behavior.

69

Chapter 7 Discussion

As shown in section 6.2

.

, there are additional metrics for assessing tracking performance. Computing those
would provide further insights. Especially, relative metrics, such as false alarm rate, relative number of ID
switches or relative number of fragmentations, which compute events with respect to other metrics, the
number of frames or number of total occurrences, might prove useful. Furthermore, running the tracker at
different operating points by varying the distance (IoU) threshold for target matching across frames during
the metric computation, would enable plotting of performance curves, such as a precision-recall-curve,
overlap-sucess-curve or precision-distance-curve. Profiling the components of the tracker software in terms
of memory and time complexity and measuring utilization of input and output ressources, time latency
as well as size of internal buffers, would provide additional metrics, which could be especially helpful
for optimizing the implementation of the tracking system in future. However, as these values have a
statistical nature, similar to the frame rate, multiple runs of the evaluation tool would be necessary and
thus conflict with the goal of a low computing time of the analysis.

Other concerns about the conducted analysis relate to the evaluation dataset, which might not cover
the entire bandwidth of expectable events. For example, there is no scene with people running or falling
to the floor included. Moreover, the case of switched off main lights and activated infrared night vision
system of the cameras is covered just as little as scenes which are dedicated to other target categories
than humans. Hence, if the monitoring system is expected to see the mentioned scenarios, an extension of
the evaluation dataset with according sequences might be required to ensure significance of the provided
results. It might also be useful to compute the evaluation metrics on the official MOT dataset, which
covers a broader range of activities, although not being as specific to the given task of static camera
surveillance in a manufacturing environment. This would also allow for comparing results with those of
other tracking systems proposed by the research community.

Certainly, the biggest issue of the conducted analysis is the single-view character of the evaluation dataset
and utilized MOT metrics. As the Shopfloor Monitor comprises multiple cameras with possibly overlapping
fields of views, additional challenges, such as handover between viewports and multiple detections of
the same target in different camera images, have to be considered when evaluating the tracking system.
Moreover, special multi-camera evaluation metrics and a multi-target multi-camera evaluation dataset,
like DukeMTMC [161

.

, 181

.

, 182

.

], should be used.

Apart from these flaws, the conducted study meets the initial requirement of investigating the impact of
the system components and parameter values on tracking performance and processing speed. Especially,
the automated evaluation script provides a valuable tool for the fast analysis of introduced features
and automated reporting of performance in the future development process of the monitoring system.
Despite showing the minor deficiencies mentioned earlier, the created evaluation dataset is a solid basis
for examination of the system performance under application-oriented conditions. The large discrepancies
of the performance metrics of the object detectors computed on this dataset versus the ones computed on
the COCO dataset emphasize the importance of a suitable evaluation dataset for obtaining of meaningful
results. Finally, the study results could be utilized to propose three system setups, each providing a
different speed-accuracy trade-off and thus being useful for a specific application.

7.6 Conclusion

In this chapter the results of the experiments conducted in chapter 6

.

were exhaustively discussed.
The relations between parameter values and resulting tracking performance and processing speed was
highlighted. These findings were used to propose three different system configurations with different
performance characteristics. Finally, the experiments were critically investigated and possible problems as
well as improvement suggestions were emphasized. In the following chapter possible applications of the
Shopfloor Monitor are described.

70

Chapter 8

Applications

This chapter introduces possible applications for the developed Shopfloor Monitor. Only applications
in the domain of manufacturing and production technology are considered. Some of the applications,
such as occupancy detection or the indoor positioning system can also be transferred to other domains.
Implementing the proposed ideas in a manufacturing facility, might significantly increase the productivity
and decrease production cost. Not all proposed applications are new, but they built on existing ideas
and alter them or introduce novel aspects. It is important to note that some of the applications require
the Shopfloor Monitor to be extended with additional algorithms, such as activity recognition or face
identification.

8.1 Occupancy Detection

An obvious application is occupancy detection, the task of sensing the presence of people in rooms or
specific areas in a manufacturing facility. Occupancy detection can be realized with different sensors, such
as microwave, ultrasonic, infrared or power meters. Cameras as sensors enable more detailed insights,
as the produce spatially and temporally rich data, which is human-understandable. Cameras can easily
detect when people enter or leave a room or a building. By counting these events, the number of people
in a room, a building or a specific area can be estimated. With full coverage of the site, this number can
be retrieved directly from the video footage and yields a more accurate estimate. Occupancy detection is
an established practice and widely used in modern buildings to control lighting systems [183

.

] as well as
heating, ventilation and air conditioning (HVAC) [184

.

]. This increases energy efficiency of buildings and
manufacturing facilities. In some applications, such as dry-rooms for battery production or clean-rooms
for micro-electronics, controlling HVAC based on the occupancy might benefit the manufacturing process.
Recent surveys on occupancy detection are [185

.

] and [186

.

].

8.2 Machine Waiting Queue

A more specific use case is the detection of resource or machine utilization via installed surveillance
cameras. If the number of machines for a process step is limited, workers might have to queue to use a
machine. To prevent idling of workers, they can register at a counter. The installed cameras can then be
used to detect, when the limited resource is vacant again, and notify the next registered worker in the
waiting queue. While such a situation shows a major flaw in the production process, and is thus unlikely
to occur in larger manufacturing facilities, it might still arise in smaller companies, research institutes or
laboratories with limited resources.

71

Chapter 8 Applications

8.3 Staff Activity Recognition

The system under development can also be used to classify activities of human workers, such as standing,
walking, running, talking, lying or working. Recent surveys on video-based activity recognition are [187

.

],
[188

.

] and [189

.

]. Staff activity data provides useful insights into the efficiency of individual workers or
the entire team. It can be used to determine the times during a day, in which a team is most distracted
and most concentrated. This knowledge aids in the design of more efficient and less exhausting manual
production processes. It might also be used to identify major sources of distraction in production sites.
Moreover, automatically recognizing abnormal [190

.

], inappropriate or potentially dangerous behavior
of staff prevents accidents. In case of large warehouses, staff dishonesty and theft lead to high annual
losses [191

.

–193

.

], which can easily be prevented by camera-based activity recognition. Being able to
classify actions of human workers also aids in further applications, such as emergency assistance and risk
assessment, which are covered in the next sections. Monitoring staff activity comes along with ethical
issues, which have to be considered, when designing a related application.

8.4 Emergency Assistance

A virtual building information model (BIM) can assist in emergency situations, such as a fire. It provides
rescue forces with information about the building layout, hazardous materials and location of extinguishing
devices [194

.

, 195

.

]. When combined with the proposed system, the virtual BIM can be enriched with
real-time information about the location and the current condition of people in a building. This enables
more efficient rescue operations, as people in a more critical condition can be evacuated first. Additionally,
the BIM can be extended with real-time information about the location and type of hazardous materials
across the building or manufacturing site. Furthermore, location and size of fire sources, propagation
direction of the fire, and strength and direction of smoke emission can be detected, and embedded into
the BIM. This aids path planning in rescue operations and planning of efficient extinguishing strategies.
It can also be used to estimate the best escape route, and suggest it to occupants via LED lighting on
the floor or loudspeaker announcements. Information about the fire can also be used to directly trigger
extinguishing systems, such as sprinklers or flooding systems. To enable such functionality, the camera
system has to withstand the conditions during the fire. It might also be necessary to extend the system
with sensors, which are not affected by smoke, for example radar sensors. Apart from fire emergencies,
the camera system can also aid in detecting smaller accidents throughout the manufacturing facility, such
as collisions between vehicles and workers or injury of staff. The type and severity of the accident, as well
as potential injuries, can be automatically assessed, and appropriate rescue actions can be initiated.

8.5 Automatic Risk Assessment

Another application is automatic risk assessment in manufacturing environments. Risk assessment is the
task of identifying hazards, determining potential consequences and their likelihoods, deciding about the
tolerability of a risk, and reporting the findings [196

.

]. When using real-time video footage of installed
surveillance cameras in combination with human and object tracking as well as activity recognition,
these task could easily be automated. For example, such as system can identify, whether personnel
wears the required protective clothing, when working on machines or in hazardous environments. It
can automatically notify the worker about the risk. Similarly, potentially dangerous behavior of staff in
hazardous zones of a production site can be detected. As the camera system can see the entire production
site, it can estimate future trajectories of vehicles and people, and thus can be used to foresee and
prevent collisions by automatically stopping a vehicle or warning the person. Besides collisions, a wide

72

Chapter 8 Applications

range of other accidents might be anticipated and prevented by fast computer vision algorithms. When
storing hazardous materials, surveillance cameras can be used in combination with analysis algorithms to
permanently monitor and predict the condition of storage containers. This can prevent accidents due
to erosion or defect of the containers. During handling or processing of dangerous goods, the proposed
system can detect spill or leakage and inform the staff. The camera system can be used in conjunction
with human pose estimation to monitor, whether people work under ergonomic and healthy conditions. It
can also be used to monitor working and break times of personnel and advice to take a break in regular
intervals. Automatic assessment of risks enables thorough and continuous logging of hazardous events in
a database. Analyzing this data can help to make the manufacturing site more ergonomic and safer.

8.6 Smart Access Control

Another application of the camera system is to monitor and control access to specific areas in a manu-
facturing facility. In the simplest case, this means granting or prohibit access through a gate or door.
But it can also mean restricting access to specific locations, which are otherwise not protected against
unauthorized access. For example a hazardous machine tool or piece of equipment can be surrounded
by a virtual fence. The camera system can detect, when a person passes through this fence and initiate
a security alert, notify a foreman or stop the machine. In combination with face recognition [197

.

–202

.

],
people can be identified, and individual access rights for each person can be granted. This enables people
with higher access rights, for example a production engineer, to move freely across the site, whereas people
with lower access rights, such as machine operators and visitors, are prohibited access to most of the
zones to their own safety. The same principle can also be used to control, which personnel has access to
which machines. This prevents misuse of equipment or use of machines by unauthorized or unqualified
staff. The same system can also serve as a simple intrusion detection system, which is activated outside of
the working hours. Access restriction can also serve the purpose of protecting a sensitive manufacturing
process, for example in micro-production or in the production of pharmaceutical goods.

8.7 Control of Autonomous Ground Vehicles

Autonomous ground vehicles (AGV) are widely used for transportation of materials and products across
manufacturing sites [203

.

–206

.

]. Some of these vehicles follow fixed and specifically marked paths via
path tracking [207

.

, 208

.

]. Others use integrated sensors, such as cameras, Lidar or ultrasonic sensors, for
simultaneous localization and mapping (SLAM) [209

.

–213

.

]. Further challenges, which have to be solved to
enable efficient operation of an AGV, are obstacle detection, collision avoidance, scheduling and path
planing [214

.

–216

.

]. While most of the approaches use on-board sensors to reduce complexity of the system
and installation cost, external cameras can be used to provide the individual vehicles with additional
information about the global state of the vehicle fleet. This includes location and operating status of
other vehicles as well as detection and avoidance of congested routes. The system can aid in computing a
globally optimal path for all vehicles in a fleet, and enables fast rescheduling of operation in case one or
multiple vehicles in a fleet fail. A centralized system, which knows about the state of every vehicle in
a fleet, also enables to solve tasks in a cooperative manner to save time and maximize utilization of all
vehicles.

73

Chapter 8 Applications

8.8 Safety System for Industrial Robots

Being indispensable in modern manufacturing environments, the number of operational industrial robots
worldwide in 2017 was 2.098 million, with numbers estimated to grow up to 3.788 million in 2021 [217

.

].
During the past years, the robotics landscape changed from strictly separating human workers and
industrial robots with protective fences to shared work spaces and direct collaboration. During fence-less
robot operation the physical safety fence is replaced with a virtual safety fence. Cameras observe the
area around the industrial robot and slow it down or stop it, whenever a human enters the hazardous
area [218

.

–221

.

]. Human Robot Collaboration (HRC) [222

.

–224

.

] goes a step further and enables direct
collaboration between a human worker and the robot. HRC depends on advanced methods in computer
vision and motion tracking to estimate relative motion between human and worker and initiate according
reactions [224

.

]. Given the recent advances in computer vision, the proposed camera system can act as a
sufficient data-source for either fence-less robot operation or HRC.

8.9 Indoor Positioning System

Another potential use case is an Indoor Positioning System (IPS), which aids people in finding their
location and navigating within GPS denied buildings or factory halls [225

.

–228

.

]. Installed surveillance
cameras can be used in combination with people detection and tracking to locate a person in the factory.
The location can be sent to a handheld device, such as a smart phone, smart watch or smart glasses,
and visualized on a map. This requires identification of the person, for example via facial recognition.
As an alternative to displaying the location on a map, external indicators, such as LED lights on the
floor or walls, can help a person to navigate through a manufacturing facility. A destination can be
selected on one of multiple tablets or simple keypads, which are distributed across the factory. The
system can also automatically recognize, whether someone is a visitor. It can guide him or her to the next
registration counter or to the person, he or she has an appointment with. Similarly, the system might
instruct external delivery workers about the desired placement of delivered material or goods within the
factory. A navigation system with optical indicators might also assist workers in large warehouses, when
storing, removing or moving goods.

8.10 Product and Resource Tracing

Tracing materials, products and equipment throughout the entire production process is an established
method in modern factories [4

.

]. It aids the optimal scheduling of production orders, automatic reporting
of the production process and obviates tedious, time-consuming and inaccurate manual logging [229

.

].
One approach to tracing is to equip products and machines with microcontroller-based tags, which
store product and order related information and log information about each conducted process step
[230

.

, 231

.

]. Communication with other products, machines or analysis terminals is mostly realized via
Radio-Frequency Identification (RFID), Wi-Fi, Bluetooth or GSM [229

.

, 232

.

, 233

.

]. Instead of equipping
every single product with a smart tag, the proposed camera system can be used, in conjunction with
object detection and identification algorithms, to trace resources and materials throughout the production
process. The system can detect, which materials or products enter a machine. This information can
then be logged in a central database along with additional data, retrieved directly from the machine.
Omitting smart tags, and centralizing the tracing system, keeps its complexity low and thus reduces
development, installation and maintenance cost. A centralized camera-based system is not restricted
to fixed terminals for reading out product data, but can locate products anywhere on the production
site. The system might also be used to detect potential loss, wasting or theft of materials and products.

74

Chapter 8 Applications

Furthermore, localization and identification of products and materials enables to compare the current
state of the entire manufacturing facility with a desired state. From the observed deviations potential
problems and solutions can be inferred. For example, a worker might leave a pallet with products at
the machine, instead of transporting it to the warehouse, as intended by the production schedule. The
system can detect this discrepancy and notify the worker or a foreman. This approach can also be used to
automatically examine, whether the production site is left in the desired state after working hours.

8.11 Automatic Quality Control

Computer vision-based quality control is used throughout many production domains [234

.

, 235

.

], such
as the food [236

.

–238

.

], textile [239

.

, 240

.

], semiconductor [241

.

] and automotive industry [242

.

], assembly
[243

.

] and additive manufacturing [244

.

]. Other applications are in the production of ceramics [245

.

], the
steel industry [246

.

] and in manual manufacturing processes [247

.

]. The system developed in this work
can be used for the automatic quality control of products. It can also verify the order and correctness
of process steps. Omitted or erroneously executed process steps can be detected and reported. This
is especially helpful in manufacturing or assembly processes with a high number of manual tasks, for
example in the assembly of automotive or aerospace products. But also in fully automated production
systems, the camera system provides an additional, independent layer of process monitoring. For example,
it can detect breakdown or malfunction of machine tools, robots or transport systems. As the camera
system overviews the entire production plant, it can provide valuable information about a problem, which
helps to resolve it without without affecting production.

8.12 Automatic Reporting

As mentioned, the camera system can automatically generate reports for the risk assessment or the product
and resource tracing. Of course, it is not limited to this, but can report arbitrary events. This replaces
time-consuming, error-prone and among human workers unpopular, manual reporting tasks. Modern
analytics tools based on machine learning [248

.

] can be leveraged to generate additional insights from the
raw data, which might have remained unnoticed with traditional, manual reporting. Using the camera
system speeds up the reporting procedure, frees workers and makes them available for more important
tasks. Moreover, generated reports are more concise, thorough, constant in style and immediately digitized.
Automated reporting allows to capture a higher number of events, which can provide valuable information
in case of accidents or malfunctions. An example of automated reporting is the assignment of a worker to
a process step, obviating signing or stamping of an according document unnecessary. Another example is
the automated documentation of experiments in research laboratories. Used materials and equipment,
process steps and measurement results can be automatically gathered and combined in a report.

8.13 Process and Factory Analysis

Collecting large amounts data within a factory, leverages a wide range of analysis and control applications,
which help to improve production processes, resource planning and plant monitoring. Ultimately, this
leads to smart factories with more efficient, faster and more flexible manufacturing processes, reduction
of waste as well as cheaper and more individualized products [2

.

–4

.

, 249

.

]. Currently, video data is rarely
used for more than monitoring and quality control of individual processes (see section 8.11

.

), however
could supply existing plant information systems, such as Operations Management Systems (OMS) and

75

Chapter 8 Applications

Resource Planning Systems (RPS) [250

.

], with spatially and temporally rich information about the ongoing
production processes.

For example, video data can be harnessed to analyze and improve the factory layout. Despite being
planned and simulated thoroughly before installation, a plant layout might still have problems, which were
not considered during planning. Examples are the suboptimal placement of tools, machines or storage
areas, unnecessary long walking distances for human workers, congested transport routes, bottlenecks in
the material flow and overflowing storage areas. Problems like these are not unlikely, because the optimal
plant layout is always a tradeoff between multiple competing target quantities, which minimizes a specific,
manually designed, cost-function. Moreover, this cost function is a simplified and incomplete model of
the real-world and the underlying optimization procedures of the Facility Layout Planning (FLP) are
NP-hard and often ill-posed [251

.

–256

.

]. Video data, showing the flow of resources, materials and products
through the manufacturing plant, provides a helpful tool for the practical evaluation of a factory layout. It
might uncover unused potential and weaknesses of an existing factory layout. In case of modular learning
factories [257

.

, 258

.

], which comprise of several interconnected and freely arrangeable modules, cameras can
be used to detect the current factory layout and feed this information back into the production control
system. The same cameras can be used to analyze activities and attentiveness of students working on the
learning factory.

Video data can also be used to analyse production processes. For example, it might be used to analyze
different scheduling strategies in terms of machine utilization, productivity and cost. Furthermore, various
modifications of the production processes can be analyzed. Such modifications are the transition of a
production line towards a new product, the replacement of an old machine, an extension of a production
line with additional machines, factory layout changes, the implementation of a new manufacturing
technology, a change of the personnel or fluctuation of the markets. All this data can also be used for
process control, rescheduling in case of plant malfunctions and for automated planning of new production
processes [259

.

].

8.14 Virtual Factory Model

Virtual manufacturing [260

.

–262

.

] and the virtual factory [263

.

–268

.

] are recent topics in manufacturing
technology. Here, a virtual model of the entire factory, including all processes, is created. It is used to
simulate and monitor processes and aids the management in decision-making. It enables evaluation of
different process parameters and factory layouts without affecting the actual production. The virtual
model can also be used for simple walk-throughs [269

.

], to subjectively analyze the factory layout. Moreover,
it can be used to simulate the production of a new product prior to altering the production line. Existing
research already focuses on incorporating live process data into the virtual model [270

.

, 271

.

], however
video data was not considered yet. This is interesting, because video data provides a practically feasible
and cost-effective method to incorporate human workers and arbitrary objects into the virtual model.
Inclusion of humans and objects is crucial to accurately model the manufacturing process and predict
future events, such as accidents, plant malfunctions or the next maintenance operation. Applications of
such a virtual factory model, containing both process data and live information about human workers
and arbitrary objects on the shopfloor, are manifold. For example, the model can assist supervisors in
monitoring plant related data and overseeing a team of human workers. As the virtual factory model
is a compact representation of many video streams, a single supervisor might be sufficient to monitor
a large number of human workers. Supervisors can also use the model to assign tasks to individual
workers on the shopfloor. Anomaly detection [272

.

–274

.

] can guide the attention of the supervisor to
interesting events. Other applications of the virtual factory model are emergency simulations [275

.

] and
training of human workers in a virtual setting prior to deployment into the actual work place [276

.

–279

.

].

76

Chapter 8 Applications

A life-updated virtual model enables virtual collaboration and communication between people, located
at different physical locations. This includes teams, which monitor and optimize the factory layout or
production processes [280

.

–282

.

]. But it also refers to individual workers on the shopfloor, who can use the
virtual model to follow the locations and activities of their colleagues. This gives them an overview of
the current situation. Additionally, the model can provide workers with details about the current task
of their collaborators, helping them to collaborate more effectively with their team colleagues. This is
especially important in large and complex scenarios, where colleagues have no direct contact to each other.
The model can also be used to communicate with team colleagues. For example, a production manager,
located off-site, could easily meet with engineers and operators in a virtual meeting room, which is part of
the factory model.

8.15 Virtual Product Model

An obvious extension of the virtual factory model is a live-updated model of the product. This is especially
helpful in cases of large and complex products, which take several days or even weeks to finish, such as in
the aerospace or shipbuilding industry. Cameras can be used to monitor conducted process steps and
assess the current status of the product. This helps workers, engineers and managers to keep an overview
of the already conducted tasks and to decide upon the next steps. By comparing the conducted steps
against a model of the desired process, failures can be spotted and corrected. Video data also enables
to measure certain aspects of the product. For example during assembly of an airplane, the dimensions
and relative position of components can be measured and compared against the desired values. Similarly,
vibration modes of the airplane could be measured during vibration analysis of the structure, superseding
the need for cost intensive manual installation of vibration sensors [283

.

, 284

.

]. Such measurement data
can then be assigned to the virtual product model for later analysis and quality control. People can
virtually walk through the product model and view data and documents related to sub-components at
the according location of this component. For example during assembly of an aircraft, a person can walk
into the cockpit of the aircraft and click on an installed component, retrieving all related documents,
such as the technical datasheet, details about the manufacturer and the manufacturing process, licensing
documents and reports of the quality control.

8.16 Conclusion

This chapter introduced possible applications of the developed Shopfloor Monitor in the domain of manu-
facturing technology. They aimed at improving safety, productivity and flexibility of the manufacturing
environment, reduce cost and downtime, secure machines and assets, open up new ways of team-work and
communication, and improve process control and plant simulations by incorporating the human factor.
The next chapter discusses privacy concerns of the developed system.

77

Chapter 9

Privacy Concerns

The use of video cameras in the Shopfloor Monitor for the permanent monitoring of human workers in
a factory is accompanied by various ethical and privacy issues. This chapter briefly introduces possible
solutions for rendering the system compliant with prevailing regulations.

To reduce the intrusiveness of the Shopfloor Monitor and protect the employees of a company, rules should
be established and their compliance strictly controlled. For example, the system should not be used to
monitor and report the performance of workers. Such a privacy violation could increase dissatisfaction
and stress levels of the workers and would eventually lead to a decrease in performance, affect health
and increase the number of absentees. Thus, the system should solely be used to assist the employees by
taking on some of their tasks. This increases productivity of the workers, but at the same time reduces
their work loads.

Most countries have already established laws to protect the privacy of employees and regulate the use of
video surveillance and data collection. To comply with these regulations, the Shopfloor Monitor needs
to be modified. For example, instead of storing the acquired video footage, only extracted high-level
meta data, such as trajectories, should be stored. The original footage should be deleted immediately. To
make this approach more secure, an IT security concept should be developed and implemented to prevent
attackers from stealing or modifying data. Using smart cameras, which directly incorporate detection,
tracking and mapping functions and only return meta data instead of the original video footage is another
way towards a more secure system. To further protect the privacy of staff, the system should not record
any audio. It should also allow for marking zones, such as private offices, as private and prevent collection
of meta data, as soon as people enter these zones. Automatic identification of humans in surveillance
videos might not be allowed in some countries. In these cases, the system must not implement appearance,
face or gait recognition or any other means of identifying people. The possibility of identifying personnel
based on the meta data only, should also be avoided. However, this might not always be easy to realize and
restricts the functionality of the system. Some countries, for example Germany, require to unambiguously
inform every employee about the camera monitoring and the further utilization of the acquired data. This
can be done via signs, notice boards and written notification. Every employee has to be given the chance
to opt-out of the monitoring. Such an employee could be recognized via visual markers on the clothing,
which tell the system not to track this person. If compliance with the regulations can not be reached
despite all these modifications, different, less intrusive sensors than cameras can be used. Examples are
ultrasonic sensors, passive infrared sensors (PIR), radar, thermal cameras, magnetic sensors or pressure
mats [185

.

, 285

.

]. However, these sensors provide less information-rich output data and might severely
reduce the functional scope of the monitoring system. In cases, where camera monitoring of humans is
completely prohibited, the Shopfloor Monitor can still be applied, but should focus on objects instead
of humans. Humans could be detected by the camera hardware and disguised in the output footage,
for example by masking or blurring. Use cases for such an object-centric monitoring system are the
observation of material flows, automatic layout detection of flexible factories and control of transport
vehicles.

If some or all of these modification are considered, the Shopfloor Monitor can assist employees, take over
unpopular or tedious tasks, and reduce their stress levels without restricting their freedom and privacy.

78

Chapter 10

Conclusion

The research question of this thesis was how one can implement a system which acquires and processes
human-related data in manufacturing environments in real-time using only a network of multiple surveil-
lance cameras. Motivation for this issue was the weak utilization of human-related data in modern
factories. As human workers still play an important role in modern manufacturing companies, they should
be considered in the digitalization of the factory. Human-related data can be used for process control,
analysis and simulation. Furthermore, it enables new applications, which boost productivity, flexibility
and safety of the production, reduce cost and downtime and open up new possibilities for team-work
and communication. Thus, monitoring humans helps to improve production and business processes, and
allows a company to keep up with or outpace competitors.

With the background of this research issue, the overall goal of this thesis was specified. A novel system,
named the Shopfloor Monitor, for the acquisition of human-related data in manufacturing facilities should
be developed and experimentally evaluated. This system should only use a network of multiple surveillance
cameras to localize human workers on the shopfloor. To demonstrate usefulness of the generated data, an
example web app for real-time visualization of the tracking results within a virtual 2D floorplan of the
factory had to be developed.

Prior to implementing the Shopfloor Monitor system, the requirements were analyzed and a specification
was derived in chapter 2

.

. In chapter 3

.

fundamentals of object detection, object tracking and multi-
camera multi-target tracking were presented. These topics formed the theoretical foundation for the
later implementation of the Shopfloor Monitor. Subsequently, a literature review was conducted in
chapter 4

.

. Existing solutions for multi-camera multi-target tracking and visualization were surveyed and
their limitations revealed. It turned out that all solutions used outdated detection and tracking algorithms
to localize humans within the video streams. Furthermore, no solution dedicated to applications in
manufacturing technology could be found. This gap served as a further motivation for the present research
issue. In chapter 5

.

the implementation details of the Shopfloor Monitor were covered. First, a modular,
extensible and scalable software architecture was designed. At the core of this architecture was the
detection and tracking module which localized humans in multiple parallel video streams. To push the
state of the art recent detection and tracking algorithms were utilized. The deep learning-based object
detector periodically detected humans in video frames and initialized or updated the trackers belonging to
the targets. To match detections and trackers, the Hungarian method was used. A low-pass filter helped
to reduce the impact of false positive and false negative detections, and stabilized the tracking. Camera
calibration provided a method to transform locations of people from image to world coordinates. This
allowed to plot trajectories of human workers in the visualization web app, which was implemented as
part of a general, extensible app framework. The acquired trajectory data was stored in a database for
usage in future web apps. In the end of chapter 5

.

, limitations and possible future improvements of the
current implementation, including the camera calibration, were discussed. In chapter 6

.

experiments were
conducted to evaluate the implemented system. First, an evaluation dataset was created. It contained 5
video sequences with a total length of 888 frames and in total 12192 manually annotated ground-truth

79

Chapter 10 Conclusion

targets. Commonly used evaluation metrics, such as MOTA, MOTP, precision, recall and ID-based metrics
were selected as basis for the evaluation and explained in detail. Afterwards, an experimental strategy was
designed. This strategy aimed at exploring the impact of different sub-components of the detection and
tracking framework on the overall tracking accuracy and processing speed. Apart from using 7 different
object detection algorithms and 3 different trackers, a range of values for 4 further hyperparameters of the
detection and tracking framework was analyzed. A script for automated execution of the experiments and
logging of the results was developed. Finally, resulting evaluation metrics were presented. The results were
discussed thoroughly in chapter 7

.

. Additionally, the conducted study was critically reviewed. Limitations
were revealed and future improvements suggested. In chapter 8

.

an overview of possible applications in the
domain of manufacturing technology was given and, finally, ethical and privacy concerns of the developed
monitoring system were examined in chapter 9

.

and possible modifications were presented to comply with
existing regulations.

The following list summarizes the main contributions of this work:

• Setup and calibration of a multi-camera system within a factory.

• Development of a multi-camera multi-target detection and tracking framework based on state-of-
the-art detection and tracking algorithms.

• Design of a modular and scalable software architecture for data acquisition, processing and long-term
storage.

• Implementation of an extensible web framework and an example web app for real-time visualization
of tracking results.

• Experimental evaluation of the detection and tracking framework based on MOT metrics and an
application-specific dataset.

Comparing these contributions with the goals of this thesis specified in the introduction, it can be stated
that this work obtained a satisfactory solution for the issue of a multi-camera multi-target tracking and
visualization system. Figure 10.1

.

shows the developed solution in operation.

Despite improving the state of the art of multi-camera multi-target tracking and visualization solutions by
using recent detection and tracking algorithms, the presented Shopfloor Monitor still lacks some features
which are present in existing solutions. For example, handovers of targets between adjacent camera views
are not managed, and redundant target detection by multiple cameras are not merged. Furthermore,
target appearance is not considered during the matching of detections and trackers. Implementing these
features would be necessary to perform better than state-of-the-art solutions. However, the decision
was made to exclude these features and instead focus on the utilization of recent detection and tracking
algorithms. Implementing the mentioned features is infeasible for a single developer and does not add any
scientific value.

The conducted work opens up a multitude of future research directions. For example, the Shopfloor
Monitor could be improved by incorporating the mentioned features into the detection and tracking
framework. Alternatively, the developed multi-stage detection and tracking framework could be replaced
by a unified deep learning model which takes multiple video streams as inputs and outputs trajectories
in world coordinates. Such a model provides a large scientific value, as it learns to implicitly perform
multi-camera multi-target tracking. This model could even include additional steps, such as coordinate
transformation and trajectory post-processing. Future work could also focus on deploying the Shopfloor
Monitor in one or multiple factories and quantitatively evaluate the impact of the system on productivity,
downtime and cost. Another research direction is the development of further web applications to realize
more of the use cases presented in chapter 2

.

. Future work could also find additional use cases or apply
the developed approach to other domains, such as monitoring in private homes or urban monitoring.

80

Chapter 10 Conclusion

Fig. 10.1: Screenshot of the developed Shopfloor Monitor, showing raw video streams with tracked targets (green
boxes) and the visualization web app running in a web browser.

The research pursued in this thesis is highly relevant for the future of manufacturing technology. As long
as factories are not fully automated, human workers are a key factor in production processes. Thus, it
is crucial for the success of future manufacturing enterprises to monitor human workers and utilize the
collected data to simulate, control and optimize manufacturing and business processes. The presented
work is the first step towards a more efficient, safer and resource-saving manufacturing landscape of
tomorrow.

81

Bibliography

[1] Declaration of Authorship. 2017. url: https://www.
ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoe
rtliche_Erklaerung_deutsch_und_englisch.pdf

.

(visited on 2018-08-17).
[2] Kang, H. S., Lee, J. Y., Choi, S., et al. “Smart

manufacturing: Past research, present findings, and
future directions”. In: International Journal of Pre-
cision Engineering and Manufacturing-Green Tech-
nology 3.1 (2016), pp. 111–128. issn: 2288-6206. doi:
10.1007/s40684-016-0015-5

.

.
[3] Wang, S., Wan, J., Di Li, et al. “Implementing

Smart Factory of Industrie 4.0: An Outlook”. In:
International Journal of Distributed Sensor Networks
12.1 (2016), p. 3159805. issn: 1550-1477. doi: 10.
1155/2016/3159805

.

.
[4] Brettel, M., Friederichsen, N., Keller, M., et

al. “How virtualization, decentralization and network
building change the manufacturing landscape: An In-
dustry 4.0 Perspective”. In: International Journal of
Science, Engineering and Technology 8 (2014), pp. 37–
44.

[5] Bourne, V. After The Fall: Cost, Causes and Conse-
quences of Unplanned Downtime. 2018. url: https://
lp.servicemax.com/Vanson-Bourne-Whitepaper-
Unplanned-Downtime-LP.html

.

(visited on 2018-11-
05).

[6] Burke, R., Mussomeli, A., Laaper, S., et al. The
smart factory: Responsive, adaptive, connected man-
ufacturing. Ed. by Deloitte Insights. 2017. url:
https://www2.deloitte.com/insights/us/en/
focus/industry-4-0/smart-factory-connected-
manufacturing.html

.

(visited on 2018-11-05).
[7] Milan, A., Leal-Taixe, L., Reid, I., et al. MOT16:

A Benchmark for Multi-Object Tracking. 2016. url:
http://arxiv.org/pdf/1603.00831v2

.

.
[8] Redmon, J. and Farhadi, A. YOLOv3: An Incre-

mental Improvement. 2018. url: http://arxiv.org/
pdf/1804.02767v1

.

.
[9] Ren, S., He, K., Girshick, R., et al. Faster R-CNN:

Towards Real-Time Object Detection with Region Pro-
posal Networks. 2015. url: http://arxiv.org/pdf/
1506.01497v3

.

.
[10] Lin, T.-Y., Goyal, P., Girshick, R., et al. Focal

Loss for Dense Object Detection. 2017. url: http:
//arxiv.org/pdf/1708.02002v2

.

.
[11] Liu, W., Anguelov, D., Erhan, D., et al. “SSD:

Single Shot MultiBox Detector”. In: (Keine Angabe)
9905 (2016), pp. 21–37. issn: 0302-9743. doi: 10 .
1007/978-3-319-46448-0_2

.

. url: http://arxiv.
org/pdf/1512.02325v5

.

.
[12] Bolme, D., Beveridge, J. R., Draper, B. A., et

al. “Visual object tracking using adaptive correlation

filters”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010. Piscataway, NJ:
IEEE, 2010, pp. 2544–2550. isbn: 978-1-4244-6984-0.
doi: 10.1109/CVPR.2010.5539960

.

.
[13] Lukežič, A., Vojíř, T., Čehovin, L., et al. “Discrim-

inative Correlation Filter with Channel and Spatial
Reliability”. In: International Journal of Computer
Vision 126.7 (2018), pp. 671–688. issn: 0920-5691.
doi: 10 . 1007 / s11263 - 017 - 1061 - 3

.

. url: http :
//arxiv.org/pdf/1611.08461v2

.

.
[14] Wang, Q., Gao, J., Xing, J., et al. DCFNet: Dis-

criminant Correlation Filters Network for Visual Track-
ing. 2017. url: http : / / arxiv . org / pdf / 1704 .
04057v1

.

.
[15] Danelljan, M., Bhat, G., Khan, F. S., et al. ECO:

Efficient Convolution Operators for Tracking. 2017.
url: http://arxiv.org/pdf/1611.09224v2

.

.
[16] Brian, M. Los Angeles Dog Photography. 2018. url:

https://www.michaelbrianphoto.com/PEOPLE/Enj
oy-Life/42

.

(visited on 2018-12-12).
[17] Qednau, R. Narrow Roads Are Better Than Cross-

walks. 2015. url: https://www.strongtowns.org/
journal/2015/8/20/narrow- roads- are- better-
than-crosswalks

.

(visited on 2019-12-12).
[18] Dalal, N. and Triggs, B. “Histograms of Oriented

Gradients for Human Detection”. In: CVPR 2005.
Ed. by Schmid, C., Tomasi, C., and Soatto, S.
Los Alamitos, Calif: IEEE Computer Society, 2005,
pp. 886–893. isbn: 0-7695-2372-2. doi: 10.1109/CVPR.
2005.177

.

.
[19] Felzenszwalb, P. F., Girshick, R. B., McAllester,

D., et al. “Object detection with discriminatively
trained part-based models”. In: IEEE transactions on
pattern analysis and machine intelligence 32.9 (2010),
pp. 1627–1645. issn: 0162-8828. doi: 10.1109/TPAMI.
2009.167

.

.
[20] Uijlings, J. R. R., van de Sande, K. E. A., Gev-

ers, T., et al. “Selective Search for Object Recog-
nition”. In: International Journal of Computer Vi-
sion 104.2 (2013), pp. 154–171. issn: 0920-5691. doi:
10.1007/s11263-013-0620-5

.

.
[21] Lowe, D. G. “Object recognition from local scale-

invariant features”. In: The proceedings of the sev-
enth IEEE international conference on computer vi-
sion. s.l.: IEEE Computer Society, 1999, 1150–1157
vol.2. isbn: 0-7695-0164-8. doi: 10.1109/ICCV.1999.
790410

.

.
[22] Papageorgiou, C. P., Oren, M., and Poggio, T.

“A general framework for object detection”. In: Sixth
International Conference on Computer Vision (IEEE
Cat. No.98CH36271). Narosa Publishing House, 1998,

82

https://www.ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf
https://www.ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf
https://www.ent.wi.tum.de/fileadmin/w00bcx/www/Ehrenwoertliche_Erklaerung_deutsch_und_englisch.pdf
https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1155/2016/3159805
https://doi.org/10.1155/2016/3159805
https://lp.servicemax.com/Vanson-Bourne-Whitepaper-Unplanned-Downtime-LP.html
https://lp.servicemax.com/Vanson-Bourne-Whitepaper-Unplanned-Downtime-LP.html
https://lp.servicemax.com/Vanson-Bourne-Whitepaper-Unplanned-Downtime-LP.html
https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html
https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html
https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html
http://arxiv.org/pdf/1603.00831v2
http://arxiv.org/pdf/1804.02767v1
http://arxiv.org/pdf/1804.02767v1
http://arxiv.org/pdf/1506.01497v3
http://arxiv.org/pdf/1506.01497v3
http://arxiv.org/pdf/1708.02002v2
http://arxiv.org/pdf/1708.02002v2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/pdf/1512.02325v5
http://arxiv.org/pdf/1512.02325v5
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1007/s11263-017-1061-3
http://arxiv.org/pdf/1611.08461v2
http://arxiv.org/pdf/1611.08461v2
http://arxiv.org/pdf/1704.04057v1
http://arxiv.org/pdf/1704.04057v1
http://arxiv.org/pdf/1611.09224v2
https://www.michaelbrianphoto.com/PEOPLE/Enjoy-Life/42
https://www.michaelbrianphoto.com/PEOPLE/Enjoy-Life/42
https://www.strongtowns.org/journal/2015/8/20/narrow-roads-are-better-than-crosswalks
https://www.strongtowns.org/journal/2015/8/20/narrow-roads-are-better-than-crosswalks
https://www.strongtowns.org/journal/2015/8/20/narrow-roads-are-better-than-crosswalks
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410

Bibliography

pp. 555–562. isbn: 81-7319-221-9. doi: 10.1109/ICCV.
1998.710772

.

.
[23] Donahue, J., Jia, Y., Vinyals, O., et al. DeCAF:

A Deep Convolutional Activation Feature for Generic
Visual Recognition. 2013. url: http://arxiv.org/
pdf/1310.1531v1

.

.
[24] Hosang, J., Benenson, R., and Schiele, B. Learn-

ing non-maximum suppression. 2017. url: http://
arxiv.org/pdf/1705.02950v2

.

.
[25] Bodla, N., Singh, B., Chellappa, R., et al. Soft-

NMS – Improving Object Detection With One Line
of Code. 2017. url: http://arxiv.org/pdf/1704.
04503v2

.

.
[26] Prokudin, S., Kappler, D., Nowozin, S., et al.

“Learning to Filter Object Detections”. In: Pattern
Recognition. Ed. by Roth, V. and Vetter, T. Lec-
ture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2017. isbn: 978-3-319-66709-6.

[27] Hosang, J., Benenson, R., and Schiele, B. A con-
vnet for non-maximum suppression. 2015. url: http:
//arxiv.org/pdf/1511.06437v3

.

.
[28] Rosebrock, A. A gentle guide to deep learning object

detection. 2018. url: https://www.pyimagesearch
. com / 2018 / 05 / 14 / a - gentle - guide - to - deep -
learning-object-detection/

.

(visited on 2018-08-
17).

[29] Tahir, A., Azam, S., Sagabala, S., et al. “Single
object tracking system using fast compressive track-
ing”. In: 2016 IEEE International Conference on
Consumer Electronics-Asia (ICCE-Asia). IEEE, 2016,
pp. 1–3. isbn: 978-1-5090-2743-9. doi: 10.1109/ICCE-
Asia.2016.7804760

.

.
[30] Lee, J., Iwana, B. K., Ide, S., et al. Globally Optimal

Object Tracking with Fully Convolutional Networks.
2016. url: http://arxiv.org/pdf/1612.08274v1

.

.
[31] Luo, W., Xing, J., Milan, A., et al. Multiple Object

Tracking: A Literature Review. 2017. url: http://
arxiv.org/pdf/1409.7618v4

.

.
[32] Berclaz, J., Fleuret, F., Türetken, E., et al.

“Multiple Object Tracking Using K-Shortest Paths
Optimization”. In: IEEE transactions on pattern anal-
ysis and machine intelligence 33.9 (2011), pp. 1806–
1819. issn: 0162-8828. doi: 10.1109/TPAMI.2011.21

.

.
[33] Leal-Taixé, L., Milan, A., Schindler, K., et al.

Tracking the Trackers: An Analysis of the State of
the Art in Multiple Object Tracking. 2017. url: http:
//arxiv.org/pdf/1704.02781v1

.

.
[34] Perera, A., Srinivas, C., Hoogs, A., et al. “Multi-

Object Tracking Through Simultaneous Long Occlu-
sions and Split-Merge Conditions”. In: 2006 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition - Volume 1 (CVPR’06). IEEE,
2006, pp. 666–673. isbn: 0-7695-2597-0. doi: 10.1109/
CVPR.2006.195

.

.
[35] Yang, C., Duraiswami, R., and Davis, L. “Fast

multiple object tracking via a hierarchical particle
filter”. In: Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1. IEEE, 2005,
212–219 Vol. 1. isbn: 0-7695-2334-X. doi: 10.1109/
ICCV.2005.95

.

.

[36] Vo, B.-N., Mallick, M., Bar-Shalom, Y., et al.
Multitarget Tracking. Ed. by Wiley Encyclopedia
of Electrical and Electronics Engineering.
2015.

[37] Wang, N., Shi, J., Yeung, D.-Y., et al. Understand-
ing and Diagnosing Visual Tracking Systems. 2015.
url: http://arxiv.org/pdf/1504.06055v1

.

.
[38] Krebs, S., Duraisamy, B., and Flohr, F. “A sur-

vey on leveraging deep neural networks for object
tracking”. In: 2017 IEEE 20th International Confer-
ence on Intelligent Transportation Systems (ITSC).
IEEE, 2017, pp. 411–418. isbn: 978-1-5386-1526-3.
doi: 10.1109/ITSC.2017.8317904

.

.
[39] Fiaz, M., Mahmood, A., and Jung, S. K. Tracking

Noisy Targets: A Review of Recent Object Tracking
Approaches. 2018. url: http://arxiv.org/pdf/
1802.03098v2

.

.
[40] Cannons, K. A Review of Visual Tracking: Tech. Rep.

CSE-2008-07. York Univ., Toronto, Canada, 2008.
[41] Smeulders, A. W. M., Chu, D. M., Cucchiara, R.,

et al. “Visual Tracking: An Experimental Survey”. In:
IEEE transactions on pattern analysis and machine
intelligence 36.7 (2014), pp. 1442–1468. issn: 0162-
8828. doi: 10.1109/TPAMI.2013.230

.

.
[42] Chen, Z., Hong, Z., and Tao, D. An Experimental

Survey on Correlation Filter-based Tracking. 2015.
url: http://arxiv.org/pdf/1509.05520v1

.

.
[43] Bar-Shalom, Y., Daum, F., and Huang, J. “The

probabilistic data association filter”. In: IEEE Control
Systems 29.6 (2009), pp. 82–100. doi: 10.1109/MCS.
2009.934469

.

.
[44] Blackman, S. S. “Multiple hypothesis tracking for

multiple target tracking”. In: IEEE Aerospace and
Electronic Systems Magazine 19.1 (2004), pp. 5–18.
issn: 0885-8985. doi: 10.1109/MAES.2004.1263228

.

.
[45] Maggio, E., Taj, M., and Cavallaro, A. “Efficient

Multitarget Visual Tracking Using Random Finite
Sets”. In: IEEE Transactions on Circuits and Systems
for Video Technology 18.8 (2008), pp. 1016–1027. issn:
1051-8215. doi: 10.1109/TCSVT.2008.928221

.

.
[46] Tao, R., Gavves, E., and Smeulders, A. W. M.

Siamese Instance Search for Tracking. 2016. url: ht
tp://arxiv.org/pdf/1605.05863v1

.

.
[47] Leal-Taixé, L., Ferrer, C. C., and Schindler, K.

Learning by tracking: Siamese CNN for robust target
association. 2014. url: http://arxiv.org/pdf/1604.
07866v3

.

.
[48] Varior, R. R., Shuai, B., Lu, J., et al. A Siamese

Long Short-Term Memory Architecture for Human
Re-Identification. 2016. url: http://arxiv.org/
pdf/1607.08381v1

.

.
[49] Bradski, G. “The OpenCV Library”. In: Dr. Dobb’s

Journal of Software Tools (2000). url: https://docs.
opencv.org

.

(visited on 2018-08-01).
[50] Breitenstein, M. D., Reichlin, F., Leibe, B., et

al. “Robust tracking-by-detection using a detector
confidence particle filter”. In: 2009 IEEE 12th In-
ternational Conference on Computer Vision. IEEE,
2009, pp. 1515–1522. isbn: 978-1-4244-4420-5. doi:
10.1109/ICCV.2009.5459278

.

.

83

https://doi.org/10.1109/ICCV.1998.710772
https://doi.org/10.1109/ICCV.1998.710772
http://arxiv.org/pdf/1310.1531v1
http://arxiv.org/pdf/1310.1531v1
http://arxiv.org/pdf/1705.02950v2
http://arxiv.org/pdf/1705.02950v2
http://arxiv.org/pdf/1704.04503v2
http://arxiv.org/pdf/1704.04503v2
http://arxiv.org/pdf/1511.06437v3
http://arxiv.org/pdf/1511.06437v3
https://www.pyimagesearch.com/2018/05/14/a-gentle-guide-to-deep-learning-object-detection/
https://www.pyimagesearch.com/2018/05/14/a-gentle-guide-to-deep-learning-object-detection/
https://www.pyimagesearch.com/2018/05/14/a-gentle-guide-to-deep-learning-object-detection/
https://doi.org/10.1109/ICCE-Asia.2016.7804760
https://doi.org/10.1109/ICCE-Asia.2016.7804760
http://arxiv.org/pdf/1612.08274v1
http://arxiv.org/pdf/1409.7618v4
http://arxiv.org/pdf/1409.7618v4
https://doi.org/10.1109/TPAMI.2011.21
http://arxiv.org/pdf/1704.02781v1
http://arxiv.org/pdf/1704.02781v1
https://doi.org/10.1109/CVPR.2006.195
https://doi.org/10.1109/CVPR.2006.195
https://doi.org/10.1109/ICCV.2005.95
https://doi.org/10.1109/ICCV.2005.95
http://arxiv.org/pdf/1504.06055v1
https://doi.org/10.1109/ITSC.2017.8317904
http://arxiv.org/pdf/1802.03098v2
http://arxiv.org/pdf/1802.03098v2
https://doi.org/10.1109/TPAMI.2013.230
http://arxiv.org/pdf/1509.05520v1
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/MAES.2004.1263228
https://doi.org/10.1109/TCSVT.2008.928221
http://arxiv.org/pdf/1605.05863v1
http://arxiv.org/pdf/1605.05863v1
http://arxiv.org/pdf/1604.07866v3
http://arxiv.org/pdf/1604.07866v3
http://arxiv.org/pdf/1607.08381v1
http://arxiv.org/pdf/1607.08381v1
https://docs.opencv.org
https://docs.opencv.org
https://doi.org/10.1109/ICCV.2009.5459278

Bibliography

[51] Murray, S. Real-Time Multiple Object Tracking - A
Study on the Importance of Speed. 2017. url: http:
//arxiv.org/pdf/1709.03572v2

.

.
[52] Chahyati, D., Fanany, M. I., and Arymurthy,

A. M. “Tracking People by Detection Using CNN
Features”. In: Procedia Computer Science 124 (2017),
pp. 167–172. issn: 18770509. doi: 10.1016/j.procs.
2017.12.143

.

.
[53] Wu, B. and Nevatia, R. “Detection and Tracking

of Multiple, Partially Occluded Humans by Bayesian
Combination of Edgelet based Part Detectors”. In:
International Journal of Computer Vision 75.2 (2007),
pp. 247–266. issn: 0920-5691. doi: 10.1007/s11263-
006-0027-7

.

.
[54] Kuhn, H. W. “The Hungarian method for the assign-

ment problem”. In: Naval Research Logistics Quar-
terly 2.1-2 (1955), pp. 83–97. issn: 00281441. doi:
10.1002/nav.3800020109

.

.
[55] Berclaz, J., Fleuret, F., and Fua, P. “Multiple

object tracking using flow linear programming”. In:
2009 Twelfth IEEE International Workshop on Per-
formance Evaluation of Tracking and Surveillance.
Piscataway: IEEE, 2009, pp. 1–8. isbn: 978-1-4244-
5503-4. doi: 10.1109/PETS-WINTER.2009.5399488

.

.
[56] Jiang, H., Fels, S., and Little, J. J. “A Linear

Programming Approach for Multiple Object Track-
ing”. In: 2007 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2007, pp. 1–8. isbn:
1-4244-1179-3. doi: 10.1109/CVPR.2007.383180

.

.
[57] Chopra, S., Hadsell, R., and LeCun, Y. “Learning

a Similarity Metric Discriminatively, with Applica-
tion to Face Verification”. In: 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). IEEE, 2005, pp. 539–546.
isbn: 0-7695-2372-2. doi: 10.1109/CVPR.2005.202

.

.
[58] Porikli, F. and Yilmaz, A. “Object Detection and

Tracking”. In: Video Analytics for Business Intelli-
gence. Ed. by Shan, C., Porikli, F., Xiang, T.,
et al. Vol. 409. Studies in Computational Intelligence.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 3–41. isbn: 978-3-642-28597-4. doi: 10.1007/978-
3-642-28598-1_1

.

.
[59] Luo, H., Xie, W., Wang, X., et al. Detect or Track:

Towards Cost-Effective Video Object Detection/Track-
ing. 2018. url: http : / / arxiv . org / pdf / 1811 .
05340v1

.

.
[60] Natarajan, P., Atrey, P. K., and Kankanhalli,

M. “Multi-Camera Coordination and Control in Surveil-
lance Systems”. In: ACM Transactions on Multime-
dia Computing, Communications, and Applications
11.4 (2015), pp. 1–30. issn: 15516857. doi: 10.1145/
2710128

.

.
[61] Räty, T. D. “Survey on Contemporary Remote

Surveillance Systems for Public Safety”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 40.5 (2010), pp. 493–
515. issn: 1094-6977. doi: 10 . 1109 / TSMCC . 2010 .
2042446

.

.
[62] Nguyen, C., Feng, W.-c., and Liu, F. “Hotspot:

Making computer vision more effective for human
video surveillance”. In: Information Visualization 15.4

(2016), pp. 273–285. issn: 1473-8716. doi: 10.1177/
1473871616630015

.

.
[63] Tian, Y.-l., Brown, L., Hampapur, A., et al. “IBM

smart surveillance system (S3): Event based video
surveillance system with an open and extensible frame-
work”. In: Machine Vision and Applications 19.5-6
(2008), pp. 315–327. issn: 0932-8092. doi: 10.1007/
s00138-008-0153-z

.

.
[64] Leo, C. d. and Manjunath, B. S. “Multicamera

video summarization and anomaly detection from
activity motifs”. In: ACM Transactions on Sensor
Networks 10.2 (2014), pp. 1–30. issn: 15504859. doi:
10.1145/2530285

.

.
[65] Girgensohn, A., Shipman, F., Dunnigan, A., et al.

“Support for effective use of multiple video streams
in security”. In: Proceedings of the 4th ACM inter-
national workshop on Video surveillance and sensor
networks - VSSN ’06. Ed. by Aggarwal, J. K., Cuc-
chiara, R., and Prati, A. New York, New York,
USA: ACM Press, 2006, p. 19. isbn: 1595934960. doi:
10.1145/1178782.1178787

.

.
[66] Ivanov, Y. A. and Wren, C. R. “Toward spatial

queries for spatial surveillance tasks”. In: In Per-
vasive: Workshop on Pervasive Technology Applied
to Real-World Experiences with RFID and Sensor
Networks. 2006.

[67] Wang, Y.-K., Fan, C.-T., and Huang, C.-R. “A
Large Scale Video Surveillance System with Hetero-
geneous Information Fusion and Visualization for
Wide Area Monitoring”. In: 2012 Eighth International
Conference on Intelligent Information Hiding and
Multimedia Signal Processing. IEEE, 2012, pp. 178–
181. isbn: 978-1-4673-1741-2. doi: 10 . 1109 / IIH -
MSP.2012.49

.

.
[68] Pham, T. V., Worring, M., and Smeulders, A. W.

“AMulti-Camera Visual Surveillance System for Track-
ing of Reoccurrences of People”. In: 2007 First ACM/IEEE
International Conference on Distributed Smart Cam-
eras. IEEE, 2007, pp. 164–169. isbn: 978-1-4244-1353-
9. doi: 10.1109/ICDSC.2007.4357520

.

.
[69] Thalmann, D., Salamin, P., Ott, R., et al. “Ad-

vanced Mixed Reality Technologies for Surveillance
and Risk Prevention Applications”. In: Computer and
Information Sciences – ISCIS 2006. Ed. by Hutchi-
son, D., Kanade, T., Kittler, J., et al. Vol. 4263.
Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 13–23.
isbn: 978-3-540-47242-1. doi: 10.1007/11902140_2

.

.
[70] Ott, R., Gutiérrez, M., Thalmann, D., et al. “Ad-

vanced virtual reality technologies for surveillance
and security applications”. In: Proceedings of the 2006
ACM international conference on Virtual reality con-
tinuum and its applications - VRCIA ’06. Ed. by Sun,
H. New York, New York, USA: ACM Press, 2006,
p. 163. isbn: 1595933247. doi: 10.1145/1128923.
1128949

.

.
[71] Girgensohn, A., Kimber, D., Vaughan, J., et al.

“DOTS: support for effective video surveillance”. In:
Proceedings of the 15th ACM international conference
on Multimedia. ACM, 2007, pp. 423–432.

84

http://arxiv.org/pdf/1709.03572v2
http://arxiv.org/pdf/1709.03572v2
https://doi.org/10.1016/j.procs.2017.12.143
https://doi.org/10.1016/j.procs.2017.12.143
https://doi.org/10.1007/s11263-006-0027-7
https://doi.org/10.1007/s11263-006-0027-7
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/PETS-WINTER.2009.5399488
https://doi.org/10.1109/CVPR.2007.383180
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1007/978-3-642-28598-1_1
https://doi.org/10.1007/978-3-642-28598-1_1
http://arxiv.org/pdf/1811.05340v1
http://arxiv.org/pdf/1811.05340v1
https://doi.org/10.1145/2710128
https://doi.org/10.1145/2710128
https://doi.org/10.1109/TSMCC.2010.2042446
https://doi.org/10.1109/TSMCC.2010.2042446
https://doi.org/10.1177/1473871616630015
https://doi.org/10.1177/1473871616630015
https://doi.org/10.1007/s00138-008-0153-z
https://doi.org/10.1007/s00138-008-0153-z
https://doi.org/10.1145/2530285
https://doi.org/10.1145/1178782.1178787
https://doi.org/10.1109/IIH-MSP.2012.49
https://doi.org/10.1109/IIH-MSP.2012.49
https://doi.org/10.1109/ICDSC.2007.4357520
https://doi.org/10.1007/11902140_2
https://doi.org/10.1145/1128923.1128949
https://doi.org/10.1145/1128923.1128949

Bibliography

[72] Kanade, T., Collins, R., Lipton, A., et al., eds.
Advances in Cooperative Multi-Sensor Video Surveil-
lance. Morgan Kaufmann, 1998.

[73] Demeulemeester, A., Hollemeersch, C.-F., Lam-
bert, P., et al. “Demo: Real-time 3D visualization of
multi-camera room occupancy monitoring for immer-
sive communication systems”. In: 2011 Fifth ACM/IEEE
International Conference on Distributed Smart Cam-
eras. IEEE, 2011, pp. 1–2. isbn: 978-1-4577-1708-6.
doi: 10.1109/ICDSC.2011.6042956

.

.
[74] Fleck, S., Busch, F., Biber, P., et al. “3D Surveil-

lance A Distributed Network of Smart Cameras for
Real-Time Tracking and its Visualization in 3D”.
In: 2006 Conference on Computer Vision and Pat-
tern Recognition Workshop (CVPRW’06). IEEE, 2006,
p. 118. isbn: 0-7695-2646-2. doi: 10.1109/CVPRW.
2006.6

.

.
[75] Corral-Soto, E. R., Tal, R., Wang, L., et al. “3D

Town: The Automatic Urban Awareness Project”.
In: 2012 Ninth Conference on Computer and Robot
Vision. IEEE, 2012, pp. 433–440. isbn: 978-1-4673-
1271-4. doi: 10.1109/CRV.2012.64

.

.
[76] Xing, Y., Nagahashi, H., and Zhang, X. “A 3D

Dynamic Visualization Surveillance System”. In: In-
ternational Journal of Computer Science Issues 13.5
(2016), pp. 36–44. issn: 16940814. doi: 10.20943/
01201605.3644

.

.
[77] Sankaranarayanan, A. C., Patro, R., Turaga,

P., et al. “Modeling and Visualization of Human
Activities for Multicamera Networks”. In: EURASIP
Journal on Image and Video Processing 2009.4 (2009),
pp. 1–13. issn: 1687-5176. doi: 10.1155/2009/259860

.

.
[78] Brandle, N., Matyus, T., Brunnhuber, M., et

al. “Realistic Interactive Pedestrian Simulation and
Visualization for Virtual 3D Environments”. In: 2009
15th International Conference on Virtual Systems and
Multimedia. IEEE, 2009, pp. 179–184. isbn: 978-0-
7695-3790-0. doi: 10.1109/VSMM.2009.33

.

.
[79] Yang, Y., Chang, M.-C., Tu, P., et al. “Seeing as it

happens: Real time 3D video event visualization”. In:
2015 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, 2015, pp. 2875–2879. isbn: 978-
1-4799-8339-1. doi: 10.1109/ICIP.2015.7351328

.

.
[80] Xie, Y., Wang, M., Liu, X., et al. “Surveillance

Video Synopsis in GIS”. In: ISPRS International
Journal of Geo-Information 6.11 (2017), p. 333. issn:
2220-9964. doi: 10.3390/ijgi6110333

.

.
[81] Kumar, A., Chavan, P. S., Sharatchandra, V. K.,

et al. “3D Estimation and Visualization of Motion in
a Multicamera Network for Sports”. In: 2011 Irish
Machine Vision and Image Processing Conference.
IEEE, 2011, pp. 15–19. isbn: 978-0-7695-4629-2. doi:
10.1109/IMVIP.2011.12

.

.
[82] Roth, P. M., Settgast, V., Widhalm, P., et al.

“Next-generation 3D visualization for visual surveil-
lance”. In: 2011 8th IEEE International Conference
on Advanced Video and Signal Based Surveillance
(AVSS). IEEE, 2011, pp. 343–348. isbn: 978-1-4577-
0844-2. doi: 10.1109/AVSS.2011.6027348

.

.
[83] DeCamp, P., Shaw, G., Kubat, R., et al. “An immer-

sive system for browsing and visualizing surveillance

video”. In: Proceedings of the international confer-
ence on Multimedia - MM ’10. Ed. by del Bimbo,
A., Chang, S.-F., and Smeulders, A. New York,
New York, USA: ACM Press, 2010, p. 371. isbn:
9781605589336. doi: 10.1145/1873951.1874002

.

.
[84] Haan, G. de, Scheuer, J., Vries, R. de, et al. “Ego-

centric navigation for video surveillance in 3D Virtual
Environments”. In: 2009 IEEE Symposium on 3D
User Interfaces. IEEE, 2009, pp. 103–110. isbn: 978-
1-4244-3965-2. doi: 10.1109/3DUI.2009.4811214

.

.
[85] Kim, K., Oh, S., Lee, J., et al. “Augmenting Aerial

Earth Maps with dynamic information”. In: 2009
8th IEEE International Symposium on Mixed and
Augmented Reality. IEEE, 2009, pp. 35–38. isbn: 978-
1-4244-5390-0. doi: 10.1109/ISMAR.2009.5336505

.

.
[86] Wang, Y., Bowman, D., Krum, D., et al. “Effects of

video placement and spatial context presentation on
path reconstruction tasks with contextualized videos”.
In: IEEE transactions on visualization and computer
graphics 14.6 (2008), pp. 1755–1762. issn: 1077-2626.
doi: 10.1109/TVCG.2008.126

.

.
[87] Wang, Y., Krum, D. M., Coelho, E. M., et al.

“Contextualized videos: Combining videos with envi-
ronment models to support situational understand-
ing”. In: IEEE transactions on visualization and com-
puter graphics 13.6 (2007), pp. 1568–1575. issn: 1077-
2626. doi: 10.1109/TVCG.2007.70544

.

.
[88] Sebe, I. O., Hu, J., You, S., et al. “3D video surveil-

lance with Augmented Virtual Environments”. In:
First ACM SIGMM international workshop on Video
surveillance - IWVS ’03. Ed. by Chang, E. Y. and
Wang, Y.-F. New York, New York, USA: ACM Press,
2003, p. 107. isbn: 158113780X. doi: 10.1145/982452.
982466

.

.
[89] Hall, B. and Trivedi, M. M. “A Novel Graphical

Interface and Context Aware Map for Incident De-
tection and Monitoring”. In: 9th World Congress on
Intelligent Transport Systems. Chicago, Illinois, 2002.

[90] Sawhney, H. S., Arpa, A., Kumar, R., et al. Video
Flashlights - Real Time Rendering of Multiple Videos
for Immersive Model Visualization. 2002. doi: 10.
2312/EGWR/EGWR02/157-168

.

.
[91] Chandrajit, M., Girisha, R., and Vasudev, T.

“Multiple Objects Tracking in Surveillance Video Us-
ing Color and Hu Moments”. In: Signal & Image Pro-
cessing : An International Journal 7.3 (2016), pp. 15–
27. issn: 22293922. doi: 10.5121/sipij.2016.7302

.

.
[92] Gruenwedel, S., Jelaca, V., Nino-Castaneda,

J. O., et al. “Low-complexity scalable distributed
multicamera tracking of humans”. In: ACM Transac-
tions on Sensor Networks 10.2 (2014), pp. 1–32. issn:
15504859. doi: 10.1145/2530282

.

.
[93] Jiang, X., Rodner, E., and Denzler, J. “Multi-

person Tracking-by-Detection Based on Calibrated
Multi-camera Systems”. In: Computer Vision and
Graphics. Ed. by Hutchison, D., Kanade, T., Kit-
tler, J., et al. Vol. 7594. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 743–751. isbn: 978-3-642-33563-1. doi:
10.1007/978-3-642-33564-8_89

.

.

85

https://doi.org/10.1109/ICDSC.2011.6042956
https://doi.org/10.1109/CVPRW.2006.6
https://doi.org/10.1109/CVPRW.2006.6
https://doi.org/10.1109/CRV.2012.64
https://doi.org/10.20943/01201605.3644
https://doi.org/10.20943/01201605.3644
https://doi.org/10.1155/2009/259860
https://doi.org/10.1109/VSMM.2009.33
https://doi.org/10.1109/ICIP.2015.7351328
https://doi.org/10.3390/ijgi6110333
https://doi.org/10.1109/IMVIP.2011.12
https://doi.org/10.1109/AVSS.2011.6027348
https://doi.org/10.1145/1873951.1874002
https://doi.org/10.1109/3DUI.2009.4811214
https://doi.org/10.1109/ISMAR.2009.5336505
https://doi.org/10.1109/TVCG.2008.126
https://doi.org/10.1109/TVCG.2007.70544
https://doi.org/10.1145/982452.982466
https://doi.org/10.1145/982452.982466
https://doi.org/10.2312/EGWR/EGWR02/157-168
https://doi.org/10.2312/EGWR/EGWR02/157-168
https://doi.org/10.5121/sipij.2016.7302
https://doi.org/10.1145/2530282
https://doi.org/10.1007/978-3-642-33564-8_89

Bibliography

[94] Yildiz, A. and Akgul, Y. S. “A Fast Method for
Tracking People with Multiple Cameras”. In: Trends
and Topics in Computer Vision. Ed. by Hutchison,
D., Kanade, T., Kittler, J., et al. Vol. 6553. Lec-
ture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 128–138. isbn:
978-3-642-35748-0. doi: 10.1007/978-3-642-35749-
7_10

.

.
[95] Sternig, S., Mauthner, T., Irschara, A., et al.

“Multi-camera multi-object tracking by robust hough-
based homography projections”. In: 2011 IEEE In-
ternational Conference on Computer Vision Work-
shops (ICCV Workshops). IEEE, 2011, pp. 1689–1696.
isbn: 978-1-4673-0063-6. doi: 10.1109/ICCVW.2011.
6130453

.

.
[96] Eshel, R. and Moses, Y. “Tracking in a Dense

Crowd Using Multiple Cameras”. In: International
Journal of Computer Vision 88.1 (2010), pp. 129–143.
issn: 0920-5691. doi: 10.1007/s11263-009-0307-0

.

.
[97] Khan, S. M. and Shah, M. “Tracking multiple oc-

cluding people by localizing on multiple scene planes”.
In: IEEE transactions on pattern analysis and ma-
chine intelligence 31.3 (2009), pp. 505–519. issn: 0162-
8828. doi: 10.1109/TPAMI.2008.102

.

.
[98] Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-

Cuevas, F. J., et al. “Multi-camera people tracking
using evidential filters”. In: International Journal of
Approximate Reasoning 50.5 (2009), pp. 732–749. doi:
10.1016/j.ijar.2009.02.001

.

.
[99] Kanade, T., Collins, R., Lipton, A., et al., eds.

Cooperative Multi-Sensor Video Surveillance. 1997.
[100] Collins, R. T., Lipton, A. J., and Kanade, T. “A

System for Video Surveillance and Monitoring”. In:
1999.

[101] Collins, R. T., Lipton, A. J., Fujiyoshi, H., et al.
“Algorithms for cooperative multisensor surveillance”.
In: Proceedings of the IEEE 89.10 (2001), pp. 1456–
1477. issn: 00189219. doi: 10.1109/5.959341

.

.
[102] Bobick, A. F. and Davis, J. W. “The recognition

of human movement using temporal templates”. In:
IEEE transactions on pattern analysis and machine
intelligence 23.3 (2001), pp. 257–267. issn: 0162-8828.
doi: 10.1109/34.910878

.

.
[103] Rieffel, E. G., Girgensohn, A., Kimber, D., et al.

“Geometric Tools for Multicamera Surveillance Sys-
tems”. In: 2007 First ACM/IEEE International Con-
ference on Distributed Smart Cameras. IEEE, 2007,
pp. 132–139. isbn: 978-1-4244-1353-9. doi: 10.1109/
ICDSC.2007.4357516

.

.
[104] Yang, T., Chen, F., Kimber, D., et al. “Robust

People Detection and Tracking in a Multi-Camera
Indoor Visual Surveillance System”. In: Multimedia
and Expo, 2007 IEEE International Conference on.
IEEE, 2007, pp. 675–678. isbn: 1-4244-1016-9. doi:
10.1109/ICME.2007.4284740

.

.
[105] Girgensohn, A., Shipman, F., Turner, T., et al.

“Effects of presenting geographic context on track-
ing activity between cameras”. In: Proceedings of
the SIGCHI conference on Human factors in com-
puting systems - CHI ’07. Ed. by Rosson, M. B.
and Gilmore, D. New York, New York, USA: ACM

Press, 2007, p. 1167. isbn: 9781595935939. doi: 10.
1145/1240624.1240801

.

.
[106] Kimber, D., Dunnigan, T., Girgensohn, A., et al.

“Trailblazing: Video Playback Control by Direct Ob-
ject Manipulation”. In: Multimedia and Expo, 2007
IEEE International Conference on. IEEE, 2007, pp. 1015–
1018. isbn: 1-4244-1016-9. doi: 10.1109/ICME.2007.
4284825

.

.
[107] Xie, Y., Wang, M., Liu, X., et al. “Integration of

GIS and Moving Objects in Surveillance Video”. In:
ISPRS International Journal of Geo-Information 6.4
(2017), p. 94. issn: 2220-9964. doi: 10.3390/ijgi
6040094

.

.
[108] Jancosek, M. and Pajdla, T. “Multi-view recon-

struction preserving weakly-supported surfaces”. In:
CVPR 2011. IEEE, 2011, pp. 3121–3128. isbn: 978-1-
4577-0394-2. doi: 10.1109/CVPR.2011.5995693

.

.
[109] Irschara, A., Zach, C., and Bischof, H. “Towards

Wiki-based Dense City Modeling”. In: 2007 IEEE
11th International Conference on Computer Vision.
IEEE, 2007, pp. 1–8. isbn: 978-1-4244-1630-1. doi:
10.1109/ICCV.2007.4409216

.

.
[110] Girgensohn, A., Dunnigan, A. E., Shipman, F. M.,

et al. “Interface for browsing and viewing video from
multiple cameras simultaneously that conveys spatial
and temporal proximity”. US 8,274,564. 2012.

[111] Zhou, H., Liu, Q., Kimber, D., et al. “System and
Method for User Monitoring Interface of 3D Video
Streams from Multiple Cameras”. US 7,944,454. 2011.

[112] Oracle. MySQL Reference Manual 8.0. 2018. url:
https://dev.mysql.com/doc/refman/8.0/en/

.

(visited on 2018-10-08).
[113] Ippolito, B. and Preston, D. Eventlet 0.24.1 Doc-

umentation. 2010. url: http://eventlet.net/doc/

.

(visited on 2018-10-08).
[114] Ronacher, A. Flask 1.0 User Guide. 2018. url: http:

//flask.pocoo.org/docs/1.0/

.

(visited on 2018-10-
08).

[115] Grinberg, M. Flask-SocketIO 3.0.2 Documentation.
2018. url: https://flask-socketio.readthedocs.
io/en/latest/

.

(visited on 2018-10-08).
[116] Sanfilippo, S. Redis 4.0 Documentation. 2018. url:

https://redis.io/documentation

.

(visited on 2018-
10-08).

[117] Bewley, A., Ge, Z., Ott, L., et al. “Simple Online
and Realtime Tracking”. In: (2016), pp. 3464–3468.
doi: 10.1109/ICIP.2016.7533003

.

. url: http://
arxiv.org/pdf/1602.00763v2

.

.
[118] Wojke, N., Bewley, A., and Paulus, D. Simple

Online and Realtime Tracking with a Deep Association
Metric. 2017. url: http://arxiv.org/pdf/1703.
07402v1

.

.
[119] Huang, J., Rathod, V., Sun, C., et al. Speed/ac-

curacy trade-offs for modern convolutional object de-
tectors. 2017. url: http://arxiv.org/pdf/1611.
10012v3

.

.
[120] Mahmoud, Z. Experimenting with SORT: GitHub

repository. 2017. url: https://github.com/ZidanMu
sk/experimenting-with-sort/blob/master/data_
association.py

.

(visited on 2018-10-12).

86

https://doi.org/10.1007/978-3-642-35749-7_10
https://doi.org/10.1007/978-3-642-35749-7_10
https://doi.org/10.1109/ICCVW.2011.6130453
https://doi.org/10.1109/ICCVW.2011.6130453
https://doi.org/10.1007/s11263-009-0307-0
https://doi.org/10.1109/TPAMI.2008.102
https://doi.org/10.1016/j.ijar.2009.02.001
https://doi.org/10.1109/5.959341
https://doi.org/10.1109/34.910878
https://doi.org/10.1109/ICDSC.2007.4357516
https://doi.org/10.1109/ICDSC.2007.4357516
https://doi.org/10.1109/ICME.2007.4284740
https://doi.org/10.1145/1240624.1240801
https://doi.org/10.1145/1240624.1240801
https://doi.org/10.1109/ICME.2007.4284825
https://doi.org/10.1109/ICME.2007.4284825
https://doi.org/10.3390/ijgi6040094
https://doi.org/10.3390/ijgi6040094
https://doi.org/10.1109/CVPR.2011.5995693
https://doi.org/10.1109/ICCV.2007.4409216
https://dev.mysql.com/doc/refman/8.0/en/
http://eventlet.net/doc/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
https://flask-socketio.readthedocs.io/en/latest/
https://flask-socketio.readthedocs.io/en/latest/
https://redis.io/documentation
https://doi.org/10.1109/ICIP.2016.7533003
http://arxiv.org/pdf/1602.00763v2
http://arxiv.org/pdf/1602.00763v2
http://arxiv.org/pdf/1703.07402v1
http://arxiv.org/pdf/1703.07402v1
http://arxiv.org/pdf/1611.10012v3
http://arxiv.org/pdf/1611.10012v3
https://github.com/ZidanMusk/experimenting-with-sort/blob/master/data_association.py
https://github.com/ZidanMusk/experimenting-with-sort/blob/master/data_association.py
https://github.com/ZidanMusk/experimenting-with-sort/blob/master/data_association.py

Bibliography

[121] Jones, E., Oliphant, T., and Peterson, P. SciPy:
Open Source Scientific Tools for Python. 2001. url:
http://www.scipy.org/

.

(visited on 2018-10-15).
[122] Burkard, R. E. and Çela, E. “Linear Assignment

Problems and Extensions”. In: Handbook of Combina-
torial Optimization. Ed. by Du, D.-Z. and Pardalos,
P. M. Boston, MA: Springer US, 1999, pp. 75–149.
isbn: 978-1-4419-4813-7. doi: 10.1007/978-1-4757-
3023-4_2

.

.
[123] Cantor, G. “Ein Beitrag zur Mannigfaltigkeitslehre”.

In: Journal für die reine und angewandte Mathematik
(Crelles Journal) 1878.84 (1878), pp. 242–258. issn:
0075-4102. doi: 10.1515/crll.1878.84.242

.

.
[124] Oracle.MySQL Connector: Python Developer Guide.

2018. url: https://dev.mysql.com/doc/connector
-python/en/

.

(visited on 2018-10-16).
[125] Cabello, R. three.js Javascript 3D Library Docu-

mentation. 2018. url: https://threejs.org/docs/
index.html

.

(visited on 2018-10-18).
[126] Khronos Group. WebGL Overview. 2018. url: htt

ps://www.khronos.org/webgl/

.

(visited on 2018-10-
18).

[127] Bostock, M. D3.js: Data-Driven Documents. 2017.
url: https://d3js.org/

.

.
[128] Schulzrinne, H., Rao, A., Lanphier, R., et al.

Real-Time Streaming Protocol Version 2.0. 2016. doi:
10.17487/RFC7826

.

. url: https://rfc-editor.org/
rfc/rfc7826.txt

.

.
[129] Kannala, J. and Brandt, S. S. “A generic camera

model and calibration method for conventional, wide-
angle, and fish-eye lenses”. In: IEEE transactions on
pattern analysis and machine intelligence 28.8 (2006),
pp. 1335–1340. issn: 0162-8828. doi: 10.1109/TPAMI.
2006.153

.

.
[130] OpenCV Fisheye Camera Model. 2018. url: https://

docs.opencv.org/trunk/db/d58/group__calib3d_
_fisheye.html

.

(visited on 2018-07-30).
[131] Sankaranarayanan, A. C. and Chellappa, R.

“Optimal Multi-View Fusion of Object Locations”.
In: 2008 IEEE Workshop on Motion and video Com-
puting. IEEE, 2008, pp. 1–8. isbn: 978-1-4244-2000-1.
doi: 10.1109/WMVC.2008.4544048

.

.
[132] Eshel, R. and Moses, Y. “Homography based mul-

tiple camera detection and tracking of people in a
dense crowd”. In: 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2008,
pp. 1–8. isbn: 978-1-4244-2242-5. doi: 10.1109/CVPR.
2008.4587539

.

.
[133] Khan, S. M. and Shah, M. “A Multiview Approach

to Tracking People in Crowded Scenes Using a Pla-
nar Homography Constraint”. In: Computer Vision
– ECCV 2006. Ed. by Leonardis, A., Bischof, H.,
and Pinz, A. Vol. 3954. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 133–146. isbn: 978-3-540-33838-3. doi:
10.1007/11744085_11

.

.
[134] Kim, K. and Davis, L. S. “Multi-camera Tracking

and Segmentation of Occluded People on Ground
Plane Using Search-Guided Particle Filtering”. In:
Computer Vision – ECCV 2006. Ed. by Hutchison,
D., Kanade, T., Kittler, J., et al. Vol. 3953. Lec-

ture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 98–109. isbn:
978-3-540-33836-9. doi: 10.1007/11744078_8

.

.
[135] Levenberg, K. “A method for the solution of certain

non-linear problems in least squares”. In: Quarterly
of Applied Mathematics 2.2 (1944), pp. 164–168. doi:
10.1090/qam/10666

.

.
[136] Marquardt, D. W. “An Algorithm for Least-Squares

Estimation of Nonlinear Parameters”. In: Journal
of the Society for Industrial and Applied Mathemat-
ics 11.2 (1963), pp. 431–441. issn: 0368-4245. doi:
10.1137/0111030

.

.
[137] Rousseeuw, P. J. “Least Median of Squares Regres-

sion”. In: Journal of the American Statistical Asso-
ciation 79.388 (1984), pp. 871–880. issn: 0162-1459.
doi: 10.1080/01621459.1984.10477105

.

.
[138] NVIDIA Corporation. TensorRT 5.0 Developer

Guide. 2018. url: https://docs.nvidia.com/deep
learning/sdk/tensorrt-developer-guide/index.
html

.

(visited on 2018-10-20).
[139] Tan, L., Wang, Y., Yu, H., et al. “Automatic Cam-

era Calibration Using Active Displays of a Virtual
Pattern”. In: Sensors (Basel, Switzerland) 17.4 (2017).
doi: 10.3390/s17040685

.

.
[140] Forster, F. “Camera calibration: Active versus pas-

sive targets”. In: Optical Engineering 50.11 (2011),
p. 113601. issn: 0091-3286. doi: 10.1117/1.3643726

.

.
[141] Herrera, D., Kannala, C. J., and Heikkila, J.

“Forget the checkerboard: Practical self-calibration
using a planar scene”. In: 2016 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV).
Piscataway, NJ: IEEE, 2016, pp. 1–9. isbn: 978-1-
5090-0641-0. doi: 10.1109/WACV.2016.7477641

.

.
[142] Girshick, R., Donahue, J., Darrell, T., et al. Rich

feature hierarchies for accurate object detection and
semantic segmentation. 2013. url: http://arxiv.
org/pdf/1311.2524v5

.

.
[143] Zhai, M., Roshtkhari, M. J., and Mori, G. Deep

Learning of Appearance Models for Online Object
Tracking. 2016. url: http://arxiv.org/pdf/1607.
02568v1

.

.
[144] Sharma, S., Ansari, J. A., Murthy, J. K., et al.

Beyond Pixels: Leveraging Geometry and Shape Cues
for Online Multi-Object Tracking. 2018. url: http:
//arxiv.org/pdf/1802.09298v2

.

.
[145] Gordon, D., Farhadi, A., and Fox, D. Re3: Real-

Time Recurrent Regression Networks for Visual Track-
ing of Generic Objects. 2018. url: http://arxiv.
org/pdf/1705.06368v3

.

.
[146] Kristan, M., Matas, J., Leonardis, A., et al. “A

Novel Performance Evaluation Methodology for Single-
Target Trackers”. In: IEEE transactions on pattern
analysis and machine intelligence 38.11 (2016), pp. 2137–
2155. issn: 0162-8828. doi: 10.1109/TPAMI.2016.
2516982

.

. url: http://arxiv.org/pdf/1503.01313v
3

.

.
[147] Computer Vision Annotation Tool (CVAT): GitHub

repository. 2018. url: https://github.com/opencv/
cvat

.

(visited on 2018-09-22).
[148] Čehovin, L., Leonardis, A., and Kristan, M. “Vi-

sual object tracking performance measures revisited”.

87

http://www.scipy.org/
https://doi.org/10.1007/978-1-4757-3023-4_2
https://doi.org/10.1007/978-1-4757-3023-4_2
https://doi.org/10.1515/crll.1878.84.242
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://threejs.org/docs/index.html
https://threejs.org/docs/index.html
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://d3js.org/
https://doi.org/10.17487/RFC7826
https://rfc-editor.org/rfc/rfc7826.txt
https://rfc-editor.org/rfc/rfc7826.txt
https://doi.org/10.1109/TPAMI.2006.153
https://doi.org/10.1109/TPAMI.2006.153
https://docs.opencv.org/trunk/db/d58/group__calib3d__fisheye.html
https://docs.opencv.org/trunk/db/d58/group__calib3d__fisheye.html
https://docs.opencv.org/trunk/db/d58/group__calib3d__fisheye.html
https://doi.org/10.1109/WMVC.2008.4544048
https://doi.org/10.1109/CVPR.2008.4587539
https://doi.org/10.1109/CVPR.2008.4587539
https://doi.org/10.1007/11744085_11
https://doi.org/10.1007/11744078_8
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1080/01621459.1984.10477105
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://doi.org/10.3390/s17040685
https://doi.org/10.1117/1.3643726
https://doi.org/10.1109/WACV.2016.7477641
http://arxiv.org/pdf/1311.2524v5
http://arxiv.org/pdf/1311.2524v5
http://arxiv.org/pdf/1607.02568v1
http://arxiv.org/pdf/1607.02568v1
http://arxiv.org/pdf/1802.09298v2
http://arxiv.org/pdf/1802.09298v2
http://arxiv.org/pdf/1705.06368v3
http://arxiv.org/pdf/1705.06368v3
https://doi.org/10.1109/TPAMI.2016.2516982
https://doi.org/10.1109/TPAMI.2016.2516982
http://arxiv.org/pdf/1503.01313v3
http://arxiv.org/pdf/1503.01313v3
https://github.com/opencv/cvat
https://github.com/opencv/cvat

Bibliography

In: IEEE Transactions on Image Processing (2016),
p. 1. issn: 1057-7149. doi: 10 . 1109 / TIP . 2016 .
2520370

.

. url: http://arxiv.org/pdf/1502.05803v
3

.

.
[149] Schuhmacher, D., Vo, B.-T., and Vo, B.-N. “A

Consistent Metric for Performance Evaluation of Multi-
Object Filters”. In: IEEE Transactions on Signal Pro-
cessing 56.8 (2008), pp. 3447–3457. doi: 10.1109/
TSP.2008.920469

.

.
[150] Edward, K. K., Matthew, P. D., and Michael,

B. H. “An information theoretic approach for tracker
performance evaluation”. In: 2009 IEEE 12th In-
ternational Conference on Computer Vision. IEEE,
2009, pp. 1523–1529. isbn: 978-1-4244-4420-5. doi:
10.1109/ICCV.2009.5459275

.

.
[151] Smith, K., Gatica-Perez, D., Odobez, J., et al.

“Evaluating Multi-Object Tracking”. In: 2005 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Workshops.
IEEE, 2005, p. 36. isbn: 0-7695-2372-2. doi: 10.1109/
CVPR.2005.453

.

.
[152] Bernardin, K. and Stiefelhagen, R. “Evaluating

Multiple Object Tracking Performance: The CLEAR
MOT Metrics”. In: EURASIP Journal on Image and
Video Processing 2008 (2008), pp. 1–10. issn: 1687-
5176. doi: 10.1155/2008/246309

.

.
[153] Carvalho, P., Cardoso, J. S., and Corte-Real,

L. “Filling the gap in quality assessment of video
object tracking”. In: Image and Vision Computing
30.9 (2012), pp. 630–640. issn: 02628856. doi: 10.
1016/j.imavis.2012.06.002

.

.
[154] Kasturi, R., Goldgof, D., Soundararajan, P.,

et al. “Framework for performance evaluation of face,
text, and vehicle detection and tracking in video:
Data, metrics, and protocol”. In: IEEE transactions
on pattern analysis and machine intelligence 31.2
(2009), pp. 319–336. issn: 0162-8828. doi: 10.1109/
TPAMI.2008.57

.

.
[155] Li, Y., Huang, C., and Nevatia, R. “Learning

to associate: HybridBoosted multi-target tracker for
crowded scene”. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2009,
pp. 2953–2960. isbn: 978-1-4244-3992-8. doi: 10.1109/
CVPR.2009.5206735

.

.
[156] Leichter, I. and Krupka, E. “Monotonicity and

error type differentiability in performance measures
for target detection and tracking in video”. In: IEEE
transactions on pattern analysis and machine intelli-
gence 35.10 (2013), pp. 2553–2560. issn: 0162-8828.
doi: 10.1109/TPAMI.2013.70

.

.
[157] Manohar, V., Soundararajan, P., Raju, H., et al.

“Performance Evaluation of Object Detection and
Tracking in Video”. In: Computer Vision – ACCV
2006. Ed. by Hutchison, D., Kanade, T., Kit-
tler, J., et al. Vol. 3852. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 151–161. isbn: 978-3-540-31244-4. doi:
10.1007/11612704_16

.

.
[158] Bashir, F. and Porikli, F. Performance Evaluation

of Object Detection and Tracking Systems. 2006.

[159] Godil, A., Bostelman, R., Shackleford, W., et
al. Performance Metrics for Evaluating Object and
Human Detection and Tracking Systems. National
Institute of Standards and Technology, 2014. doi:
10.6028/NIST.IR.7972

.

.
[160] Wu, B. and Nevatia, R. “Tracking of Multiple, Par-

tially Occluded Humans based on Static Body Part
Detection”. In: 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition -
Volume 1 (CVPR’06). IEEE, 2006, pp. 951–958. isbn:
0-7695-2597-0. doi: 10.1109/CVPR.2006.312

.

.
[161] Ristani, E., Solera, F., Zou, R. S., et al. Perfor-

mance Measures and a Data Set for Multi-Target,
Multi-Camera Tracking. 2016. url: http://arxiv.
org/pdf/1609.01775v2

.

.
[162] Black, J., Ellis, T., and Rosin, P. “A Novel Method

for Video Tracking Performance Evaluation”. In: In
Joint IEEE Int. Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance
(VS-PETS. 2003, pp. 125–132.

[163] Jaynes, C., Webb, S., Steele, R. M., et al. “An
Open Development Environment for Evaluation of
Video Surveillance Systems”. In: Proceedings of the
Third International Workshop on Performance Evalu-
ation of Tracking and Surveillance (PETS’2002. 2002,
pp. 32–39.

[164] Cavallaro, A. and F. Ziliani. “Characterisation of
tracking performance”. In: Proceedings of Workshop
on Image Analysis for Multimedia Interactive Services
(WIAMIS). 2005.

[165] Bernardin, K., Elbs, A., and Stiefelhagen, R.
Multiple Object Tracking Performance Metrics and
Evaluation in a Smart Room Environment. 2006.

[166] Brown, L. M., Senior, A. W., Tian, Y.-l., et al.
“Performance evaluation of surveillance systems un-
der varying conditions”. In: In: Proceedings of IEEE
PETS Workshop. 2005, pp. 1–8.

[167] Ellis, T. “Performance Metrics and Methods for
Tracking in Surveillance”. In: Proceedings of the Third
International Workshop on Performance Evaluation
of Tracking and Surveillance. 2002.

[168] Ibrahim, A. M., Shafie, A. A., and Rashid, M. M.
“Performance Metrics in Video Surveillance System”.
In: Journal of Engineering Science and Technology
8.2 (2013), pp. 199–216.

[169] Geiger, A., Lenz, P., and Urtasun, R. “Are we
ready for autonomous driving? The KITTI vision
benchmark suite”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.
Piscataway, NJ: IEEE, 2012, pp. 3354–3361. isbn: 978-
1-4673-1228-8. doi: 10.1109/CVPR.2012.6248074

.

.
[170] Wen, L., Du Dawei, Cai, Z., et al. UA-DETRAC:

A New Benchmark and Protocol for Multi-Object De-
tection and Tracking. 2016. url: http://arxiv.org/
pdf/1511.04136v3

.

.
[171] Stiefelhagen, R., Bernardin, K., Bowers, R.,

et al. “The CLEAR 2006 Evaluation”. In: Multimodal
technologies for perception of humans. Ed. by Stiefel-
hagen, R. Vol. 4122. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidel-

88

https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/TIP.2016.2520370
http://arxiv.org/pdf/1502.05803v3
http://arxiv.org/pdf/1502.05803v3
https://doi.org/10.1109/TSP.2008.920469
https://doi.org/10.1109/TSP.2008.920469
https://doi.org/10.1109/ICCV.2009.5459275
https://doi.org/10.1109/CVPR.2005.453
https://doi.org/10.1109/CVPR.2005.453
https://doi.org/10.1155/2008/246309
https://doi.org/10.1016/j.imavis.2012.06.002
https://doi.org/10.1016/j.imavis.2012.06.002
https://doi.org/10.1109/TPAMI.2008.57
https://doi.org/10.1109/TPAMI.2008.57
https://doi.org/10.1109/CVPR.2009.5206735
https://doi.org/10.1109/CVPR.2009.5206735
https://doi.org/10.1109/TPAMI.2013.70
https://doi.org/10.1007/11612704_16
https://doi.org/10.6028/NIST.IR.7972
https://doi.org/10.1109/CVPR.2006.312
http://arxiv.org/pdf/1609.01775v2
http://arxiv.org/pdf/1609.01775v2
https://doi.org/10.1109/CVPR.2012.6248074
http://arxiv.org/pdf/1511.04136v3
http://arxiv.org/pdf/1511.04136v3

Bibliography

berg, 2007, pp. 1–44. isbn: 978-3-540-69567-7. doi:
10.1007/978-3-540-69568-4_1

.

.
[172] Heindl, C. Python MOT metrics package: GitHub

repository. 2018. url: https://github.com/cheind/
py-motmetrics

.

(visited on 2018-09-21).
[173] Ryzhov, S. Woman crossing the street at pedestrian

crossing. 2018. url: https://stock.adobe.com/bg/
search?serie_id=84780718&asset_id=84791571

.

(visited on 2018-12-12).
[174] Chen, W., Cao, L., Chen, X., et al. An equalised

global graphical model-based approach for multi-camera
object tracking. 2016. url: http://arxiv.org/pdf/
1502.03532v2

.

.
[175] Zoph, B., Vasudevan, V., Shlens, J., et al. Learning

Transferable Architectures for Scalable Image Recog-
nition. 2017. url: http://arxiv.org/pdf/1707.
07012v4

.

.
[176] Szegedy, C., Ioffe, S., Vanhoucke, V., et al. Inception-

v4, Inception-ResNet and the Impact of Residual Con-
nections on Learning. 2016. url: http://arxiv.org/
pdf/1602.07261v2

.

.
[177] He, K., Zhang, X., Ren, S., et al. Deep Residual

Learning for Image Recognition. 2015. url: http:
//arxiv.org/pdf/1512.03385v1

.

.
[178] Dai, J., Li, Y., He, K., et al. R-FCN: Object Detec-

tion via Region-based Fully Convolutional Networks.
2016. url: http://arxiv.org/pdf/1605.06409v2

.

.
[179] Henriques, J. F., Caseiro, R., Martins, P., et al.

“High-Speed Tracking with Kernelized Correlation
Filters”. In: IEEE transactions on pattern analysis
and machine intelligence 37.3 (2015), pp. 583–596.
issn: 0162-8828. doi: 10.1109/TPAMI.2014.2345390

.

.
url: http://arxiv.org/pdf/1404.7584v3

.

.
[180] Luo, H., Xie, W., Wang, X., et al. Detect or Track:

Towards Cost-Effective Video Object Detection/Track-
ing. 2018. url: http : / / arxiv . org / pdf / 1811 .
05340v1

.

.
[181] Ristani, E. and Tomasi, C. “Tracking Multiple Peo-

ple Online and in Real Time”. In: Computer Vision –
ACCV 2014. Ed. by Cremers, D., Reid, I., Saito,
H., et al. Vol. 9007. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2015,
pp. 444–459. isbn: 978-3-319-16813-5. doi: 10.1007/
978-3-319-16814-2_29

.

.
[182] Solera, F., Calderara, S., Ristani, E., et al.

“Tracking Social Groups Within and Across Cam-
eras”. In: IEEE Transactions on Circuits and Systems
for Video Technology 27.3 (2017), pp. 441–453. issn:
1051-8215. doi: 10.1109/TCSVT.2016.2607378

.

.
[183] Bakker, C. de, Aries, M., Kort, H., et al. “Occupancy-

based lighting control in open-plan office spaces: A
state-of-the-art review”. In: Building and Environ-
ment 112 (2017), pp. 308–321. issn: 03601323. doi:
10.1016/j.buildenv.2016.11.042

.

.
[184] Dong, J., Winstead, C., Nutaro, J., et al. “Occupancy-

Based HVAC Control with Short-Term Occupancy
Prediction Algorithms for Energy-Efficient Buildings”.
In: Energies 11.9 (2018), p. 2427. issn: 1996-1073. doi:
10.3390/en11092427

.

.
[185] Chen, Z., Jiang, C., and Xie, L. “Building occu-

pancy estimation and detection: A review”. In: Energy

and Buildings 169 (2018), pp. 260–270. issn: 03787788.
doi: 10.1016/j.enbuild.2018.03.084

.

.
[186] Labeodan, T., Zeiler, W., Boxem, G., et al. “Occu-

pancy measurement in commercial office buildings for
demand-driven control applications—A survey and
detection system evaluation”. In: Energy and Build-
ings 93 (2015), pp. 303–314. issn: 03787788. doi:
10.1016/j.enbuild.2015.02.028

.

.
[187] Kong, Y. and Fu, Y. Human Action Recognition and

Prediction: A Survey. 2018. url: http://arxiv.org/
pdf/1806.11230v2

.

.
[188] Herath, S., Harandi, M., and Porikli, F. Going

Deeper into Action Recognition: A Survey. 2017. url:
http://arxiv.org/pdf/1605.04988v2

.

.
[189] Subetha, T. and Chitrakala, S. “A survey on hu-

man activity recognition from videos”. In: 2016 Inter-
national Conference on Information Communication
and Embedded Systems (ICICES). IEEE, 2016, pp. 1–
7. isbn: 978-1-5090-2552-7. doi: 10.1109/ICICES.
2016.7518920

.

.
[190] Dhiman, C. and Vishwakarma, D. K. “A review

of state-of-the-art techniques for abnormal human
activity recognition”. In: Engineering Applications
of Artificial Intelligence 77 (2019), pp. 21–45. issn:
09521976. doi: 10.1016/j.engappai.2018.08.014

.

.
[191] Guthrie, J., Mishra, B. K., and Prasad, A. “Min-

imizing retail shrinkage due to employee theft”. In:
International Journal of Retail & Distribution Man-
agement 34.11 (2006), pp. 817–832. issn: 0959-0552.
doi: 10.1108/09590550610710228

.

.
[192] Mufutau, G. O. “Fraud Detections, Preventions

and Management in Stores/Warehouses in an Emerg-
ing Economy”. In: Innovative Systems Design and
Engineering 4.12 (2013), pp. 13–25.

[193] Cisco-Eagle. Industrial & Warehouse Security: Put
a Stop To Theft and Pilferage. 2018. url: http://www.
cisco-eagle.com/uploads/White-Papers/eBook-
Loss_Prevention-tall.pdf

.

(visited on 2018-10-25).
[194] Wang, B., Li, H., Rezgui, Y., et al. “BIM based

virtual environment for fire emergency evacuation”.
In: TheScientificWorldJournal 2014 (2014), p. 589016.
doi: 10.1155/2014/589016

.

.
[195] Rueppel, U. and Stuebbe, K. M. “BIM-based indoor-

emergency-navigation-system for complex buildings”.
In: Tsinghua Science and Technology 13.S1 (2008),
pp. 362–367. issn: 1007-0214. doi: 10.1016/S1007-
0214(08)70175-5

.

.
[196] Rausand, M. Risk Assessment: Theory, Methods,

and Applications. Statistics in Practice. Hoboken:
Wiley, 2013. isbn: 978-0470637647. doi: 10.1002/
9781118281116

.

. url: http : / / search . ebscohost .
com/login.aspx?direct=true&scope=site&db=
nlebk&db=nlabk&AN=597754

.

.
[197] Wang, M. and Deng, W. Deep Face Recognition:

A Survey. 2018. url: http://arxiv.org/pdf/1804.
06655v7

.

.
[198] Prihasto, B., Choirunnisa, S., Nurdiansyah, M. I.,

et al. “A survey of deep face recognition in the wild”.
In: 2016 International Conference on Orange Tech-
nologies (ICOT). IEEE, 2016, pp. 76–79. isbn: 978-1-
5386-4831-5. doi: 10.1109/ICOT.2016.8278983

.

.

89

https://doi.org/10.1007/978-3-540-69568-4_1
https://github.com/cheind/py-motmetrics
https://github.com/cheind/py-motmetrics
https://stock.adobe.com/bg/search?serie_id=84780718&asset_id=84791571
https://stock.adobe.com/bg/search?serie_id=84780718&asset_id=84791571
http://arxiv.org/pdf/1502.03532v2
http://arxiv.org/pdf/1502.03532v2
http://arxiv.org/pdf/1707.07012v4
http://arxiv.org/pdf/1707.07012v4
http://arxiv.org/pdf/1602.07261v2
http://arxiv.org/pdf/1602.07261v2
http://arxiv.org/pdf/1512.03385v1
http://arxiv.org/pdf/1512.03385v1
http://arxiv.org/pdf/1605.06409v2
https://doi.org/10.1109/TPAMI.2014.2345390
http://arxiv.org/pdf/1404.7584v3
http://arxiv.org/pdf/1811.05340v1
http://arxiv.org/pdf/1811.05340v1
https://doi.org/10.1007/978-3-319-16814-2_29
https://doi.org/10.1007/978-3-319-16814-2_29
https://doi.org/10.1109/TCSVT.2016.2607378
https://doi.org/10.1016/j.buildenv.2016.11.042
https://doi.org/10.3390/en11092427
https://doi.org/10.1016/j.enbuild.2018.03.084
https://doi.org/10.1016/j.enbuild.2015.02.028
http://arxiv.org/pdf/1806.11230v2
http://arxiv.org/pdf/1806.11230v2
http://arxiv.org/pdf/1605.04988v2
https://doi.org/10.1109/ICICES.2016.7518920
https://doi.org/10.1109/ICICES.2016.7518920
https://doi.org/10.1016/j.engappai.2018.08.014
https://doi.org/10.1108/09590550610710228
http://www.cisco-eagle.com/uploads/White-Papers/eBook-Loss_Prevention-tall.pdf
http://www.cisco-eagle.com/uploads/White-Papers/eBook-Loss_Prevention-tall.pdf
http://www.cisco-eagle.com/uploads/White-Papers/eBook-Loss_Prevention-tall.pdf
https://doi.org/10.1155/2014/589016
https://doi.org/10.1016/S1007-0214(08)70175-5
https://doi.org/10.1016/S1007-0214(08)70175-5
https://doi.org/10.1002/9781118281116
https://doi.org/10.1002/9781118281116
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=597754
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=597754
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=597754
http://arxiv.org/pdf/1804.06655v7
http://arxiv.org/pdf/1804.06655v7
https://doi.org/10.1109/ICOT.2016.8278983

Bibliography

[199] Jafri, R. and Arabnia, H. R. “A Survey of Face
Recognition Techniques”. In: Journal of Information
Processing Systems 5.2 (2009), pp. 41–68. doi: 10.
3745/JIPS.2009.5.2.041

.

.
[200] Zou, X., Kittler, J., and Messer, K. “Illumination

Invariant Face Recognition: A Survey”. In: 2007 First
IEEE International Conference on Biometrics: The-
ory, Applications, and Systems. IEEE, 2007, pp. 1–8.
isbn: 978-1-4244-1596-0. doi: 10.1109/BTAS.2007.
4401921

.

.
[201] Bowyer, K. W., Chang, K., and Flynn, P. “A

survey of approaches and challenges in 3D and multi-
modal 3D+2D face recognition”. In: Computer Vision
and Image Understanding 101.1 (2006), pp. 1–15. issn:
10773142. doi: 10.1016/j.cviu.2005.05.005

.

.
[202] Zhao, W., Chellappa, R., Phillips, P. J., et al.

“Face recognition: A Literature Survey”. In: ACM
Computing Surveys 35.4 (2003), pp. 399–458. issn:
03600300. doi: 10.1145/954339.954342

.

.
[203] Ganesharajah, T., Hall, N. G., and Sriskandara-

jah, C. “Design and operational issues in AGV-served
manufacturing systems”. In: Annals of Operations Re-
search 76.0 (1998), pp. 109–154. issn: 02545330. doi:
10.1023/A:1018936219150

.

.
[204] Andreasson, H., Bouguerra, A., Cirillo, M.,

et al. “Autonomous Transport Vehicles: Where We
Are and What Is Missing”. In: IEEE Robotics &
Automation Magazine 22.1 (2015), pp. 64–75. issn:
1070-9932. doi: 10.1109/MRA.2014.2381357

.

.
[205] Li, Q., Adriaansen, A. C., Udding, J. T., et al.

“Design and Control of Automated Guided Vehicle
Systems: A Case Study”. In: IFAC Proceedings Vol-
umes 44.1 (2011), pp. 13852–13857. issn: 14746670.
doi: 10.3182/20110828-6-IT-1002.01232

.

.
[206] Syu, J.-L., Li, H.-T., Chiang, J.-S., et al. “A com-

puter vision assisted system for autonomous forklift
vehicles in real factory environment”. In: Multimedia
Tools and Applications 76.18 (2017), pp. 18387–18407.
issn: 1380-7501. doi: 10.1007/s11042-016-4123-6

.

.
[207] Hellstrom, T. and Ringdahl, O. “Follow the Past:

A path-tracking algorithm for autonomous vehicles”.
In: International Journal of Vehicle Autonomous Sys-
tems 4.2/3/4 (2006), p. 216. issn: 1471-0226. doi:
10.1504/IJVAS.2006.012208

.

.
[208] Wit, J., Crane, C. D., and Armstrong, D. “Au-

tonomous ground vehicle path tracking”. In: Journal
of Robotic Systems 21.8 (2004), pp. 439–449. issn:
0741-2223. doi: 10.1002/rob.20031

.

.
[209] Saputra, M. R. U., Markham, A., and Trigoni,

N. “Visual SLAM and Structure from Motion in Dy-
namic Environments”. In: ACM Computing Surveys
51.2 (2018), pp. 1–36. issn: 03600300. doi: 10.1145/
3177853

.

.
[210] Taketomi, T., Uchiyama, H., and Ikeda, S. “Vi-

sual SLAM algorithms: A survey from 2010 to 2016”.
In: IPSJ Transactions on Computer Vision and Ap-
plications 9.1 (2017), p. 99. issn: 1882-6695. doi:
10.1186/s41074-017-0027-2

.

.
[211] Bresson, G., Alsayed, Z., Yu, L., et al. “Simultane-

ous Localization and Mapping: A Survey of Current
Trends in Autonomous Driving”. In: IEEE Transac-

tions on Intelligent Vehicles 2.3 (2017), pp. 194–220.
issn: 2379-8904. doi: 10.1109/TIV.2017.2749181

.

.
[212] Ros, G., Sappa, A. D., Ponsa, D., et al. “Visual

SLAM for Driverless Cars: A Brief Survey”. In: Pro-
ceedings of the 2012 IEEE Intelligent Vehicles Sympo-
sium Workshops. Piscataway, NJ: IEEE, 2012. isbn:
978-1-4673-2119-8.

[213] Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendón-
Mancha, J. M. “Visual simultaneous localization
and mapping: A survey”. In: Artificial Intelligence
Review 43.1 (2015), pp. 55–81. issn: 0269-2821. doi:
10.1007/s10462-012-9365-8

.

.
[214] Anavatti, S. G., Francis, S. L. X., and Garratt,

M. “Path-planning modules for Autonomous Vehi-
cles: Current status and challenges”. In: 2015 In-
ternational Conference on Advanced Mechatronics,
Intelligent Manufacture, and Industrial Automation
(ICAMIMIA). IEEE, 2015, pp. 205–214. isbn: 978-1-
4673-7346-3. doi: 10.1109/ICAMIMIA.2015.7508033

.

.
[215] Paden, B., Cap, M., Yong, S. Z., et al. A Survey

of Motion Planning and Control Techniques for Self-
driving Urban Vehicles. 2016. url: http://arxiv.
org/pdf/1604.07446v1

.

.
[216] Xidias, E., Zacharia, P., and Nearchou, A. “Path

Planning and scheduling for a fleet of autonomous
vehicles”. In: Robotica 34.10 (2016), pp. 2257–2273.
issn: 0263-5747. doi: 10.1017/S0263574714002872

.

.
[217] International Federation of Robotics. Execu-

tive Summary World Robotics 2018 Industrial Robots.
2018. url: https : / / ifr . org / downloads / press
2018/Executive_Summary_WR_2018_Industrial_
Robots.pdf

.

(visited on 2018-10-26).
[218] Gecks, T. and Henrich, D. “SIMERO: Camera

Supervised Workspace for Service Robots”. In: 2nd
Workshop on Advances in Service Robotics, Fraun-
hofer IPA. 2004.

[219] Lenz, C., Grimm, M., R?oder, T., et al. Fusing mul-
tiple Kinects to survey shared Human-Robot-Workspaces.
2012.

[220] Döttling, D. SafetyEYE: Innovatives Kamerasys-
tem zur Überwachung von Gefahrbereichen. Stuttgart,
2014. url: https://www.hft- stuttgart.de/St
udienbereiche/Vermessung/Bachelor- Informati
onslogistik/Aktuell/Veranstaltungen/inflogt
ag2014 / SafetyEYE _ HFT - Stuttgart _ 09 - 04 - 14 _
genehmigt.pdf

.

(visited on 2018-10-27).
[221] Bascetta, L., Ferretti, G., Rocco, P., et al. “To-

wards safe human-robot interaction in robotic cells:
An approach based on visual tracking and inten-
tion estimation”. In: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE,
2011, pp. 2971–2978. isbn: 978-1-61284-456-5. doi:
10.1109/IROS.2011.6094642

.

.
[222] Lasota, P. A., Fong, T., and Shah, J. A. “A

Survey of Methods for Safe Human-Robot Interac-
tion”. In: Foundations and Trends in Robotics 5.3
(2014), pp. 261–349. issn: 1935-8253. doi: 10.1561/
2300000052

.

.
[223] Bauer, Andrea, Wollherr, et al. “Human-Robot

Collaboration: A SURVEY”. In: International Jour-

90

https://doi.org/10.3745/JIPS.2009.5.2.041
https://doi.org/10.3745/JIPS.2009.5.2.041
https://doi.org/10.1109/BTAS.2007.4401921
https://doi.org/10.1109/BTAS.2007.4401921
https://doi.org/10.1016/j.cviu.2005.05.005
https://doi.org/10.1145/954339.954342
https://doi.org/10.1023/A:1018936219150
https://doi.org/10.1109/MRA.2014.2381357
https://doi.org/10.3182/20110828-6-IT-1002.01232
https://doi.org/10.1007/s11042-016-4123-6
https://doi.org/10.1504/IJVAS.2006.012208
https://doi.org/10.1002/rob.20031
https://doi.org/10.1145/3177853
https://doi.org/10.1145/3177853
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1109/TIV.2017.2749181
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1109/ICAMIMIA.2015.7508033
http://arxiv.org/pdf/1604.07446v1
http://arxiv.org/pdf/1604.07446v1
https://doi.org/10.1017/S0263574714002872
https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf
https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf
https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf
https://www.hft-stuttgart.de/Studienbereiche/Vermessung/Bachelor-Informationslogistik/Aktuell/Veranstaltungen/inflogtag2014/SafetyEYE_HFT-Stuttgart_09-04-14_genehmigt.pdf
https://www.hft-stuttgart.de/Studienbereiche/Vermessung/Bachelor-Informationslogistik/Aktuell/Veranstaltungen/inflogtag2014/SafetyEYE_HFT-Stuttgart_09-04-14_genehmigt.pdf
https://www.hft-stuttgart.de/Studienbereiche/Vermessung/Bachelor-Informationslogistik/Aktuell/Veranstaltungen/inflogtag2014/SafetyEYE_HFT-Stuttgart_09-04-14_genehmigt.pdf
https://www.hft-stuttgart.de/Studienbereiche/Vermessung/Bachelor-Informationslogistik/Aktuell/Veranstaltungen/inflogtag2014/SafetyEYE_HFT-Stuttgart_09-04-14_genehmigt.pdf
https://www.hft-stuttgart.de/Studienbereiche/Vermessung/Bachelor-Informationslogistik/Aktuell/Veranstaltungen/inflogtag2014/SafetyEYE_HFT-Stuttgart_09-04-14_genehmigt.pdf
https://doi.org/10.1109/IROS.2011.6094642
https://doi.org/10.1561/2300000052
https://doi.org/10.1561/2300000052

Bibliography

nal of Humanoid Robotics 05.01 (2008), pp. 47–66.
issn: 0219-8436. doi: 10.1142/S0219843608001303

.

.
[224] Ajoudani, A., Zanchettin, A. M., Ivaldi, S., et al.

“Progress and prospects of the human–robot collabo-
ration”. In: Autonomous Robots 42.5 (2018), pp. 957–
975. issn: 0929-5593. doi: 10.1007/s10514- 017-
9677-2

.

.
[225] Zafari, F., Gkelias, A., and Leung, K. A Survey of

Indoor Localization Systems and Technologies. 2018.
url: http://arxiv.org/pdf/1709.01015v2

.

.
[226] Brena, R. F., García-Vázquez, J. P., Galván-

Tejada, C. E., et al. “Evolution of Indoor Position-
ing Technologies: A Survey”. In: Journal of Sensors
2017.6, article 359 (2017), pp. 1–21. doi: 10.1155/
2017/2630413

.

.
[227] Sakpere, W., Adeyeye Oshin, M., and Mlitwa,

N. B. W. “A State-of-the-Art Survey of Indoor Posi-
tioning and Navigation Systems and Technologies”.
In: South African Computer Journal 29.3 (2017). issn:
2313-7835. doi: 10.18489/sacj.v29i3.452

.

.
[228] Mainetti, L., Patrono, L., and Sergi, I. “A sur-

vey on indoor positioning systems”. In: 2014 22nd
International Conference on Software, Telecommuni-
cations and Computer Networks (SoftCOM). IEEE,
2014, pp. 111–120. isbn: 978-9-5329-0052-1. doi: 10.
1109/SOFTCOM.2014.7039067

.

.
[229] Huang, G. Q., Zhang, Y. F., and Jiang, P. Y.

“RFID-based wireless manufacturing for real-time
management of job shop WIP inventories”. In: The In-
ternational Journal of Advanced Manufacturing Tech-
nology 36.7-8 (2008), pp. 752–764. issn: 0268-3768.
doi: 10.1007/s00170-006-0897-4

.

.
[230] Meyer, G. G., Främling, K., and Holmström, J.

“Intelligent Products: A survey”. In: Computers in
Industry 60.3 (2009), pp. 137–148. issn: 01663615.
doi: 10.1016/j.compind.2008.12.005

.

.
[231] McFarlane, D., Sarma, S., Chirn, J. L., et al.

“The Intelligent Product in Manufacturing Control
and Management”. In: IFAC Proceedings Volumes
35.1 (2002), pp. 49–54. issn: 14746670. doi: 10.3182/
20020721-6-ES-1901.00011

.

.
[232] Khoo, B. K. “RFID Technology in the Supply Chain:

Issues, and Implications for Research and Practice”.
In: Annual Decision Science Institute Meeting & Con-
ference. 2013.

[233] Zhang, Y., Jiang, P., Huang, G., et al. “RFID-
enabled real-time manufacturing information tracking
infrastructure for extended enterprises”. In: Journal
of Intelligent Manufacturing 23.6 (2012), pp. 2357–
2366. issn: 0956-5515. doi: 10.1007/s10845- 010-
0475-3

.

.
[234] Baygin, M., Karakose, M., Sarimaden, A., et al.

An Image Processing based Object Counting Approach
for Machine Vision Application. 2018. url: http:
//arxiv.org/pdf/1802.05911v1

.

.
[235] Malamas, E. N., Petrakis, E. G. M., Zervakis,

M., et al. A Survey on Industrial Vision Systems ,
Applications and Tools 1. 2002.

[236] Brosnan, T. and Sun, D.-W. “Improving quality
inspection of food products by computer vision—-a
review”. In: Journal of Food Engineering 61.1 (2004),

pp. 3–16. issn: 02608774. doi: 10 . 1016 / S0260 -
8774(03)00183-3

.

.
[237] Saldaña, E., Siche, R., Luján, M., et al. “Review:

Computer vision applied to the inspection and quality
control of fruits and vegetables”. In: Brazilian Jour-
nal of Food Technology 16.4 (2013), pp. 254–272. issn:
1981-6723. doi: 10.1590/S1981-67232013005000031

.

.
[238] Gunasekaran, S. “Computer vision technology for

food quality assurance”. In: Trends in Food Science
& Technology 7.8 (1996), pp. 245–256. issn: 09242244.
doi: 10.1016/0924-2244(96)10028-5

.

.
[239] Anagnostopoulos, C., Vergados, D., Kayafas,

E., et al. “A computer vision approach for textile
quality control”. In: The Journal of Visualization and
Computer Animation 12.1 (2001), pp. 31–44. issn:
1049-8907. doi: 10.1002/vis.245

.

.
[240] Kumar, A. “Computer-Vision-Based Fabric Defect

Detection: A Survey”. In: IEEE Transactions on In-
dustrial Electronics 55.1 (2008), pp. 348–363. issn:
0278-0046. doi: 10.1109/TIE.1930.896476

.

.
[241] Huang, S.-H. and Pan, Y.-C. “Automated visual

inspection in the semiconductor industry: A survey”.
In: Computers in Industry 66 (2015), pp. 1–10. issn:
01663615. doi: 10.1016/j.compind.2014.10.006

.

.
[242] Tout, K. “Automatic vision system for surface in-

spection and monitoring: Application to wheel inspec-
tion”. Theses. Université de Technologie de Troyes -
UTT, 2018. url: https://tel.archives-ouvertes.
fr/tel-01801803

.

.
[243] Liu, Y., Li, S., Wang, J., et al. “A computer vision-

based assistant system for the assembly of narrow
cabin products”. In: The International Journal of
Advanced Manufacturing Technology 76.1-4 (2015),
pp. 281–293. issn: 0268-3768. doi: 10.1007/s00170-
014-6274-9

.

.
[244] He, K., Zhang, Q., and Hong, Y. “Profile monitor-

ing based quality control method for fused deposition
modeling process”. In: Journal of Intelligent Manu-
facturing 25.6 (2018), p. 1349. issn: 0956-5515. doi:
10.1007/s10845-018-1424-9

.

.
[245] Silveira, J., Ferreira, M., Santos, C., et al. “Com-

puter Vision Techniques Applied to the Quality Con-
trol of Ceramic Plates”. In: (2009).

[246] Kottari, K., Delibasis, K., and Plagianakos, V.
“Real time vision-based measurements for quality con-
trol of industrial rods on a moving conveyor”. In: Mul-
timedia Tools and Applications 77.8 (2018), pp. 9307–
9324. issn: 1380-7501. doi: 10.1007/s11042-017-
4891-7

.

.
[247] Tarallo, A., Mozzillo, R., Di Gironimo, G., et al.

“A cyber-physical system for production monitoring of
manual manufacturing processes”. In: International
Journal on Interactive Design and Manufacturing
(IJIDeM) 12.4 (2018), pp. 1235–1241. issn: 1955-2513.
doi: 10.1007/s12008-018-0493-5

.

.
[248] Hohman, F., Kahng, M., Pienta, R., et al. Visual

Analytics in Deep Learning: An Interrogative Survey
for the Next Frontiers. 2018. url: http://arxiv.
org/pdf/1801.06889v3

.

.
[249] Lee, J., Kao, H.-A., and Yang, S. “Service Innova-

tion and Smart Analytics for Industry 4.0 and Big

91

https://doi.org/10.1142/S0219843608001303
https://doi.org/10.1007/s10514-017-9677-2
https://doi.org/10.1007/s10514-017-9677-2
http://arxiv.org/pdf/1709.01015v2
https://doi.org/10.1155/2017/2630413
https://doi.org/10.1155/2017/2630413
https://doi.org/10.18489/sacj.v29i3.452
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1007/s00170-006-0897-4
https://doi.org/10.1016/j.compind.2008.12.005
https://doi.org/10.3182/20020721-6-ES-1901.00011
https://doi.org/10.3182/20020721-6-ES-1901.00011
https://doi.org/10.1007/s10845-010-0475-3
https://doi.org/10.1007/s10845-010-0475-3
http://arxiv.org/pdf/1802.05911v1
http://arxiv.org/pdf/1802.05911v1
https://doi.org/10.1016/S0260-8774(03)00183-3
https://doi.org/10.1016/S0260-8774(03)00183-3
https://doi.org/10.1590/S1981-67232013005000031
https://doi.org/10.1016/0924-2244(96)10028-5
https://doi.org/10.1002/vis.245
https://doi.org/10.1109/TIE.1930.896476
https://doi.org/10.1016/j.compind.2014.10.006
https://tel.archives-ouvertes.fr/tel-01801803
https://tel.archives-ouvertes.fr/tel-01801803
https://doi.org/10.1007/s00170-014-6274-9
https://doi.org/10.1007/s00170-014-6274-9
https://doi.org/10.1007/s10845-018-1424-9
https://doi.org/10.1007/s11042-017-4891-7
https://doi.org/10.1007/s11042-017-4891-7
https://doi.org/10.1007/s12008-018-0493-5
http://arxiv.org/pdf/1801.06889v3
http://arxiv.org/pdf/1801.06889v3

Bibliography

Data Environment”. In: Procedia CIRP 16 (2014),
pp. 3–8. issn: 22128271. doi: 10.1016/j.procir.
2014.02.001

.

.
[250] Banker, Bardhan, Chang, et al. “Plant Informa-

tion Systems, Manufacturing Capabilities, and Plant
Performance”. In: MIS Quarterly 30.2 (2006), p. 315.
issn: 02767783. doi: 10.2307/25148733

.

.
[251] Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi,

S. M. T., et al. “Classification of facility layout prob-
lems: A review study”. In: The International Journal
of Advanced Manufacturing Technology 94.1-4 (2018),
pp. 957–977. issn: 0268-3768. doi: 10.1007/s00170-
017-0895-8

.

.
[252] Drira, A., Pierreval, H., and Hajri-Gabouj, S.

“Facility layout problems: A survey”. In: Annual
Reviews in Control 31.2 (2007), pp. 255–267. issn:
13675788. doi: 10.1016/j.arcontrol.2007.04.001

.

.
[253] Drira, A., Pierreval, H., and Hajri-Gabouj, S.

“Facility Laout Problems: A Literature Analysis”.
In: IFAC Proceedings Volumes 39.3 (2006), pp. 389–
400. issn: 14746670. doi: 10.3182/20060517-3-FR-
2903.00208

.

.
[254] Singh, S. P. and Sharma, R. R. K. “A review of

different approaches to the facility layout problems”.
In: The International Journal of Advanced Manufac-
turing Technology 30.5-6 (2006), pp. 425–433. issn:
0268-3768. doi: 10.1007/s00170-005-0087-9

.

.
[255] Shouman, M. A., Nawara, G., Reyad, A. H., et al.

Problem (FLP) and Intelligent Techniques: A Survey.
2000.

[256] Niebles, F., Escobar, I., Agudelo, L., et al. “A
Comparative Analysis of Genetic Algorithms and
QAP Formulation for Facility Layout Problem: An
Application in a Real Context”. In: Advances in
swarm intelligence. Ed. by Tan, Y., Shi, Y., and
Li, L. Lecture notes in computer science Theoreti-
cal computer science and general issues. Cham and
Heidelberg: Springer, 2016, pp. 59–75. isbn: 978-3-
319-41009-8.

[257] Wagner, U., AlGeddawy, T., ElMaraghy, H., et
al. “Product Family Design for Changeable Learning
Factories”. In: Procedia CIRP 17 (2014), pp. 195–200.
issn: 22128271. doi: 10.1016/j.procir.2014.01.
119

.

.
[258] Reitze, A., Jürgensmeyer, N., Lier, S., et al.

“Roadmap for a Smart Factory: A Modular, Intel-
ligent Concept for the Production of Specialty Chem-
icals”. In: Angewandte Chemie (International ed. in
English) 57.16 (2018), pp. 4242–4247. doi: 10.1002/
anie.201711571

.

.
[259] Yusof, Y. and Latif, K. “Survey on computer-aided

process planning”. In: The International Journal of
Advanced Manufacturing Technology 75.1-4 (2014),
pp. 77–89. issn: 0268-3768. doi: 10.1007/s00170-
014-6073-3

.

.
[260] Bharath V. G. and Patil, R. “Virtual Manufactur-

ing: A Review”. In: International Journal of Engineer-
ing Research & Technology (IJERT). 2015, pp. 355–
364.

[261] Souza, M. C. F., Sacco, M., and Porto, A. J. V.
“Virtual manufacturing as a way for the factory of

the future”. In: Journal of Intelligent Manufacturing
17.6 (2006), pp. 725–735. issn: 0956-5515. doi: 10.
1007/s10845-006-0041-1

.

.
[262] Al-Ahmari, A. M., Abidi, M. H., Ahmad, A., et

al. “Development of a virtual manufacturing assem-
bly simulation system”. In: Advances in Mechanical
Engineering 8.3 (2016), p. 168781401663982. issn:
1687-8140. doi: 10.1177/1687814016639824

.

.
[263] Terkaj, W., Tolio, T., and Urgo, M. “A virtual

factory approach for in situ simulation to support
production and maintenance planning”. In: CIRP
Annals 64.1 (2015), pp. 451–454. issn: 00078506. doi:
10.1016/j.cirp.2015.04.121

.

.
[264] Terkaj, W. and Urgo, M. “A Virtual Factory Data

Model as a Support Tool for the Simulation of Man-
ufacturing Systems”. In: Procedia CIRP 28 (2015),
pp. 137–142. issn: 22128271. doi: 10.1016/j.procir.
2015.04.023

.

.
[265] Tolio, T., Sacco, M., Terkaj, W., et al. “Virtual

Factory: An Integrated Framework for Manufacturing
Systems Design and Analysis”. In: Procedia CIRP 7
(2013), pp. 25–30. issn: 22128271. doi: 10.1016/j.
procir.2013.05.005

.

.
[266] Kádár, B., Terkaj, W., and Sacco, M. “Semantic

Virtual Factory supporting interoperable modelling
and evaluation of production systems”. In: CIRP
Annals 62.1 (2013), pp. 443–446. issn: 00078506. doi:
10.1016/j.cirp.2013.03.045

.

.
[267] Back, M., Childs, T., Dunnigan, A., et al. “The

virtual factory: Exploring 3D worlds as industrial
collaboration and control environments”. In: 2010
IEEE Virtual Reality Conference (VR). IEEE, 2010,
pp. 257–258. isbn: 978-1-4244-6237-7. doi: 10.1109/
VR.2010.5444777

.

.
[268] Lin, M.-H. and Fu, L.-C. “A virtual factory based

approach to on-line simulation and scheduling for an
FMS and a case study”. In: Journal of Intelligent
Manufacturing 12.3 (2001), pp. 269–279. issn: 0956-
5515. doi: 10.1023/A:1011201009821

.

.
[269] Kunz, A., Zank, M., Fjeld, M., et al. “Real Walking

in Virtual Environments for Factory Planning and
Evaluation”. In: Procedia CIRP 44 (2016), pp. 257–
262. issn: 22128271. doi: 10.1016/j.procir.2016.
02.086

.

.
[270] Uhlemann, T. H.-J., Lehmann, C., and Stein-

hilper, R. “The Digital Twin: Realizing the Cyber-
Physical Production System for Industry 4.0”. In:
Procedia CIRP 61 (2017), pp. 335–340. issn: 22128271.
doi: 10.1016/j.procir.2016.11.152

.

.
[271] Kádár, B., Lengyel, A., Monostori, L., et al.

“Enhanced control of complex production structures
by tight coupling of the digital and the physical
worlds”. In: CIRP Annals 59.1 (2010), pp. 437–440.
issn: 00078506. doi: 10.1016/j.cirp.2010.03.123

.

.
[272] Chandola, V., Banerjee, A., and Kumar, V. “Anomaly

detection: A Survey”. In: ACM Computing Surveys
41.3 (2009), pp. 1–58. issn: 03600300. doi: 10.1145/
1541880.1541882

.

.
[273] Xiao, T., Zhang, C., and Zha, H. “Learning to

Detect Anomalies in Surveillance Video”. In: IEEE

92

https://doi.org/10.1016/j.procir.2014.02.001
https://doi.org/10.1016/j.procir.2014.02.001
https://doi.org/10.2307/25148733
https://doi.org/10.1007/s00170-017-0895-8
https://doi.org/10.1007/s00170-017-0895-8
https://doi.org/10.1016/j.arcontrol.2007.04.001
https://doi.org/10.3182/20060517-3-FR-2903.00208
https://doi.org/10.3182/20060517-3-FR-2903.00208
https://doi.org/10.1007/s00170-005-0087-9
https://doi.org/10.1016/j.procir.2014.01.119
https://doi.org/10.1016/j.procir.2014.01.119
https://doi.org/10.1002/anie.201711571
https://doi.org/10.1002/anie.201711571
https://doi.org/10.1007/s00170-014-6073-3
https://doi.org/10.1007/s00170-014-6073-3
https://doi.org/10.1007/s10845-006-0041-1
https://doi.org/10.1007/s10845-006-0041-1
https://doi.org/10.1177/1687814016639824
https://doi.org/10.1016/j.cirp.2015.04.121
https://doi.org/10.1016/j.procir.2015.04.023
https://doi.org/10.1016/j.procir.2015.04.023
https://doi.org/10.1016/j.procir.2013.05.005
https://doi.org/10.1016/j.procir.2013.05.005
https://doi.org/10.1016/j.cirp.2013.03.045
https://doi.org/10.1109/VR.2010.5444777
https://doi.org/10.1109/VR.2010.5444777
https://doi.org/10.1023/A:1011201009821
https://doi.org/10.1016/j.procir.2016.02.086
https://doi.org/10.1016/j.procir.2016.02.086
https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/10.1016/j.cirp.2010.03.123
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882

Bibliography

Signal Processing Letters 22.9 (2015), pp. 1477–1481.
issn: 1070-9908. doi: 10.1109/LSP.2015.2410031

.

.
[274] Saini, D. K., Ahir, D., and Ganatra, A. “Tech-

niques and Challenges in Building Intelligent Sys-
tems: Anomaly Detection in Camera Surveillance”.
In: Proceedings of First International Conference on
Information and Communication Technology for In-
telligent Systems: Volume 2. Ed. by Satapathy, S. C.
and Das, S. Vol. 51. Smart Innovation, Systems and
Technologies. Cham: Springer International Publish-
ing, 2016, pp. 11–21. isbn: 978-3-319-30926-2. doi:
10.1007/978-3-319-30927-9_2

.

.
[275] Sacco, M., Redaelli, C., Candea, C., et al. “DiFac:

An integrated scenario for the Digital Factory”. In:
2009 IEEE International Technology Management
Conference (ICE). IEEE, 2009, pp. 1–8. isbn: 978-0-
85358-259-5. doi: 10.1109/ITMC.2009.7461380

.

.
[276] Patle, D. S., Manca, D., Nazir, S., et al. “Operator

training simulators in virtual reality environment for
process operators: A review”. In: Virtual Reality 31.1
(2018), p. 588. issn: 1359-4338. doi: 10.1007/s10055-
018-0354-3

.

.
[277] Bluemel, E., Hintze, A., Schulz, T., et al. “Virtual

environments for the training of maintenance and ser-
vice tasks”. In: Proceedings of the 2003 International
Conference on Machine Learning and Cybernetics
(IEEE Cat. No.03EX693). IEEE, 2003, pp. 2001–
2007. isbn: 0-7803-8131-9. doi: 10.1109/WSC.2003.
1261664

.

.
[278] Schenk, M., Straßburger, S., and Kißner, H.

“Combining virtual reality and assembly simulation
for production planning and worker qualification”. In:
1st International Conference on Changeable, Agile,
Reconfigurable and Virtual Production (CARV 2005).
Ed. by Zäh, M. and Reinhart, G. München: Utz,
2005, pp. 411–414. isbn: 3-8316-0540-8.

[279] Gorecky, D., Khamis, M., and Mura, K. “Intro-
duction and establishment of virtual training in the
factory of the future”. In: International Journal of
Computer Integrated Manufacturing 2.2 (2015), pp. 1–
9. doi: 10.1080/0951192X.2015.1067918

.

.
[280] Menck, N., Yang, X., Weidig, C., et al. “Collabo-

rative Factory Planning in Virtual Reality”. In: Pro-
cedia CIRP 3 (2012), pp. 317–322. issn: 22128271.
doi: 10.1016/j.procir.2012.07.055

.

.
[281] Zinnikus, I., Cao, X., Klusch, M., et al. “A Collab-

orative Virtual Workspace for Factory Configuration
and Evaluation”. In: Proceedings of the 9th IEEE
International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing. Ed.
by Bertino, E., Georgakopoulos, D., Srivatsa,
M., et al. ICST, 2013. isbn: 978-1-936968-92-3. doi:
10.4108/icst.collaboratecom.2013.254053

.

.
[282] Sacco, M., Pedrazzoli, P., and Terkaj, W. “VFF:

Virtual Factory Framework”. In: 2010 IEEE Inter-
national Technology Management Conference (ICE).
IEEE, 2010, pp. 1–8. isbn: 978-1-62748-686-6. doi:
10.1109/ICE.2010.7477041

.

.
[283] Baqersad, J., Poozesh, P., Niezrecki, C., et al.

“Photogrammetry and optical methods in structural
dynamics – A review”. In: Mechanical Systems and

Signal Processing 86 (2017), pp. 17–34. issn: 08883270.
doi: 10.1016/j.ymssp.2016.02.011

.

.
[284] Zhang, D., Guo, J., Lei, X., et al. “A High-Speed

Vision-Based Sensor for Dynamic Vibration Analysis
Using Fast Motion Extraction Algorithms”. In: Sen-
sors (Basel, Switzerland) 16.4 (2016). doi: 10.3390/
s16040572

.

.
[285] Yavari, E., Nuti, P., and Boric-Lubecke, O. “Oc-

cupancy detection using radar noise floor”. In: 2016
IEEE/ACES International Conference on Wireless
Information Technology and Systems (ICWITS) and
Applied Computational Electromagnetics (ACES). IEEE,
2016, pp. 1–3. isbn: 978-1-5090-1259-6. doi: 10.1109/
ROPACES.2016.7465363

.

.
[286] Krizhevsky, A., Sutskever, I., and Hinton, G. E.

“ImageNet classification with deep convolutional neu-
ral networks”. In: Communications of the ACM 60.6
(2012), pp. 84–90. issn: 00010782. doi: 10.1145/
3065386

.

.
[287] Zeiler, M. D. and Fergus, R. Visualizing and Un-

derstanding Convolutional Networks. 2013. url: http:
//arxiv.org/pdf/1311.2901v3

.

.
[288] Simonyan, K. and Zisserman, A. Very Deep Convo-

lutional Networks for Large-Scale Image Recognition.
2014. url: http://arxiv.org/pdf/1409.1556v6

.

.
[289] Szegedy, C., Liu, W., Jia, Y., et al. Going Deeper

with Convolutions. 2014. url: http://arxiv.org/
pdf/1409.4842v1

.

.
[290] Ioffe, S. and Szegedy, C. Batch Normalization:

Accelerating Deep Network Training by Reducing In-
ternal Covariate Shift. 2015. url: http://arxiv.
org/pdf/1502.03167v3

.

.
[291] Szegedy, C., Vanhoucke, V., Ioffe, S., et al. Re-

thinking the Inception Architecture for Computer Vi-
sion. 2015. url: http : / / arxiv . org / pdf / 1512 .
00567v3

.

.
[292] Howard, A. G., Zhu, M., Chen, B., et al. Mo-

bileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. url: http://arxiv.
org/pdf/1704.04861v1

.

.
[293] Huang, G., Liu, Z., van der Maaten, L., et al.

Densely Connected Convolutional Networks. 2016.
url: http://arxiv.org/pdf/1608.06993v5

.

.
[294] Xie, S., Girshick, R., Dollár, P., et al. Aggregated

Residual Transformations for Deep Neural Networks.
2016. url: http://arxiv.org/pdf/1611.05431v2

.

.
[295] Deng, J., Dong, W., Socher, R., et al. “ImageNet:

A large-scale hierarchical image database”. In: CVPR
2009. Los Alamitos, California: IEEE, 2009, pp. 248–
255. isbn: 978-1-4244-3992-8. doi: 10.1109/CVPR.
2009.5206848

.

.
[296] Krizhevsky, A. Learning Multiple Layers of Features

from Tiny Images. 2009.
[297] Redmon, J., Divvala, S., Girshick, R., et al. You

Only Look Once: Unified, Real-Time Object Detection.
2015. url: http://arxiv.org/pdf/1506.02640v5

.

.
[298] Redmon, J. and Farhadi, A. YOLO9000: Better,

Faster, Stronger. 2016. url: http://arxiv.org/pdf/
1612.08242v1

.

.

93

https://doi.org/10.1109/LSP.2015.2410031
https://doi.org/10.1007/978-3-319-30927-9_2
https://doi.org/10.1109/ITMC.2009.7461380
https://doi.org/10.1007/s10055-018-0354-3
https://doi.org/10.1007/s10055-018-0354-3
https://doi.org/10.1109/WSC.2003.1261664
https://doi.org/10.1109/WSC.2003.1261664
https://doi.org/10.1080/0951192X.2015.1067918
https://doi.org/10.1016/j.procir.2012.07.055
https://doi.org/10.4108/icst.collaboratecom.2013.254053
https://doi.org/10.1109/ICE.2010.7477041
https://doi.org/10.1016/j.ymssp.2016.02.011
https://doi.org/10.3390/s16040572
https://doi.org/10.3390/s16040572
https://doi.org/10.1109/ROPACES.2016.7465363
https://doi.org/10.1109/ROPACES.2016.7465363
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://arxiv.org/pdf/1311.2901v3
http://arxiv.org/pdf/1311.2901v3
http://arxiv.org/pdf/1409.1556v6
http://arxiv.org/pdf/1409.4842v1
http://arxiv.org/pdf/1409.4842v1
http://arxiv.org/pdf/1502.03167v3
http://arxiv.org/pdf/1502.03167v3
http://arxiv.org/pdf/1512.00567v3
http://arxiv.org/pdf/1512.00567v3
http://arxiv.org/pdf/1704.04861v1
http://arxiv.org/pdf/1704.04861v1
http://arxiv.org/pdf/1608.06993v5
http://arxiv.org/pdf/1611.05431v2
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/pdf/1506.02640v5
http://arxiv.org/pdf/1612.08242v1
http://arxiv.org/pdf/1612.08242v1

Bibliography

[299] Redmon, J. YOLO Variants. 2018. url: https :
//pjreddie.com/darknet/imagenet/#extraction

.

(visited on 2018-08-17).
[300] Pinto, N., Cox, D. D., and DiCarlo, J. J. “Why is

real-world visual object recognition hard?” In: PLoS
computational biology 4.1 (2008), e27. doi: 10.1371/
journal.pcbi.0040027

.

.
[301] Ponce, J., Berg, T. L., Everingham, M., et al.

“Dataset Issues in Object Recognition”. In: Toward
category-level object recognition. Ed. by Ponce, J.
Vol. 4170. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 29–
48. isbn: 978-3-540-68794-8. doi: 10.1007/11957959_
2

.

.
[302] Lin, T.-Y., Maire, M., Belongie, S., et al.Microsoft

COCO: Common Objects in Context. 2014. url: http:
//arxiv.org/pdf/1405.0312v3

.

.
[303] Everingham, M., van Gool, L., Williams, C. K. I.,

et al. “The Pascal Visual Object Classes (VOC) Chal-
lenge”. In: International Journal of Computer Vi-
sion 88.2 (2010), pp. 303–338. issn: 0920-5691. doi:
10.1007/s11263-009-0275-4

.

.
[304] Everingham, M., Eslami, S. M. A., van Gool,

L., et al. “The Pascal Visual Object Classes Chal-
lenge: A Retrospective”. In: International Journal
of Computer Vision 111.1 (2015), pp. 98–136. issn:
0920-5691. doi: 10.1007/s11263-014-0733-5

.

.
[305] Russakovsky, O., Deng, J., Su, H., et al. ImageNet

Large Scale Visual Recognition Challenge. 2015. url:
http://arxiv.org/pdf/1409.0575v3

.

.
[306] Krasin, I., Duerig, T., Alldrin, N., et al. OpenIm-

ages: A public dataset for large-scale multi-label and
multi-class image classification. 2017. url: https://
storage.googleapis.com/openimages/web/index.
html

.

.
[307] Dollar, P., Wojek, C., Schiele, B., et al. “Pedes-

trian detection: A benchmark”. In: CVPR 2009. Los
Alamitos, California: IEEE, 2009, pp. 304–311. isbn:
978-1-4244-3992-8. doi: 10.1109/CVPR.2009.5206631

.

.
[308] Dollár, P., Wojek, C., Schiele, B., et al. “Pedes-

trian detection: An evaluation of the state of the
art”. In: IEEE transactions on pattern analysis and
machine intelligence 34.4 (2012), pp. 743–761. issn:
0162-8828. doi: 10.1109/TPAMI.2011.155

.

.
[309] Fei-Fei, L., Fergus, R., and Perona, P. “One-shot

learning of object categories”. In: IEEE transactions
on pattern analysis and machine intelligence 28.4
(2006), pp. 594–611. issn: 0162-8828. doi: 10.1109/
TPAMI.2006.79

.

.
[310] Griffin, G., Holub, A., and Perona, P. Caltech-

256 Object Category Dataset. 2007.
[311] Taylor, L. and Nitschke, G. Improving Deep Learn-

ing using Generic Data Augmentation. 2017. url:
http://arxiv.org/pdf/1708.06020v1

.

.
[312] Perez, L. and Wang, J. The Effectiveness of Data

Augmentation in Image Classification using Deep
Learning. 2017. url: http://arxiv.org/pdf/1712.
04621v1

.

.
[313] Rahman, M. A. and Wang, Y. “Optimizing Intersection-

Over-Union in Deep Neural Networks for Image Seg-
mentation”. In: ISVC (2016).

[314] Sermanet, P., Eigen, D., Zhang, X., et al. Over-
Feat: Integrated Recognition, Localization and Detec-
tion using Convolutional Networks. 2013. url: http:
//arxiv.org/pdf/1312.6229v4

.

.
[315] Manning, C. D., Raghavan, P., and Schütze, H.

Introduction to information retrieval. Reprinted. Cam-
bridge: Cambridge Univ. Press, 2009. isbn: 9780521865715.

[316] Cartucho, J. Explanation of mean Average Preci-
sion: GitHub repository. 2018. url: https://github.
com/Cartucho/mAP

.

(visited on 2018-08-17).
[317] Altenberger, F. and Lenz, C. A Non-Technical

Survey on Deep Convolutional Neural Network Ar-
chitectures. 2018. url: http://arxiv.org/pdf/1803.
02129v1

.

.
[318] Rey, J. Object Detection: A Guide in the Age of Deep

Learning. 2017. url: https://tryolabs.com/blog/
2017/08/30/object-detection-an-overview-in-
the-age-of-deep-learning/

.

(visited on 2018-08-
17).

[319] Ouaknine, A. Review of Deep Learning Algorithms
for Object Detection. 2018. url: https://medium.
com / comet - app / review - of - deep - learning - al
gorithms- for- object- detection- c1f3d437b852

.

(visited on 2018-08-17).
[320] Xu, J. Deep Learning for Object Detection: A Com-

prehensive Review. 2017. url: https : / / www . kdn
uggets . com / 2017 / 10 / deep - learning - object -
detection - comprehensive - review . html

.

(visited
on 2018-08-17).

[321] Hui, J. Real-time Object Detection with YOLO, YOLOv2
and now YOLOv3. 2018. url: https://medium.com/
@jonathan _ hui / real - time - object - detection -
with-yolo-yolov2-28b1b93e2088

.

(visited on 2018-
08-17).

[322] Forson, E. Understanding SSD MultiBox: ?Real-
Time Object Detection In Deep Learning. 2017. url:
https://towardsdatascience.com/understandin
g- ssd- multibox- real- time- object- detection-
in-deep-learning-495ef744fab

.

(visited on 2018-
08-17).

[323] Hui, J. Object detection: speed and accuracy compar-
ison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet
and YOLOv3). 2018. url: https://medium.com/
@jonathan _ hui / object - detection - speed - and -
accuracy-comparison-faster-r-cnn-r-fcn-ssd-
and-yolo-5425656ae359

.

(visited on 2018-08-17).
[324] Chablani, M. Overfeat paper: ?Summary. 2017. url:

https://medium.com/@ManishChablani/overfeat-
paper-summary-b55060eeb991

.

(visited on 2018-08-
17).

[325] He, K., Zhang, X., Ren, S., et al. “Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Vi-
sual Recognition”. In: (Keine Angabe) 8691 (2014),
pp. 346–361. issn: 0302-9743. doi: 10.1007/978-3-
319- 10578- 9_23

.

. url: http://arxiv.org/pdf/
1406.4729v4

.

.
[326] Girshick, R. Fast R-CNN. 2015. url: http://arxiv.

org/pdf/1504.08083v2

.

.
[327] Lin, T.-Y., Dollár, P., Girshick, R., et al. Feature

Pyramid Networks for Object Detection. 2016. url:
http://arxiv.org/pdf/1612.03144v2

.

.

94

https://pjreddie.com/darknet/imagenet/#extraction
https://pjreddie.com/darknet/imagenet/#extraction
https://doi.org/10.1371/journal.pcbi.0040027
https://doi.org/10.1371/journal.pcbi.0040027
https://doi.org/10.1007/11957959_2
https://doi.org/10.1007/11957959_2
http://arxiv.org/pdf/1405.0312v3
http://arxiv.org/pdf/1405.0312v3
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-014-0733-5
http://arxiv.org/pdf/1409.0575v3
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
http://arxiv.org/pdf/1708.06020v1
http://arxiv.org/pdf/1712.04621v1
http://arxiv.org/pdf/1712.04621v1
http://arxiv.org/pdf/1312.6229v4
http://arxiv.org/pdf/1312.6229v4
https://github.com/Cartucho/mAP
https://github.com/Cartucho/mAP
http://arxiv.org/pdf/1803.02129v1
http://arxiv.org/pdf/1803.02129v1
https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning/
https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning/
https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning/
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://www.kdnuggets.com/2017/10/deep-learning-object-detection-comprehensive-review.html
https://www.kdnuggets.com/2017/10/deep-learning-object-detection-comprehensive-review.html
https://www.kdnuggets.com/2017/10/deep-learning-object-detection-comprehensive-review.html
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@ManishChablani/overfeat-paper-summary-b55060eeb991
https://medium.com/@ManishChablani/overfeat-paper-summary-b55060eeb991
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/pdf/1406.4729v4
http://arxiv.org/pdf/1406.4729v4
http://arxiv.org/pdf/1504.08083v2
http://arxiv.org/pdf/1504.08083v2
http://arxiv.org/pdf/1612.03144v2

Bibliography

[328] Prakash, J. The intuition behind RetinaNet. 2018.
url: https://medium.com/@14prakash/the-intui
tion-behind-retinanet-eb636755607d

.

(visited on
2018-08-17).

[329] Szegedy, C., Toshev, A., and Erhan, D. Deep
Neural Networks for Object Detection. NIPS. 2013.

[330] Erhan, D., Szegedy, C., Toshev, A., et al. Scalable
Object Detection using Deep Neural Networks. 2013.
url: http://arxiv.org/pdf/1312.2249v1

.

.
[331] Ren, S., He, K., Girshick, R., et al. Object Detection

Networks on Convolutional Feature Maps. 2016. url:
http://arxiv.org/pdf/1504.06066v2

.

.
[332] Gidaris, S. and Komodakis, N. Object detection via

a multi-region & semantic segmentation-aware CNN
model. 2015. url: http://arxiv.org/pdf/1505.
01749v3

.

.
[333] Lenc, K. and Vedaldi, A. R-CNN minus R. 2015.

url: http://arxiv.org/pdf/1506.06981v1

.

.
[334] Szegedy, C., Reed, S., Erhan, D., et al. Scalable,

High-Quality Object Detection. 2015. url: http://
arxiv.org/pdf/1412.1441v3

.

.
[335] Bell, S., Zitnick, C. L., Bala, K., et al. Inside-

Outside Net: Detecting Objects in Context with Skip
Pooling and Recurrent Neural Networks. 2015. url:
http://arxiv.org/pdf/1512.04143v1

.

.
[336] Kong, T., Yao, A., Chen, Y., et al. HyperNet: To-

wards Accurate Region Proposal Generation and Joint
Object Detection. 2016. url: http://arxiv.org/pdf/
1604.00600v1

.

.
[337] Cai, Z., Fan, Q., Feris, R. S., et al. A Unified

Multi-scale Deep Convolutional Neural Network for
Fast Object Detection. 2016. url: http://arxiv.org/
pdf/1607.07155v1

.

.
[338] Fu, C.-Y., Liu, W., Ranga, A., et al. DSSD: De-

convolutional Single Shot Detector. 2017. url: http:
//arxiv.org/pdf/1701.06659v1

.

.
[339] Leal-Taixé, L., Milan, A., Reid, I., et al.MOTChal-

lenge 2015: Towards a Benchmark for Multi-Target
Tracking. 2015. url: http://arxiv.org/pdf/1504.
01942v1

.

.
[340] Li, X., Hu, W., Shen, C., et al. A Survey of Appear-

ance Models in Visual Object Tracking. 2013. url:
http://arxiv.org/pdf/1303.4803v1

.

.
[341] Shaikh, S. H., Saeed, K., and Chaki, N. “Moving

Object Detection Approaches, Challenges and Object
Tracking”. In: Moving Object Detection Using Back-
ground Subtraction. Ed. by Shaikh, S. H., Saeed,
K., and Chaki, N. SpringerBriefs in Computer Sci-
ence. Cham: Springer International Publishing, 2014,
pp. 5–14. isbn: 978-3-319-07385-9. doi: 10.1007/978-
3-319-07386-6_2

.

.
[342] Doi, M., Matsumoto, T., Kimachi, A., et al. “Ro-

bust color object tracking method against illumi-
nation color Change”. In: 2014 Joint 7th Interna-
tional Conference on Soft Computing and Intelligent
Systems (SCIS) and 15th International Symposium
on Advanced Intelligent Systems (ISIS). IEEE, 2014,
pp. 718–722. isbn: 978-1-4799-5955-6. doi: 10.1109/
SCIS-ISIS.2014.7044769

.

.
[343] Zang, D. “Illumination invariant object tracking

based on multiscale phase”. In: 2010 IEEE Interna-

tional Conference on Image Processing. IEEE, 2010,
pp. 357–360. isbn: 978-1-4244-7992-4. doi: 10.1109/
ICIP.2010.5651716

.

.
[344] Rubio, J. C., Serrat, J., and López, A. M. “Multi-

ple Target Tracking and Identity Linking under Split,
Merge and Occlusion of Targets and Observations”.
In: ICPRAM (2012).

[345] Storlie, C. B., Lee, C. T., Hannig, J., et al. “Track-
ing of multiple merging and splitting targets: A sta-
tistical perspective”. In: Statistica Sinica 19 (2009).

[346] Fan, R., Zhang, F.-L., Zhang, M., et al. “Robust
tracking-by-detection using a selection and comple-
tion mechanism”. In: Computational Visual Media 3.3
(2017), pp. 285–294. issn: 2096-0433. doi: 10.1007/
s41095-017-0083-7

.

.
[347] Jiang, N., Liu, W., Su, H., et al. “Tracking low

resolution objects by metric preservation”. In: CVPR
2011. IEEE, 2011, pp. 1329–1336. isbn: 978-1-4577-
0394-2. doi: 10.1109/CVPR.2011.5995537

.

.
[348] Bao, X., Zhan, H., and Yuan, J. “Study of target

tracking and recovery with low resolution image se-
ries”. In: 2017 3rd IEEE International Conference
on Computer and Communications (ICCC). IEEE,
2017, pp. 1836–1840. isbn: 978-1-5090-6352-9. doi:
10.1109/CompComm.2017.8322856

.

.
[349] Kaew Tra Kul Pong, P. and Bowden, R. “Adap-

tive Visual System for Tracking Low Resolution Colour
Targets”. In: Procedings of the British Machine Vision
Conference 2001. Ed. by Cootes, T. and Taylor, C.
British Machine Vision Association, 2001, pp. 26.1–
26.10. isbn: 1-901725-16-2. doi: 10.5244/C.15.26

.

.
[350] Tang, S., Andriluka, M., Milan, A., et al. “Learn-

ing People Detectors for Tracking in Crowded Scenes”.
In: 2013 IEEE International Conference on Computer
Vision. IEEE, 2013, pp. 1049–1056. isbn: 978-1-4799-
2840-8. doi: 10.1109/ICCV.2013.134

.

.
[351] Rahmatian, S. and Safabakhsh, R. “Online multi-

ple people tracking-by-detection in crowded scenes”.
In: 7’th International Symposium on Telecommunica-
tions (IST’2014). IEEE, 2014, pp. 337–342. isbn: 978-
1-4799-5359-2. doi: 10.1109/ISTEL.2014.7000725

.

.
[352] Ramanan, D., Forsyth, D. A., and Zisserman, A.

“Tracking People by Learning Their Appearance”. In:
IEEE transactions on pattern analysis and machine
intelligence 29.1 (2007), pp. 65–81. issn: 0162-8828.
doi: 10.1109/TPAMI.2007.250600

.

.
[353] Liu, W., Camps, O., and Sznaier, M. Multi-camera

Multi-Object Tracking. 2017. url: http://arxiv.
org/pdf/1709.07065v1

.

.
[354] Wang, Y., Lu, K., and Zhai, R. “Technique and

Challange for Multi-Camera Tracking”. In: 2014 7th
International Congress on Image and Signal Process-
ing. IEEE, 2014, pp. 32–37. isbn: 978-1-4799-5835-1.
doi: 10.1109/CISP.2014.7003745

.

.
[355] Zhang, Z., Wu, J., Zhang, X., et al. Multi-Target,

Multi-Camera Tracking by Hierarchical Clustering:
Recent Progress on DukeMTMC Project. 2017. url:
http://arxiv.org/pdf/1712.09531v1

.

.
[356] Chavdarova, T. and Fleuret, F. Deep Multi-camera

People Detection. 2017. url: http://arxiv.org/pdf/
1702.04593v3

.

.

95

https://medium.com/@14prakash/the-intuition-behind-retinanet-eb636755607d
https://medium.com/@14prakash/the-intuition-behind-retinanet-eb636755607d
http://arxiv.org/pdf/1312.2249v1
http://arxiv.org/pdf/1504.06066v2
http://arxiv.org/pdf/1505.01749v3
http://arxiv.org/pdf/1505.01749v3
http://arxiv.org/pdf/1506.06981v1
http://arxiv.org/pdf/1412.1441v3
http://arxiv.org/pdf/1412.1441v3
http://arxiv.org/pdf/1512.04143v1
http://arxiv.org/pdf/1604.00600v1
http://arxiv.org/pdf/1604.00600v1
http://arxiv.org/pdf/1607.07155v1
http://arxiv.org/pdf/1607.07155v1
http://arxiv.org/pdf/1701.06659v1
http://arxiv.org/pdf/1701.06659v1
http://arxiv.org/pdf/1504.01942v1
http://arxiv.org/pdf/1504.01942v1
http://arxiv.org/pdf/1303.4803v1
https://doi.org/10.1007/978-3-319-07386-6_2
https://doi.org/10.1007/978-3-319-07386-6_2
https://doi.org/10.1109/SCIS-ISIS.2014.7044769
https://doi.org/10.1109/SCIS-ISIS.2014.7044769
https://doi.org/10.1109/ICIP.2010.5651716
https://doi.org/10.1109/ICIP.2010.5651716
https://doi.org/10.1007/s41095-017-0083-7
https://doi.org/10.1007/s41095-017-0083-7
https://doi.org/10.1109/CVPR.2011.5995537
https://doi.org/10.1109/CompComm.2017.8322856
https://doi.org/10.5244/C.15.26
https://doi.org/10.1109/ICCV.2013.134
https://doi.org/10.1109/ISTEL.2014.7000725
https://doi.org/10.1109/TPAMI.2007.250600
http://arxiv.org/pdf/1709.07065v1
http://arxiv.org/pdf/1709.07065v1
https://doi.org/10.1109/CISP.2014.7003745
http://arxiv.org/pdf/1712.09531v1
http://arxiv.org/pdf/1702.04593v3
http://arxiv.org/pdf/1702.04593v3

Bibliography

[357] Silveira, G. and Malis, E. “Real-time Visual Track-
ing under Arbitrary Illumination Changes”. In: 2007
IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2007, pp. 1–6. isbn: 1-4244-1179-3.
doi: 10.1109/CVPR.2007.382993

.

.
[358] Hu, W., Li, X., Zhang, X., et al. “Incremental Ten-

sor Subspace Learning and Its Applications to Fore-
ground Segmentation and Tracking”. In: International
Journal of Computer Vision 91.3 (2011), pp. 303–327.
issn: 0920-5691. doi: 10.1007/s11263-010-0399-6

.

.
[359] Mason, M. and Duric, Z. “Using histograms to de-

tect and track objects in color video”. In: Proceedings
30th Applied Imagery Pattern Recognition Workshop
(AIPR 2001). Analysis and Understanding of Time
Varying Imagery. IEEE Comput. Soc, 2001, pp. 154–
159. isbn: 0-7695-1245-3. doi: 10.1109/AIPR.2001.
991219

.

.
[360] Xiao, C., Chen, W., and Gao, H. “Object track-

ing algorithm based on HSV color histogram and
block-sparse representation”. In: 2015 34th Chinese
Control Conference (CCC). IEEE, 2015, pp. 3826–
3831. isbn: 978-9-8815-6389-7. doi: 10.1109/ChiCC.
2015.7260229

.

.
[361] Dash, P. P., Patra, D., Mishra, S. K., et al. Kernel

based Object Tracking using Color Histogram Tech-
nique. 2012.

[362] Maggio, E. and Cavallaro, A. “Multi-part target
representation for color tracking”. In: IEEE Interna-
tional Conference on Image Processing 2005. IEEE,
2005, pp. I–729. isbn: 0-7803-9134-9. doi: 10.1109/
ICIP.2005.1529854

.

.
[363] Birchfield, S. “Elliptical head tracking using in-

tensity gradients and color histograms”. In: Pro-
ceedings. 1998 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat.
No.98CB36231). IEEE Comput. Soc, 1998, pp. 232–
237. isbn: 0-8186-8497-6. doi: 10.1109/CVPR.1998.
698614

.

.
[364] Liu, T.-L. and Chen, H.-T. “Real-time tracking

using trust-region methods”. In: IEEE transactions
on pattern analysis and machine intelligence 26.3
(2004), pp. 397–402. issn: 0162-8828. doi: 10.1109/
TPAMI.2004.1262335

.

.
[365] Maggio, E., Smerladi, F., and Cavallaro, A.

“Adaptive Multifeature Tracking in a Particle Fil-
tering Framework”. In: IEEE Transactions on Cir-
cuits and Systems for Video Technology 17.10 (2007),
pp. 1348–1359. issn: 1051-8215. doi: 10.1109/TCSVT.
2007.903781

.

.
[366] Maggio, E., Smeraldi, F., and Cavallaro, A.

“Combining Colour and Orientation for Adaptive
Particle Filter–based Tracking”. In: Procedings of
the British Machine Vision Conference 2005. Ed. by
Clocksin, W. F., Fitzgibbon, A. W., and Torr,
P. H. S. British Machine Vision Association, 2005,
pp. 79.1–79.10. isbn: 1-901725-29-4. doi: 10.5244/C.
19.79

.

.
[367] Bilinski, P., Bremond, F., and Kaaniche, M. B.

“Multiple object tracking with occlusions using HOG
descriptors and multi resolution images”. In: 3rd In-
ternational Conference on Imaging for Crime Detec-

tion and Prevention (ICDP 2009). IET, 2009, P36–
P36. doi: 10.1049/ic.2009.0264

.

.
[368] Wang, Y., Jiang, L., Liu, Q., et al. “Optimal Ap-

pearance Model for Visual Tracking”. In: PloS one
11.1 (2016), e0146763. doi: 10.1371/journal.pone.
0146763

.

.
[369] Zhou, S. K., Chellappa, R., and Moghaddam, B.

“Visual Tracking and Recognition Using Appearance-
Adaptive Models in Particle Filters”. In: IEEE Trans-
actions on Image Processing 13.11 (2004), pp. 1491–
1506. issn: 1057-7149. doi: 10 . 1109 / TIP . 2004 .
836152

.

.
[370] Lucas, B. D. and Kanade, T. “An Iterative Image

Registration Technique with an Application to Stereo
Vision”. In: Proceedings of the 7th International Joint
Conference on Artificial Intelligence. IJCAI ’81. 1981,
pp. 674–679.

[371] Wu, Y., Cheng, J., Wang, J., et al. “Real-time
visual tracking via Incremental Covariance Tensor
Learning”. In: 2009 IEEE 12th International Confer-
ence on Computer Vision. IEEE, 2009, pp. 1631–1638.
isbn: 978-1-4244-4420-5. doi: 10.1109/ICCV.2009.
5459369

.

.
[372] Wu, Y., Cheng, J., Wang, J., et al. “Real-time

probabilistic covariance tracking with efficient model
update”. In: IEEE transactions on image processing
: a publication of the IEEE Signal Processing Society
21.5 (2012), pp. 2824–2837. doi: 10.1109/TIP.2011.
2182521

.

.
[373] Nejhum, S., Rushdi, M., and Ho, J. “Visual Track-

ing Using Superpixel-Based Appearance Model”. In:
Computer Vision Systems. Ed. by Hutchison, D.,
Kanade, T., Kittler, J., et al. Vol. 7963. Lec-
ture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 213–222. isbn:
978-3-642-39401-0. doi: 10.1007/978-3-642-39402-
7_22

.

.
[374] He, C., Zheng, Y. F., and Ahalt, S. C. “Object

tracking using the Gabor wavelet transform and the
golden section algorithm”. In: IEEE Transactions on
Multimedia 4.4 (2002), pp. 528–538. issn: 1520-9210.
doi: 10.1109/TMM.2002.806534

.

.
[375] Tang, F. and Tao, H. “Probabilistic Object Tracking

With Dynamic Attributed Relational Feature Graph”.
In: IEEE Transactions on Circuits and Systems for
Video Technology 18.8 (2008), pp. 1064–1074. issn:
1051-8215. doi: 10.1109/TCSVT.2008.927106

.

.
[376] Donoser, M. and Bischof, H. “Efficient Maximally

Stable Extremal Region (MSER) Tracking”. In: 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition - Volume 1 (CVPR’06).
IEEE, 2006, pp. 553–560. isbn: 0-7695-2597-0. doi:
10.1109/CVPR.2006.107

.

.
[377] He, W., Yamashita, T., Lu, H., et al. “SURF Track-

ing”. In: 2009 IEEE 12th International Conference
on Computer Vision. IEEE, 2009, pp. 1586–1592.
isbn: 978-1-4244-4420-5. doi: 10.1109/ICCV.2009.
5459360

.

.
[378] Salmane, H., Ruichek, Y., and Khoudour, L. “Ob-

ject tracking using Harris corner points based optical
flow propagation and Kalman filter”. In: 2011 14th

96

https://doi.org/10.1109/CVPR.2007.382993
https://doi.org/10.1007/s11263-010-0399-6
https://doi.org/10.1109/AIPR.2001.991219
https://doi.org/10.1109/AIPR.2001.991219
https://doi.org/10.1109/ChiCC.2015.7260229
https://doi.org/10.1109/ChiCC.2015.7260229
https://doi.org/10.1109/ICIP.2005.1529854
https://doi.org/10.1109/ICIP.2005.1529854
https://doi.org/10.1109/CVPR.1998.698614
https://doi.org/10.1109/CVPR.1998.698614
https://doi.org/10.1109/TPAMI.2004.1262335
https://doi.org/10.1109/TPAMI.2004.1262335
https://doi.org/10.1109/TCSVT.2007.903781
https://doi.org/10.1109/TCSVT.2007.903781
https://doi.org/10.5244/C.19.79
https://doi.org/10.5244/C.19.79
https://doi.org/10.1049/ic.2009.0264
https://doi.org/10.1371/journal.pone.0146763
https://doi.org/10.1371/journal.pone.0146763
https://doi.org/10.1109/TIP.2004.836152
https://doi.org/10.1109/TIP.2004.836152
https://doi.org/10.1109/ICCV.2009.5459369
https://doi.org/10.1109/ICCV.2009.5459369
https://doi.org/10.1109/TIP.2011.2182521
https://doi.org/10.1109/TIP.2011.2182521
https://doi.org/10.1007/978-3-642-39402-7_22
https://doi.org/10.1007/978-3-642-39402-7_22
https://doi.org/10.1109/TMM.2002.806534
https://doi.org/10.1109/TCSVT.2008.927106
https://doi.org/10.1109/CVPR.2006.107
https://doi.org/10.1109/ICCV.2009.5459360
https://doi.org/10.1109/ICCV.2009.5459360

Bibliography

International IEEE Conference on Intelligent Trans-
portation Systems (ITSC). IEEE, 2011, pp. 67–73.
isbn: 978-1-4577-2197-7. doi: 10.1109/ITSC.2011.
6083031

.

.
[379] Yilmaz, A., Javed, O., and Shah, M. “Object track-

ing: A Survey”. In: ACM Computing Surveys 38.4
(2006), 13–es. issn: 03600300. doi: 10.1145/1177352.
1177355

.

.
[380] Kitagawa, G. “Non-Gaussian State-Space Model-

ing of Nonstationary Time Series”. In: Journal of
the American Statistical Association 82.400 (1987),
p. 1032. issn: 0162-1459. doi: 10.2307/2289375

.

.
[381] Broida, T. J. and Chellappa, R. “Estimation of

Object Motion Parameters from Noisy Images”. In:
IEEE transactions on pattern analysis and machine
intelligence PAMI-8.1 (1986), pp. 90–99. issn: 0162-
8828. doi: 10.1109/TPAMI.1986.4767755

.

.
[382] Vermaak, J., Godsill, S. J., and Perez, P. “Monte

Carlo filtering for multi-target tracking and data as-
sociation”. In: IEEE Transactions on Aerospace and
Electronic Systems 41.1 (2005), pp. 309–332. issn:
0018-9251. doi: 10.1109/TAES.2005.1413764

.

.
[383] Comaniciu, D., Ramesh, V., and Meer, P. “Kernel-

based object tracking”. In: IEEE transactions on
pattern analysis and machine intelligence 25.5 (2003),
pp. 564–577. issn: 0162-8828. doi: 10.1109/TPAMI.
2003.1195991

.

.
[384] Tomasi, C. and Kanade, T. “Detection and Track-

ing of Point Features”. In: International Journal of
Computer Vision (1991).

[385] Isard, M. and Blake, A. “Condensation: Condi-
tional Density Propagation for Visual Tracking”. In:
International Journal of Computer Vision 29.1 (1998),
pp. 5–28. issn: 0920-5691. doi: 10.1023/A:1008078328650

.

.
[386] Sato, K. and Aggarwal, J. K. “Temporal spatio-

velocity transform and its application to tracking and
interaction”. In: Computer Vision and Image Under-
standing 96.2 (2004), pp. 100–128. issn: 10773142.
doi: 10.1016/j.cviu.2004.02.003

.

.
[387] Briechle, K. and Hanebeck, U. D. “Template

matching using fast normalized cross correlation”.
In: ed. by Casasent, D. P. and Chao, T.-H. SPIE
Proceedings. SPIE, 2001, pp. 95–102. doi: 10.1117/
12.421129

.

.
[388] Nguyen, H. T. and Smeulders, A. W. M. “Fast

occluded object tracking by a robust appearance fil-
ter”. In: IEEE transactions on pattern analysis and
machine intelligence 26.8 (2004), pp. 1099–1104. issn:
0162-8828. doi: 10.1109/TPAMI.2004.45

.

.
[389] Adam, A., Rivlin, E., and Shimshoni, I. “Robust

Fragments-based Tracking using the Integral His-
togram”. In: 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Vol-
ume 1 (CVPR’06). IEEE, 2006, pp. 798–805. isbn:
0-7695-2597-0. doi: 10.1109/CVPR.2006.256

.

.
[390] Ross, D. A., Lim, J., Lin, R.-S., et al. “Incremen-

tal Learning for Robust Visual Tracking”. In: Inter-
national Journal of Computer Vision 77.1-3 (2008),
pp. 125–141. issn: 0920-5691. doi: 10.1007/s11263-
007-0075-7

.

.

[391] Xie, Y. and Wu, C. “Visual Object Tracking using
Particle Filtering with Dual Manifold Models”. In:
JOURNAL OF INFORMATION SCIENCE AND
ENGINEERING 31 (2015), pp. 283–296.

[392] Kwon, J. and Lee, K. M. “Tracking by Sampling
Trackers”. In: 2011 International Conference on Com-
puter Vision. IEEE, 2011, pp. 1195–1202. isbn: 978-
1-4577-1102-2. doi: 10.1109/ICCV.2011.6126369

.

.
[393] Kwon, J. and Lee, K. M. “Tracking of a non-rigid

object via patch-based dynamic appearance model-
ing and adaptive Basin Hopping Monte Carlo sam-
pling”. In: CVPR 2009. Los Alamitos, California:
IEEE, 2009, pp. 1208–1215. isbn: 978-1-4244-3992-8.
doi: 10.1109/CVPR.2009.5206502

.

.
[394] Cehovin, L., Kristan, M., and Leonardis, A. “An

adaptive coupled-layer visual model for robust visual
tracking”. In: 2011 International Conference on Com-
puter Vision. IEEE, 2011, pp. 1363–1370. isbn: 978-
1-4577-1102-2. doi: 10.1109/ICCV.2011.6126390

.

.
[395] Mei, X. and Ling, H. “Robust visual tracking us-

ing L1 minimization”. In: 2009 IEEE 12th Interna-
tional Conference on Computer Vision. IEEE, 2009,
pp. 1436–1443. isbn: 978-1-4244-4420-5. doi: 10.1109/
ICCV.2009.5459292

.

.
[396] Nguyen, H. T. and Smeulders, A. W. M. “Robust

Tracking Using Foreground-Background Texture Dis-
crimination”. In: International Journal of Computer
Vision 69.3 (2006), pp. 277–293. issn: 0920-5691. doi:
10.1007/s11263-006-7067-x

.

.
[397] Kalal, Z., Mikolajczyk, K., and Matas, J. “Tracking-

Learning-Detection”. In: IEEE transactions on pat-
tern analysis and machine intelligence 34.7 (2012),
pp. 1409–1422. issn: 0162-8828. doi: 10.1109/TPAMI.
2011.239

.

.
[398] Hare, S., Golodetz, S., Saffari, A., et al. “Struck:

Structured Output Tracking with Kernels”. In: IEEE
transactions on pattern analysis and machine intelli-
gence 38.10 (2016), pp. 2096–2109. issn: 0162-8828.
doi: 10.1109/TPAMI.2015.2509974

.

.
[399] Maggio, E. and Cavallaro, A. Video tracking: The-

ory and practice. 1st publ. Chichester: Wiley, 2011.
isbn: 978-0-470-74964-7.

[400] Babenko, B. “Multiple Instance Learning: Algo-
rithms and Applications”. In: (2008).

[401] Babenko, B., Yang, M.-H., and Belongie, S. “Vi-
sual tracking with online Multiple Instance Learning”.
In: CVPR 2009. Los Alamitos, California: IEEE, 2009,
pp. 983–990. isbn: 978-1-4244-3992-8. doi: 10.1109/
CVPR.2009.5206737

.

.
[402] Babenko, B., Yang, M.-H., and Belongie, S. “Ro-

bust Object Tracking with Online Multiple Instance
Learning”. In: IEEE transactions on pattern analysis
and machine intelligence 33.8 (2011), pp. 1619–1632.
issn: 0162-8828. doi: 10.1109/TPAMI.2010.226

.

.
[403] Wang, Z., Wang, L., and Zhang, H. “Patch Based

Multiple Instance Learning Algorithm for Object
Tracking”. In: Computational intelligence and neuro-
science 2017 (2017), p. 2426475. doi: 10.1155/2017/
2426475

.

.

97

https://doi.org/10.1109/ITSC.2011.6083031
https://doi.org/10.1109/ITSC.2011.6083031
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.2307/2289375
https://doi.org/10.1109/TPAMI.1986.4767755
https://doi.org/10.1109/TAES.2005.1413764
https://doi.org/10.1109/TPAMI.2003.1195991
https://doi.org/10.1109/TPAMI.2003.1195991
https://doi.org/10.1023/A:1008078328650
https://doi.org/10.1016/j.cviu.2004.02.003
https://doi.org/10.1117/12.421129
https://doi.org/10.1117/12.421129
https://doi.org/10.1109/TPAMI.2004.45
https://doi.org/10.1109/CVPR.2006.256
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1109/ICCV.2011.6126369
https://doi.org/10.1109/CVPR.2009.5206502
https://doi.org/10.1109/ICCV.2011.6126390
https://doi.org/10.1109/ICCV.2009.5459292
https://doi.org/10.1109/ICCV.2009.5459292
https://doi.org/10.1007/s11263-006-7067-x
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/TPAMI.2015.2509974
https://doi.org/10.1109/CVPR.2009.5206737
https://doi.org/10.1109/CVPR.2009.5206737
https://doi.org/10.1109/TPAMI.2010.226
https://doi.org/10.1155/2017/2426475
https://doi.org/10.1155/2017/2426475

Bibliography

[404] Lan, X., Yuen, P. C., and Chellappa, R. “Robust
MIL-Based Feature Template Learning for Object
Tracking”. In: AAAI. 2017.

[405] Yang, H., Qu, S., and Zheng, Z. “Visual tracking
via online discriminative multiple instance metric
learning”. In: Multimedia Tools and Applications 77.4
(2018), pp. 4113–4131. issn: 1380-7501. doi: 10.1007/
s11042-017-4498-z

.

.
[406] Xu, C., Tao, W., Meng, Z., et al. “Robust visual

tracking via online multiple instance learning with
Fisher information”. In: Pattern Recognition 48.12
(2015), pp. 3917–3926. issn: 00313203. doi: 10.1016/
j.patcog.2015.06.004

.

.
[407] Abdechiri, M., Faez, K., and Amindavar, H. “Vi-

sual object tracking with online weighted chaotic
multiple instance learning”. In: Neurocomputing 247
(2017), pp. 16–30. issn: 09252312. doi: 10.1016/j.
neucom.2017.03.032

.

.
[408] Sharma, V. K. and Mahapatra, K. K. “MIL based

visual object tracking with kernel and scale adapta-
tion”. In: Signal Processing: Image Communication
53 (2017), pp. 51–64. issn: 09235965. doi: 10.1016/
j.image.2017.01.007

.

.
[409] Stutz, D., Hermans, A., and Leibe, B. “Superpixels:

An Evaluation of the State-of-the-Art”. In: Computer
Vision and Image Understanding 166 (2018), pp. 1–27.
issn: 10773142. doi: 10.1016/j.cviu.2017.03.007

.

.
url: http://arxiv.org/pdf/1612.01601v3

.

.
[410] Jingjing, L., Ying, C., Cheng, Z., et al. “Tracking

Using Superpixel Features”. In: 2016 Eighth Inter-
national Conference on Measuring Technology and
Mechatronics Automation (ICMTMA). IEEE, 2016,
pp. 878–881. isbn: 978-1-5090-2312-7. doi: 10.1109/
ICMTMA.2016.211

.

.
[411] Wang, S., Lu, H., Yang, F., et al. “Superpixel track-

ing”. In: 2011 International Conference on Computer
Vision. IEEE, 2011, pp. 1323–1330. isbn: 978-1-4577-
1102-2. doi: 10.1109/ICCV.2011.6126385

.

.
[412] Wang, J., Liu, W., Xing, W., et al. “Two-level

superpixel and feedback based visual object tracking”.
In: Neurocomputing 267 (2017), pp. 581–596. issn:
09252312. doi: 10.1016/j.neucom.2017.06.031

.

.
[413] Wang, L., Lu, H., and Yang, M.-H. “Constrained

Superpixel Tracking”. In: IEEE transactions on cy-
bernetics 48.3 (2018), pp. 1030–1041. doi: 10.1109/
TCYB.2017.2675910

.

.
[414] Huang, W., Hu, R., Liang, C., et al. “Structural

superpixel descriptor for visual tracking”. In: IJCNN
2017. Piscataway, NJ: IEEE, 2017, pp. 3146–3152.
isbn: 978-1-5090-6182-2. doi: 10.1109/IJCNN.2017.
7966248

.

.
[415] Li, A. and Yan, S. “Object Tracking With Only

Background Cues”. In: IEEE Transactions on Cir-
cuits and Systems for Video Technology 24.11 (2014),
pp. 1911–1919. issn: 1051-8215. doi: 10.1109/TCSVT.
2014.2317888

.

.
[416] Gomila, C. and Meyer, F. “Graph-based object

tracking”. In: ICIP-2003. Piscataway, NJ: IEEE, 2003.
isbn: 0-7803-7750-8. doi: 10.1109/ICIP.2003.1246611

.

.
[417] Du, D., Qi, H., Li, W., et al. “Online Deformable

Object Tracking Based on Structure-Aware Hyper-

Graph”. In: IEEE transactions on image processing :
a publication of the IEEE Signal Processing Society
25.8 (2016), pp. 3572–3584. doi: 10.1109/TIP.2016.
2570556

.

.
[418] Wang, T. and Ling, H. “Gracker: A Graph-Based

Planar Object Tracker”. In: IEEE transactions on
pattern analysis and machine intelligence 40.6 (2018),
pp. 1494–1501. issn: 0162-8828. doi: 10.1109/TPAMI.
2017.2716350

.

.
[419] Du, D., Qi, H., Wen, L., et al. Geometric Hypergraph

Learning for Visual Tracking. 2016. url: http://
arxiv.org/pdf/1603.05930v1

.

.
[420] Yeo, D., Son, J., Han, B., et al. “Superpixel-Based

Tracking-by-Segmentation Using Markov Chains”. In:
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, 2017, pp. 511–520.
isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.
62

.

.
[421] Wang, J., Fei, C., Zhuang, L., et al. “Part-based

multi-graph ranking for visual tracking”. In: 2016
IEEE International Conference on Image Processing.
Piscataway, NJ: IEEE, 2016, pp. 1714–1718. isbn: 978-
1-4673-9961-6. doi: 10.1109/ICIP.2016.7532651

.

.
[422] Yao, R., Shi, Q., Shen, C., et al. “Part-Based Robust

Tracking Using Online Latent Structured Learning”.
In: IEEE Transactions on Circuits and Systems for
Video Technology 27.6 (2017), pp. 1235–1248. issn:
1051-8215. doi: 10.1109/TCSVT.2016.2527358

.

.
[423] Zhang, B., Li, Z., Perina, A., et al. “Adaptive Local

Movement Modeling for Robust Object Tracking”. In:
IEEE Transactions on Circuits and Systems for Video
Technology 27.7 (2017), pp. 1515–1526. issn: 1051-
8215. doi: 10.1109/TCSVT.2016.2540978

.

.
[424] Ath, G. D. and Everson, R. Part-Based Tracking

by Sampling. 2018. url: http://arxiv.org/pdf/
1805.08511v1

.

.
[425] Li, F., Jia, X., Xiang, C., et al. “Visual tracking with

structured patch-based model”. In: Image and Vision
Computing 60 (2017), pp. 124–133. issn: 02628856.
doi: 10.1016/j.imavis.2017.01.003

.

.
[426] Zhang, S., Yao, H., Sun, X., et al. “Sparse cod-

ing based visual tracking: Review and experimental
comparison”. In: Pattern Recognition 46.7 (2013),
pp. 1772–1788. issn: 00313203. doi: 10 . 1016 / j .
patcog.2012.10.006

.

.
[427] Zhong, W., Lu, H., and Yang, M.-H. “Robust ob-

ject tracking via sparsity-based collaborative model”.
In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2012, pp. 1838–1845. isbn:
978-1-4673-1228-8. doi: 10.1109/CVPR.2012.6247882

.

.
[428] Zhang, T., Liu, S., Ahuja, N., et al. “Robust Visual

Tracking Via Consistent Low-Rank Sparse Learning”.
In: International Journal of Computer Vision 111.2
(2015), pp. 171–190. issn: 0920-5691. doi: 10.1007/
s11263-014-0738-0

.

.
[429] Zhang, T., Liu, S., Xu, C., et al. “Structural Sparse

Tracking”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Piscataway,
NJ: IEEE, 2015, pp. 150–158. isbn: 978-1-4673-6964-0.
doi: 10.1109/CVPR.2015.7298610

.

.

98

https://doi.org/10.1007/s11042-017-4498-z
https://doi.org/10.1007/s11042-017-4498-z
https://doi.org/10.1016/j.patcog.2015.06.004
https://doi.org/10.1016/j.patcog.2015.06.004
https://doi.org/10.1016/j.neucom.2017.03.032
https://doi.org/10.1016/j.neucom.2017.03.032
https://doi.org/10.1016/j.image.2017.01.007
https://doi.org/10.1016/j.image.2017.01.007
https://doi.org/10.1016/j.cviu.2017.03.007
http://arxiv.org/pdf/1612.01601v3
https://doi.org/10.1109/ICMTMA.2016.211
https://doi.org/10.1109/ICMTMA.2016.211
https://doi.org/10.1109/ICCV.2011.6126385
https://doi.org/10.1016/j.neucom.2017.06.031
https://doi.org/10.1109/TCYB.2017.2675910
https://doi.org/10.1109/TCYB.2017.2675910
https://doi.org/10.1109/IJCNN.2017.7966248
https://doi.org/10.1109/IJCNN.2017.7966248
https://doi.org/10.1109/TCSVT.2014.2317888
https://doi.org/10.1109/TCSVT.2014.2317888
https://doi.org/10.1109/ICIP.2003.1246611
https://doi.org/10.1109/TIP.2016.2570556
https://doi.org/10.1109/TIP.2016.2570556
https://doi.org/10.1109/TPAMI.2017.2716350
https://doi.org/10.1109/TPAMI.2017.2716350
http://arxiv.org/pdf/1603.05930v1
http://arxiv.org/pdf/1603.05930v1
https://doi.org/10.1109/CVPR.2017.62
https://doi.org/10.1109/CVPR.2017.62
https://doi.org/10.1109/ICIP.2016.7532651
https://doi.org/10.1109/TCSVT.2016.2527358
https://doi.org/10.1109/TCSVT.2016.2540978
http://arxiv.org/pdf/1805.08511v1
http://arxiv.org/pdf/1805.08511v1
https://doi.org/10.1016/j.imavis.2017.01.003
https://doi.org/10.1016/j.patcog.2012.10.006
https://doi.org/10.1016/j.patcog.2012.10.006
https://doi.org/10.1109/CVPR.2012.6247882
https://doi.org/10.1007/s11263-014-0738-0
https://doi.org/10.1007/s11263-014-0738-0
https://doi.org/10.1109/CVPR.2015.7298610

Bibliography

[430] Zhang, T., Ghanem, B., Liu, S., et al. “Robust
Visual Tracking via Exclusive Context Modeling”. In:
IEEE transactions on cybernetics 46.1 (2016), pp. 51–
63. doi: 10.1109/TCYB.2015.2393307

.

.
[431] Yi, Y., Cheng, Y., and Xu, C. “Visual tracking based

on hierarchical framework and sparse representation”.
In: Multimedia Tools and Applications 77.13 (2018),
pp. 16267–16289. issn: 1380-7501. doi: 10 . 1007 /
s11042-017-5198-4

.

.
[432] Guo, J., Xu, T., Shen, Z., et al. “Visual Track-

ing via Sparse Representation with Reliable Struc-
ture Constraint”. In: IEEE Signal Processing Letters
(2017), p. 1. issn: 1070-9908. doi: 10.1109/LSP.2016.
2645819

.

.
[433] Javanmardi, M. and Qi, X. Robust Structured Multi-

task Multi-view Sparse Tracking. 2018. url: http:
//arxiv.org/pdf/1806.01985v1

.

.
[434] Zhu, G., Porikli, F., and Li, H. Beyond Local

Search: Tracking Objects Everywhere with Instance-
Specific Proposals. 2016. url: http://arxiv.org/
pdf/1605.01839v1

.

.
[435] Gao, C., Chen, F., Yu, J.-G., et al. “Robust Vi-

sual Tracking Using Exemplar-Based Detectors”. In:
IEEE Transactions on Circuits and Systems for Video
Technology 27.2 (2017), pp. 300–312. issn: 1051-8215.
doi: 10.1109/TCSVT.2015.2513700

.

.
[436] Zhang, L., Varadarajan, J., Suganthan, P. N.,

et al. “Robust Visual Tracking Using Oblique Ran-
dom Forests”. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 5825–5834. isbn: 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.617

.

.
[437] Henriques, J. F., Caseiro, R., Martins, P., et

al. “Exploiting the Circulant Structure of Tracking-
by-Detection with Kernels”. In: Computer vision -
ECCV 2012. Ed. by Fitzgibbon, A., Lazebnik, S.,
Perona, P., et al. Vol. 7575. Lecture Notes in Com-
puter Science. Berlin: Springer, 2012, pp. 702–715.
isbn: 978-3-642-33764-2. doi: 10.1007/978-3-642-
33765-9_50

.

.
[438] Danelljan, M., Hager, G., Khan, F. S., et al. “Dis-

criminative Scale Space Tracking”. In: IEEE transac-
tions on pattern analysis and machine intelligence
39.8 (2017), pp. 1561–1575. issn: 0162-8828. doi:
10.1109/TPAMI.2016.2609928

.

.
[439] Tang, M. and Feng, J. “Multi-kernel Correlation

Filter for Visual Tracking”. In: 2015 IEEE Interna-
tional Conference on Computer Vision. Piscataway,
NJ: IEEE, 2015, pp. 3038–3046. isbn: 978-1-4673-
8391-2. doi: 10.1109/ICCV.2015.348

.

.
[440] Wibowo, S. A., Lee, H., Kim, E. K., et al. “Multi-

scale color features based on correlation filter for
visual tracking”. In: International Conference on Sig-
nals and Systems. Piscataway, NJ: IEEE, 2017, pp. 272–
277. isbn: 978-1-5090-6748-0. doi: 10.1109/ICSIGSY
S.2017.7967055

.

.
[441] Danelljan, M., Häger, G., Shahbaz Khan, F.,

et al. “Accurate Scale Estimation for Robust Visual
Tracking”. In: Proceedings of the British Machine Vi-
sion Conference 2014. Ed. by Valstar, M., French,
A., and Pridmore, T. British Machine Vision As-

sociation, 2014, pp. 65.1–65.11. isbn: 1-901725-52-9.
doi: 10.5244/C.28.65

.

.
[442] Arfken, G. B. and Weber, H.-J. Mathematical

methods for physicists. 6. ed., internat. ed., [5. Nachdr.]
Amsterdam: Elsevier Acad. Press, 2008. isbn: 0-12-
059876-0.

[443] Wong, M. W. Discrete Fourier Analysis. Vol. 5.
Pseudo-Differential Operators, Theory and Applica-
tions. Basel: Springer Basel AG, 2011. isbn: 978-3-
0348-0115-7. doi: 10.1007/978- 3- 0348- 0116- 4

.

.
url: http://dx.doi.org/10.1007/978-3-0348-
0116-4

.

.
[444] Duhamel, P., Piron, B., and Etcheto, J. M. “On

computing the inverse DFT”. In: IEEE Transac-
tions on Acoustics, Speech, and Signal Processing
36.2 (1988), pp. 285–286. issn: 00963518. doi: 10.
1109/29.1519

.

.
[445] Qi, Y., Zhang, S., Qin, L., et al. “Hedged Deep

Tracking”. In: 29th IEEE Conference on Computer Vi-
sion and Pattern Recognition. Piscataway, NJ: IEEE,
2016, pp. 4303–4311. isbn: 978-1-4673-8851-1. doi:
10.1109/CVPR.2016.466

.

.
[446] Song, Y., Ma, C., Gong, L., et al. CREST: Convo-

lutional Residual Learning for Visual Tracking. 2017.
url: http://arxiv.org/pdf/1708.00225v1

.

.
[447] Schölkopf, B. and Smola, A. J. Learning with

kernels: Support vector machines, regularization, op-
timization, and beyond. Adaptive computation and
machine learning. Cambridge, Mass: MIT Press, 2002.
isbn: 9780262194754. url: http://search.ebscoho
st.com/login.aspx?direct=true&scope=site&db=
nlebk&db=nlabk&AN=78092

.

.
[448] Bolme, D. S., Draper, B. A., and Beveridge, J. R.

“Average of Synthetic Exact Filters”. In: CVPR 2009.
Los Alamitos, California: IEEE, 2009, pp. 2105–2112.
isbn: 978-1-4244-3992-8. doi: 10.1109/CVPR.2009.
5206701

.

.
[449] Danelljan, M., Khan, F. S., Felsberg, M., et

al. “Adaptive Color Attributes for Real-Time Visual
Tracking”. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2014, pp. 1090–
1097. isbn: 978-1-4799-5118-5. doi: 10.1109/CVPR.
2014.143

.

.
[450] Zhang, K., Zhang, L., Liu, Q., et al. “Fast Vi-

sual Tracking via Dense Spatio-temporal Context
Learning”. In: Computer vision - ECCV 2014. Ed. by
Fleet, D. Vol. 8693. Lecture Notes in Computer
Science. Cham: Springer, 2014, pp. 127–141. isbn:
978-3-319-10601-4. doi: 10.1007/978-3-319-10602-
1_9

.

.
[451] Li, Y. and Zhu, J. “A Scale Adaptive Kernel Corre-

lation Filter Tracker with Feature Integration”. In:
Computer vision - ECCV 2014 Workshops. Ed. by
Agapito, L. Vol. 8926. Lecture Notes in Computer
Science. Cham: Springer, 2015, pp. 254–265. isbn:
978-3-319-16180-8. doi: 10.1007/978-3-319-16181-
5_18

.

.
[452] Mueller, M., Smith, N., and Ghanem, B. “Context-

Aware Correlation Filter Tracking”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recog-

99

https://doi.org/10.1109/TCYB.2015.2393307
https://doi.org/10.1007/s11042-017-5198-4
https://doi.org/10.1007/s11042-017-5198-4
https://doi.org/10.1109/LSP.2016.2645819
https://doi.org/10.1109/LSP.2016.2645819
http://arxiv.org/pdf/1806.01985v1
http://arxiv.org/pdf/1806.01985v1
http://arxiv.org/pdf/1605.01839v1
http://arxiv.org/pdf/1605.01839v1
https://doi.org/10.1109/TCSVT.2015.2513700
https://doi.org/10.1109/CVPR.2017.617
https://doi.org/10.1007/978-3-642-33765-9_50
https://doi.org/10.1007/978-3-642-33765-9_50
https://doi.org/10.1109/TPAMI.2016.2609928
https://doi.org/10.1109/ICCV.2015.348
https://doi.org/10.1109/ICSIGSYS.2017.7967055
https://doi.org/10.1109/ICSIGSYS.2017.7967055
https://doi.org/10.5244/C.28.65
https://doi.org/10.1007/978-3-0348-0116-4
http://dx.doi.org/10.1007/978-3-0348-0116-4
http://dx.doi.org/10.1007/978-3-0348-0116-4
https://doi.org/10.1109/29.1519
https://doi.org/10.1109/29.1519
https://doi.org/10.1109/CVPR.2016.466
http://arxiv.org/pdf/1708.00225v1
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78092
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78092
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=78092
https://doi.org/10.1109/CVPR.2009.5206701
https://doi.org/10.1109/CVPR.2009.5206701
https://doi.org/10.1109/CVPR.2014.143
https://doi.org/10.1109/CVPR.2014.143
https://doi.org/10.1007/978-3-319-10602-1_9
https://doi.org/10.1007/978-3-319-10602-1_9
https://doi.org/10.1007/978-3-319-16181-5_18
https://doi.org/10.1007/978-3-319-16181-5_18

Bibliography

nition (CVPR). IEEE, 2017, pp. 1387–1395. isbn:
978-1-5386-0457-1. doi: 10.1109/CVPR.2017.152

.

.
[453] Zhang, M., Xing, J., Gao, J., et al. “Joint Scale-

Spatial Correlation Tracking with Adaptive Rota-
tion Estimation”. In: 2015 IEEE International Con-
ference on Computer Vision Workshop (ICCVW).
IEEE, 2015, pp. 595–603. isbn: 978-1-4673-9711-7.
doi: 10.1109/ICCVW.2015.81

.

.
[454] Zhang, M., Xing, J., Gao, J., et al. “Robust vi-

sual tracking using joint scale-spatial correlation fil-
ters”. In: 2015 IEEE International Conference on
Image Processing (ICIP). Piscataway, NJ: IEEE, 2015,
pp. 1468–1472. isbn: 978-1-4799-8339-1. doi: 10.1109/
ICIP.2015.7351044

.

.
[455] Hong, Z., Chen, Z., Wang, C., et al. “MUlti-Store

Tracker (MUSTer): A cognitive psychology inspired
approach to object tracking”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR). Piscataway, NJ: IEEE, 2015, pp. 749–758.
isbn: 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.
7298675

.

.
[456] Ma, C., Yang, X., Zhang, C., et al. “Long-term

correlation tracking”. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Piscataway, NJ: IEEE, 2015, pp. 5388–5396. isbn: 978-
1-4673-6964-0. doi: 10.1109/CVPR.2015.7299177

.

.
[457] Bertinetto, L., Valmadre, J., Golodetz, S., et

al. Staple: Complementary Learners for Real-Time
Tracking. 2016. url: http://arxiv.org/pdf/1512.
01355v2

.

.
[458] Galoogahi, H. K., Fagg, A., and Lucey, S. Learn-

ing Background-Aware Correlation Filters for Visual
Tracking. 2017. url: http://arxiv.org/pdf/1703.
04590v2

.

.
[459] Danelljan, M., Hager, G., Khan, F. S., et al.

“Learning Spatially Regularized Correlation Filters
for Visual Tracking”. In: 2015 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2015,
pp. 4310–4318. isbn: 978-1-4673-8391-2. doi: 10.1109/
ICCV.2015.490

.

.
[460] Liu, T., Wang, G., and Yang, Q. “Real-time part-

based visual tracking via adaptive correlation filters”.
In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Piscataway, NJ: IEEE,
2015, pp. 4902–4912. isbn: 978-1-4673-6964-0. doi:
10.1109/CVPR.2015.7299124

.

.
[461] Liu, T., Wang, G., Yang, Q., et al. “Part-based

Tracking via Discriminative Correlation Filters”. In:
IEEE Transactions on Circuits and Systems for Video
Technology (2017), p. 1. issn: 1051-8215. doi: 10 .
1109/TCSVT.2016.2637798

.

.
[462] Li, Y., Zhu, J., and Hoi, S. C. “Reliable Patch

Trackers: Robust visual tracking by exploiting reliable
patches”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Piscataway,
NJ: IEEE, 2015, pp. 353–361. isbn: 978-1-4673-6964-0.
doi: 10.1109/CVPR.2015.7298632

.

.
[463] Chen, W., Zhang, K., and Liu, Q. “Robust visual

tracking via patch based kernel correlation filters with
adaptive multiple feature ensemble”. In: Neurocom-

puting 214 (2016), pp. 607–617. issn: 09252312. doi:
10.1016/j.neucom.2016.06.048

.

.
[464] Chen, K., Tao, W., and Han, S. “Visual object

tracking via enhanced structural correlation filter”.
In: Information Sciences 394-395 (2017), pp. 232–245.
issn: 00200255. doi: 10.1016/j.ins.2017.02.012

.

.
[465] Liu, S., Zhang, T., Cao, X., et al. “Structural Cor-

relation Filter for Robust Visual Tracking”. In: 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2016, pp. 4312–4320.
isbn: 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.
467

.

.
[466] Li, C.-b., Yang, B., and Li, C.-h. “Deep Learning

Based Visual Tracking: A Review”. In: 2nd Inter-
national Conference on Software, Multimedia and
Communication Engineering (SMCE 2017) (2017).

[467] Feng, X., Mei, W., and Hu, D. “A Review of Visual
Tracking with Deep Learning”. In: Proceedings of
the 2016 2nd International Conference on Artificial
Intelligence and Industrial Engineering (AIIE 2016).
Paris, France: Atlantis Press, 2016. isbn: 978-94-6252-
271-8. doi: 10.2991/aiie-16.2016.54

.

.
[468] Ma, C., Huang, J.-B., Yang, X., et al. “Hierarchical

Convolutional Features for Visual Tracking”. In: 2015
IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015, pp. 3074–3082. isbn: 978-1-4673-
8391-2. doi: 10.1109/ICCV.2015.352

.

.
[469] Chi, Z., Li, H., Lu, H., et al. “Dual Deep Network for

Visual Tracking”. In: IEEE Transactions on Image
Processing 26.4 (2017), pp. 2005–2015. issn: 1057-
7149. doi: 10.1109/TIP.2017.2669880

.

. url: http:
//arxiv.org/pdf/1612.06053v1

.

.
[470] Wang, M., Liu, Y., and Huang, Z. Large Margin

Object Tracking with Circulant Feature Maps. 2017.
url: http://arxiv.org/pdf/1703.05020v2

.

.
[471] Zhang, T., Xu, C., and Yang, M.-H. “Multi-task

Correlation Particle Filter for Robust Object Track-
ing”. In: 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, 2017,
pp. 4819–4827. isbn: 978-1-5386-0457-1. doi: 10.1109/
CVPR.2017.512

.

.
[472] Wang, N. and Yeung, D.-Y. “Learning a Deep

Compact Image Representation for Visual Track-
ing”. In: Advances in Neural Information Process-
ing Systems 26. Ed. by Burges, C. J. C., Bot-
tou, L., Welling, M., et al. Curran Associates, Inc,
2013, pp. 809–817. url: http://papers.nips.cc/
paper/5192- learning- a- deep- compact- image-
representation-for-visual-tracking.pdf

.

.
[473] Kaihua, Z., Qingshan, L., Yi, W., et al. “Robust

Visual Tracking via Convolutional Networks Without
Training”. In: IEEE transactions on image processing
: a publication of the IEEE Signal Processing Society
25.4 (2016), pp. 1779–1792. doi: 10.1109/TIP.2016.
2531283

.

.
[474] Gao, J., Zhang, T., Yang, X., et al. “Deep Relative

Tracking”. In: IEEE transactions on image processing
: a publication of the IEEE Signal Processing Society
(2017). doi: 10.1109/TIP.2017.2656628

.

.
[475] Nam, H., Baek, M., and Han, B. Modeling and

Propagating CNNs in a Tree Structure for Visual

100

https://doi.org/10.1109/CVPR.2017.152
https://doi.org/10.1109/ICCVW.2015.81
https://doi.org/10.1109/ICIP.2015.7351044
https://doi.org/10.1109/ICIP.2015.7351044
https://doi.org/10.1109/CVPR.2015.7298675
https://doi.org/10.1109/CVPR.2015.7298675
https://doi.org/10.1109/CVPR.2015.7299177
http://arxiv.org/pdf/1512.01355v2
http://arxiv.org/pdf/1512.01355v2
http://arxiv.org/pdf/1703.04590v2
http://arxiv.org/pdf/1703.04590v2
https://doi.org/10.1109/ICCV.2015.490
https://doi.org/10.1109/ICCV.2015.490
https://doi.org/10.1109/CVPR.2015.7299124
https://doi.org/10.1109/TCSVT.2016.2637798
https://doi.org/10.1109/TCSVT.2016.2637798
https://doi.org/10.1109/CVPR.2015.7298632
https://doi.org/10.1016/j.neucom.2016.06.048
https://doi.org/10.1016/j.ins.2017.02.012
https://doi.org/10.1109/CVPR.2016.467
https://doi.org/10.1109/CVPR.2016.467
https://doi.org/10.2991/aiie-16.2016.54
https://doi.org/10.1109/ICCV.2015.352
https://doi.org/10.1109/TIP.2017.2669880
http://arxiv.org/pdf/1612.06053v1
http://arxiv.org/pdf/1612.06053v1
http://arxiv.org/pdf/1703.05020v2
https://doi.org/10.1109/CVPR.2017.512
https://doi.org/10.1109/CVPR.2017.512
http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf
http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf
http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf
https://doi.org/10.1109/TIP.2016.2531283
https://doi.org/10.1109/TIP.2016.2531283
https://doi.org/10.1109/TIP.2017.2656628

Bibliography

Tracking. 2016. url: http://arxiv.org/pdf/1608.
07242v1

.

.
[476] Hong, S., You, T., Kwak, S., et al. Online Tracking

by Learning Discriminative Saliency Map with Con-
volutional Neural Network. 2015. url: http://arxiv.
org/pdf/1502.06796v1

.

.
[477] Bertinetto, L., Valmadre, J., Henriques, J. F.,

et al. Fully-Convolutional Siamese Networks for Ob-
ject Tracking. 2016. url: http://arxiv.org/pdf/
1606.09549v2

.

.
[478] Guo, Q., Feng, W., Zhou, C., et al. “Learning Dy-

namic Siamese Network for Visual Object Tracking”.
In: 2017 IEEE International Conference on Computer
Vision (ICCV). IEEE, 2017, pp. 1781–1789. isbn: 978-
1-5386-1032-9. doi: 10.1109/ICCV.2017.196

.

.
[479] Held, D., Thrun, S., and Savarese, S. Learning

to Track at 100 FPS with Deep Regression Networks.
2016. url: http://arxiv.org/pdf/1604.01802v2

.

.
[480] Son, J., Baek, M., Cho, M., et al. “Multi-object

Tracking with Quadruplet Convolutional Neural Net-
works”. In: 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, 2017,
pp. 3786–3795. isbn: 978-1-5386-0457-1. doi: 10.1109/
CVPR.2017.403

.

.
[481] Valmadre, J., Bertinetto, L., Henriques, J. F.,

et al. End-to-end representation learning for Correla-
tion Filter based tracking. 2017. url: http://arxiv.
org/pdf/1704.06036v1

.

.
[482] Vondrick, C., Shrivastava, A., Fathi, A., et al.

Tracking Emerges by Colorizing Videos. 2018. url:
http://arxiv.org/pdf/1806.09594v2

.

.
[483] Li, H., Li, Y., and Porikli, F. “Robust Online Vi-

sual Tracking with a Single Convolutional Neural
Network”. In: Computer vision - ACCV 2014. Ed. by
Cremers, D., Reid, I., Saito, H., et al. Vol. 9007.
Lecture notes in computer science Image processing,
computer vision, pattern recognition, and graphics.
Cham: Springer, 2015, pp. 194–209. isbn: 978-3-319-
16813-5. doi: 10.1007/978-3-319-16814-2_13

.

.
[484] Li, H., Li, Y., and Porikli, F. “DeepTrack: Learning

Discriminative Feature Representations Online for
Robust Visual Tracking”. In: IEEE Transactions on
Image Processing 25.4 (2016), pp. 1834–1848. issn:
1057-7149. doi: 10.1109/TIP.2015.2510583

.

. url:
http://arxiv.org/pdf/1503.00072v1

.

.
[485] Sun, C., Wang, D., Lu, H., et al. Learning Spatial-

Aware Regressions for Visual Tracking. 2018. url:
http://arxiv.org/pdf/1706.07457v2

.

.
[486] Teng, Z., Xing, J., Wang, Q., et al. “Robust Object

Tracking Based on Temporal and Spatial Deep Net-
works”. In: 2017 IEEE International Conference on
Computer Vision (ICCV). IEEE, 2017, pp. 1153–1162.
isbn: 978-1-5386-1032-9. doi: 10.1109/ICCV.2017.
130

.

.
[487] Wang, L., Ouyang, W., Wang, X., et al. “STCT:

Sequentially Training Convolutional Networks for Vi-
sual Tracking”. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE,
2016, pp. 1373–1381. isbn: 978-1-4673-8851-1. doi:
10.1109/CVPR.2016.153

.

.

[488] Gan, Q., Guo, Q., Zhang, Z., et al. First Step
toward Model-Free, Anonymous Object Tracking with
Recurrent Neural Networks. 2015. url: http://arxiv.
org/pdf/1511.06425v2

.

.
[489] Milan, A., Rezatofighi, S. H., Dick, A., et al.

Online Multi-Target Tracking Using Recurrent Neural
Networks. 2016. url: http://arxiv.org/pdf/1604.
03635v2

.

.
[490] Ning, G., Zhang, Z., Huang, C., et al. Spatially

Supervised Recurrent Convolutional Neural Networks
for Visual Object Tracking. 2016. url: http://arxiv.
org/pdf/1607.05781v1

.

.
[491] Choi, J., Kwon, J., and Lee, K. M. Real-time visual

tracking by deep reinforced decision making. 2018. url:
http://arxiv.org/pdf/1702.06291v2

.

.
[492] Huang, C., Lucey, S., and Ramanan, D. Learn-

ing Policies for Adaptive Tracking with Deep Feature
Cascades. 2017. url: http://arxiv.org/pdf/1708.
02973v2

.

.
[493] Sun, M. Z., Yen, C.-Y., and Lin, H.-S. Visual Track-

ing using Deep Reinforcement Learning. 2018.
[494] Yun, S., Choi, J., Yoo, Y., et al. “Action-Driven

Visual Object Tracking With Deep Reinforcement
Learning”. In: IEEE transactions on neural networks
and learning systems 29.6 (2018), pp. 2239–2252. doi:
10.1109/TNNLS.2018.2801826

.

.
[495] Zhang, D., Maei, H., Wang, X., et al. Deep Re-

inforcement Learning for Visual Object Tracking in
Videos. 2017. url: http://arxiv.org/pdf/1701.
08936v2

.

.
[496] Yi, S., Li, H., and Wang, X. “Pedestrian Behav-

ior Understanding and Prediction with Deep Neural
Networks”. In: Computer Vision – ECCV 2016. Ed.
by Leibe, B., Matas, J., Sebe, N., et al. Cham:
Springer International Publishing, 2016, pp. 263–279.
isbn: 978-3-319-46448-0.

[497] Alahi, A., Goel, K., Ramanathan, V., et al. “So-
cial LSTM: Human Trajectory Prediction in Crowded
Spaces”. In: 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, 2016,
pp. 961–971. isbn: 978-1-4673-8851-1. doi: 10.1109/
CVPR.2016.110

.

.
[498] Zhai, M., Roshtkhari, M. J., and Mori, G. Deep

Learning of Appearance Models for Online Object
Tracking. 2016. url: http://arxiv.org/pdf/1607.
02568v1

.

.
[499] Wang, L., Ouyang, W., Wang, X., et al. “Visual

Tracking with Fully Convolutional Networks”. In:
2015 IEEE International Conference on Computer
Vision (ICCV). IEEE, 2015, pp. 3119–3127. isbn:
978-1-4673-8391-2. doi: 10.1109/ICCV.2015.357

.

.
[500] Wang, N., Li, S., Gupta, A., et al. Transferring

Rich Feature Hierarchies for Robust Visual Tracking.
2015. url: http://arxiv.org/pdf/1501.04587v2

.

.
[501] Jin, J., Dundar, A., Bates, J., et al. “Tracking with

deep neural networks”. In: 2013 47th Annual Con-
ference on Information Sciences and Systems (CISS).
Piscataway, NJ: IEEE, 2013, pp. 1–5. isbn: 978-1-
4673-5239-0. doi: 10.1109/CISS.2013.6552287

.

.

101

http://arxiv.org/pdf/1608.07242v1
http://arxiv.org/pdf/1608.07242v1
http://arxiv.org/pdf/1502.06796v1
http://arxiv.org/pdf/1502.06796v1
http://arxiv.org/pdf/1606.09549v2
http://arxiv.org/pdf/1606.09549v2
https://doi.org/10.1109/ICCV.2017.196
http://arxiv.org/pdf/1604.01802v2
https://doi.org/10.1109/CVPR.2017.403
https://doi.org/10.1109/CVPR.2017.403
http://arxiv.org/pdf/1704.06036v1
http://arxiv.org/pdf/1704.06036v1
http://arxiv.org/pdf/1806.09594v2
https://doi.org/10.1007/978-3-319-16814-2_13
https://doi.org/10.1109/TIP.2015.2510583
http://arxiv.org/pdf/1503.00072v1
http://arxiv.org/pdf/1706.07457v2
https://doi.org/10.1109/ICCV.2017.130
https://doi.org/10.1109/ICCV.2017.130
https://doi.org/10.1109/CVPR.2016.153
http://arxiv.org/pdf/1511.06425v2
http://arxiv.org/pdf/1511.06425v2
http://arxiv.org/pdf/1604.03635v2
http://arxiv.org/pdf/1604.03635v2
http://arxiv.org/pdf/1607.05781v1
http://arxiv.org/pdf/1607.05781v1
http://arxiv.org/pdf/1702.06291v2
http://arxiv.org/pdf/1708.02973v2
http://arxiv.org/pdf/1708.02973v2
https://doi.org/10.1109/TNNLS.2018.2801826
http://arxiv.org/pdf/1701.08936v2
http://arxiv.org/pdf/1701.08936v2
https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.1109/CVPR.2016.110
http://arxiv.org/pdf/1607.02568v1
http://arxiv.org/pdf/1607.02568v1
https://doi.org/10.1109/ICCV.2015.357
http://arxiv.org/pdf/1501.04587v2
https://doi.org/10.1109/CISS.2013.6552287

Bibliography

[502] Nam, H. and Han, B. Learning Multi-Domain Con-
volutional Neural Networks for Visual Tracking. 2016.
url: http://arxiv.org/pdf/1510.07945v2

.

.
[503] Ma, C., Huang, J.-B., Yang, X., et al. Robust Vi-

sual Tracking via Hierarchical Convolutional Features.
2018. url: http://arxiv.org/pdf/1707.03816v2

.

.
[504] Sutskever, I. Training Recurrent Neural Networks.

Canadian theses = Thèses canadiennes. Ottawa: Li-
brary and Archives Canada = Bibliothèque et Archives
Canada, 2014. isbn: 0499220668.

[505] Sadeghian, A., Alahi, A., and Savarese, S. Track-
ing The Untrackable: Learning To Track Multiple
Cues with Long-Term Dependencies. 2017. url: http:
//arxiv.org/pdf/1701.01909v2

.

.
[506] Fan, H. and Ling, H. “SANet: Structure-Aware Net-

work for Visual Tracking”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW). IEEE, 2017, pp. 2217–2224. isbn:
978-1-5386-0733-6. doi: 10.1109/CVPRW.2017.275

.

.
[507] Wang, L., Liu, T., Wang, B., et al. Learning Hi-

erarchical Features for Visual Object Tracking with
Recursive Neural Networks. 2018. url: http://arxiv.
org/pdf/1801.02021v1

.

.
[508] Fang, K. Track-RNN: Joint Detection and Tracking

Using Recurrent Neural Networks. 2016.
[509] Yang, T. and Chan, A. B. Recurrent Filter Learning

for Visual Tracking. 2017. url: http://arxiv.org/
pdf/1708.03874v1

.

.
[510] Fan, J., Xu, W., Wu, Y., et al. “Human tracking

using convolutional neural networks”. In: IEEE trans-
actions on neural networks 21.10 (2010), pp. 1610–
1623. doi: 10.1109/TNN.2010.2066286

.

.
[511] Vincent, P., Larochelle, H., Lajoie, I., et al.

“Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local
Denoising Criterion”. In: J. Mach. Learn. Res. 11
(2010), pp. 3371–3408. issn: 1532-4435. url: http:
//dl.acm.org/citation.cfm?id=1756006.1953039

.

.
[512] Hua, W., Mu, D., Guo, D., et al. “Visual tracking

based on stacked Denoising Autoencoder network
with genetic algorithm optimization”. In: Multimedia
Tools and Applications 77.4 (2018), pp. 4253–4269.
issn: 1380-7501. doi: 10.1007/s11042-017-4702-1

.

.
[513] Zhou, X., Xie, L., Zhang, P., et al. “An ensemble

of deep neural networks for object tracking”. In: 2014
IEEE International Conference on Image Processing
(ICIP). IEEE, 2014, pp. 843–847. isbn: 978-1-4799-
5751-4. doi: 10.1109/ICIP.2014.7025169

.

.
[514] Chaudhuri, K., Freund, Y., and Hsu, D. A parameter-

free hedging algorithm. 2010. url: http://arxiv.
org/pdf/0903.2851v2

.

.
[515] Wang, N., Zhou, W., Tian, Q., et al. “Multi-Cue

Correlation Filters for Robust Visual Tracking”. In:
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2018.

[516] Danelljan, M., Hager, G., Khan, F. S., et al.
“Convolutional Features for Correlation Filter Based
Visual Tracking”. In: 2015 IEEE International Con-
ference on Computer Vision Workshop (ICCVW).
IEEE, 2015, pp. 621–629. isbn: 978-1-4673-9711-7.
doi: 10.1109/ICCVW.2015.84

.

.

[517] Chatfield, K., Simonyan, K., Vedaldi, A., et al.
Return of the Devil in the Details: Delving Deep into
Convolutional Nets. 2014. url: http://arxiv.org/
pdf/1405.3531v4

.

.
[518] Gladh, S., Danelljan, M., Khan, F. S., et al. Deep

Motion Features for Visual Tracking. 2016. url: http:
//arxiv.org/pdf/1612.06615v1

.

.
[519] Malcolm, N. and Gibson, J. J. “The Perception of

the Visual World”. In: The Philosophical Review 60.4
(1951), p. 594. issn: 00318108. doi: 10.2307/2181436

.

.
[520] Danelljan, M., Robinson, A., Khan, F., et al. “Be-

yond Correlation Filters: Learning Continuous Con-
volution Operators for Visual Tracking”. In: (2016).

[521] Choi, J., Chang, H. J., Yun, S., et al. “Atten-
tional Correlation Filter Network for Adaptive Vi-
sual Tracking”. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 4828–4837. isbn: 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.513

.

.
[522] Cui, Z., Xiao, S., Feng, J., et al. “Recurrently

Target-Attending Tracking”. In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016, pp. 1449–1458. isbn: 978-1-
4673-8851-1. doi: 10.1109/CVPR.2016.161

.

.
[523] Simonyan, K., Vedaldi, A., and Zisserman, A.

Deep Inside Convolutional Networks: Visualising Im-
age Classification Models and Saliency Maps. 2014.
url: http://arxiv.org/pdf/1312.6034v2

.

.
[524] Bromley, J., Guyon, I., LeCun, Y., et al. “Signa-

ture Verification Using a Siamese Time Delay Neural
Network”. In: Proceedings of the 6th International
Conference on Neural Information Processing Sys-
tems. NIPS’93. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc, 1993, pp. 737–744.

[525] Taigman, Y., Yang, M., Ranzato, M., et al. “Deep-
Face: Closing the Gap to Human-Level Performance
in Face Verification”. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE,
2014, pp. 1701–1708. isbn: 978-1-4799-5118-5. doi:
10.1109/CVPR.2014.220

.

.
[526] Zagoruyko, S. and Komodakis, N. Learning to

Compare Image Patches via Convolutional Neural
Networks. 2015. url: http://arxiv.org/pdf/1504.
03641v1

.

.
[527] Jia, Y., Shelhamer, E., Donahue, J., et al. Caffe:

Convolutional Architecture for Fast Feature Embed-
ding. 2014. url: http : / / arxiv . org / pdf / 1408 .
5093v1

.

.
[528] Han, B., Sim, J., and Adam, H. “BranchOut: Reg-

ularization for Online Ensemble Tracking with Con-
volutional Neural Networks”. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2017, pp. 521–530. isbn: 978-1-5386-
0457-1. doi: 10.1109/CVPR.2017.63

.

.
[529] Kristan, M., Leonardis, A., Matas, J., et al. “The

Visual Object Tracking VOT2017 Challenge Results”.
In: 2017 IEEE International Conference on Com-
puter Vision workshops. Piscataway, NJ: IEEE, 2017,
pp. 1949–1972. isbn: 978-1-5386-1034-3. doi: 10.1109/
ICCVW.2017.230

.

.

102

http://arxiv.org/pdf/1510.07945v2
http://arxiv.org/pdf/1707.03816v2
http://arxiv.org/pdf/1701.01909v2
http://arxiv.org/pdf/1701.01909v2
https://doi.org/10.1109/CVPRW.2017.275
http://arxiv.org/pdf/1801.02021v1
http://arxiv.org/pdf/1801.02021v1
http://arxiv.org/pdf/1708.03874v1
http://arxiv.org/pdf/1708.03874v1
https://doi.org/10.1109/TNN.2010.2066286
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dl.acm.org/citation.cfm?id=1756006.1953039
https://doi.org/10.1007/s11042-017-4702-1
https://doi.org/10.1109/ICIP.2014.7025169
http://arxiv.org/pdf/0903.2851v2
http://arxiv.org/pdf/0903.2851v2
https://doi.org/10.1109/ICCVW.2015.84
http://arxiv.org/pdf/1405.3531v4
http://arxiv.org/pdf/1405.3531v4
http://arxiv.org/pdf/1612.06615v1
http://arxiv.org/pdf/1612.06615v1
https://doi.org/10.2307/2181436
https://doi.org/10.1109/CVPR.2017.513
https://doi.org/10.1109/CVPR.2016.161
http://arxiv.org/pdf/1312.6034v2
https://doi.org/10.1109/CVPR.2014.220
http://arxiv.org/pdf/1504.03641v1
http://arxiv.org/pdf/1504.03641v1
http://arxiv.org/pdf/1408.5093v1
http://arxiv.org/pdf/1408.5093v1
https://doi.org/10.1109/CVPR.2017.63
https://doi.org/10.1109/ICCVW.2017.230
https://doi.org/10.1109/ICCVW.2017.230

Bibliography

[530] Szepesvari, C. Algorithms for reinforcement learning.
Vol. 9. Synthesis Lectures on Artificial Intelligence
and Machine Learning. San Rafael, Calif.: Morgan &
Claypool, 2010. isbn: 9781608454938.

[531] Konda, V. R. and Tsitsiklis, J. N. “OnActor-Critic
Algorithms”. In: SIAM Journal on Control and Opti-
mization 42.4 (2003), pp. 1143–1166. issn: 0363-0129.
doi: 10.1137/S0363012901385691

.

.

103

https://doi.org/10.1137/S0363012901385691

Appendix A

Object Detection (Supplementary Material)

The following section provides supplementary material for the object detection fundamentals in section 3.1

.

.
First, an overview of different base-architectures, which are used in modern convolutional object detectors,
is given. Afterwards, frequently used object detection datasets and common performance metrics are
presented. Finally, a thorough literature review on modern object detection algorithms is conducted.

A.1 CNN Base-Architectures

Typically, convolutional object detectors can be divided into a base network, which conducts the region
proposal and feature extraction steps of the object detection pipeline and the detector network, which
handles bounding box regression and object classification [28

.

]. The base network is usually a pre-trained
image classsification network, such as AlexNet [286

.

], ZFNet [287

.

], VGG-16 [288

.

], GoogLeNet [289

.

],
Inception v2 [290

.

], Inception v3 [291

.

], ResNet-101 and ResNet-152 [177

.

], Inception-ResNet v2 [176

.

] and
more recently MobileNets [292

.

], DenseNet [293

.

] and ResNeXt [294

.

]. Depending on the detector, these
base networks are used in slightly modified versions, ommiting at least the final classification layers and
sometimes also intermediate layers or being fine-tuned on additional detection-specific datasets. Usually
pretraining of these networks is conducted on large image classification datasets, such as ImageNet [295

.

],
which contains over 14 million annotated images of 1000 different categories, or Cifar-10 and Cifar-100
[296

.

], each containing 60000 labeled images of 10 and 100 classes respectively. The choice of the base
network is crucial for the detector accuracy and has a big impact on the computational complexity of
the dectector algorithm as described in [119

.

]. For example R-CNN uses the very large VGG-16 model
with 138 million parameters as base network, which leads to a very long computation time for a single
image, making this algorithm not applicable to real-time processing. On the other hand, such as YOLO
[297

.

] and YOLOv2 [298

.

] use much smaller base networks, which lead to a significantly lower processing
time, making those algorithms useful for real-time processing. In most cases, the same object detector
can be used with different base networks. This allows for adoption of a detector to different usecases. For
instance, YOLO has also been deployed with a variety of other base networks, such as VGG-16, AlexNet,
ResNet and DenseNet [297

.

, 299

.

].

A.2 Detection Datasets

Frequently used publicly available datasets in object detection research as well as their according statistics
are listed in table A.1

.

. Provided are the total number of images containing bounding box annotations, the
number of object categories (classes) and the total number of labeled objects. The statistics are combined
over the contained training, validation and test datasets. The most popular and established datasets
for object detection are Microsoft COCO (Common Object in Context) and Pascal VOC 2007 and 2012
(Visual Object Classes Chellenge). As most research papers in object detection use one of these three

104

Appendix A Object Detection (Supplementary Material)

datasets, comparability between different studies is good. However, it has to be noted, that most of the
datasets change every year to provide a state-of-the-art database for the accompanying yearly object
recognition challenges. The Caltech 101 and Caltech 256 datasets are used more seldomly due to known
issues [300

.

, 301

.

] and their relatively low number of training instances. On the other hand, datasets such
as ImageNet ILSVR and the Open Images Dataset are used less frequently due to their large size, which
makes them difficult to use, if only a low-performant desktop workstation is availabe for training.

Tab. A.1: Overview and statistics of frequently used datasets for object detection.

Dataset Year Images Classes Labeled Instances References

Microsoft COCO 2015 328124 80 ~1500000 [302

.

]
Pascal VOC 2007 14974 20 37248 [303

.

]
Pascal VOC 2012 11540 20 31561 [304

.

]
ImageNet ILSVRC 2014 516840 200 1068618 [305

.

]
Open Images Dataset V4 2018 1910098 600 15440132 [306

.

]
Caltech Pedestrian Detection 2012 ~250000 1 ~ 350000 [307

.

], [308

.

]
KITTI Vision Benchmark 2012 14999 2 80256 [169

.

]
Caltech 101 2003 9146 101 n.A. [309

.

]
Caltech 256 2007 30607 256 n.A. [310

.

]

Most object detectors are trained not only on the raw samples of these datasets, but on heavily augmented
versions of the datasets. Data augmentation means, additional training samples are generated by
techniques, such as random rescaling, cropping, translating, rotating and flipping of the original samples.
Often image parameters, such as brightness, contrastm, saturation and color are also adjusted to generate
even more samples. Data augmentation is a frequently applied regularization strategy, which helps to
prevent overfitting of neural networks to the training dataset during training by showing the network a
larger amount of high-variance training data. [11

.

, 297

.

, 311

.

, 312

.

]

A.3 Performance Metrics

To be able to compare different object detection algorithms with each other, common performance metrics
have to be defined. Here, the mean average precision (mAP) and the intersection over union (IoU) are
established performance metrics in object detection research [142

.

, 313

.

, 314

.

]. As depicted in fig. A.1a

.

,
the IoU is a measure that describes, how well a predicted bounding box aligns with the ground-truth
bounding box of the dataset. It is the ratio between the area of overlap and the area of union of both
boxes. In case, the predicted box lies exactly on the ground truth box, the IoU has a value of 1 and in
case of no overlap it has a value of 0.

The exact definition of the mAP varies slightly between the object detection challenges. Hence, the
following explanation applies only to Pascal VOC and has to be modified for other challenges, such as
COCO. Refer to the references above to get the according definitions of the mAP. For Pascal VOC, the
mAP is the mean of the average precision (AP) over all object classes. The AP can be calculated as area
under the interpolated precision-recall curve of the classifier as shown in fig. A.1b

.

[315

.

]. To compute
this curve, true positives, false positives and false negatives for all bounding box matches have to be
determined separately for each class, which is done by sorting matches in decreasing order of their class
label confidences. Here, a match is counted as a true positive, when the predicted bounding box and
the ground-truth bounding box have the same class label and their IoU is greater or equal than 0.5.
Accordingly a false negative is a labeled object in the dataset, that is not found by the detector, and a
false positive an object, that has been found by the detector, but is not labeled as ground-truth object

105

Appendix A Object Detection (Supplementary Material)

in the dataset. After their computation, the precision-recall curves are interpolated, which means, a
monotonic decreasing curve is computed (red lines) by setting the precision value p for recall r to the
maximum precision pmax obtained for any recall value r′ > r. The AP for each classs is then found by
computing the area under the according precision-recall curve. The mean of all AP values finally yields
the mAP, which lies in a range from 0 % to 100 %. [316

.

]

IoU =
Area of Overlap

Area of Union

(a) Definition of IoU.

Recall

P
re

ci
si

on

(b) Definition of AP.

Fig. A.1: Definitions of Intersection over Union (IoU) and average precision (AP) performance metrics for quanti-
tative analysis of object detection algorithms. [316

.

]

A.4 Convolutional Object Detectors

After clarification of the basics, the most important convolutional object detectors are briefly introduced in
this section. The list is ordered chronologically after the initial submission date of the proposing paper as
can also be seen from the timeline in fig. A.2

.

. For further details, refer to the mentioned references or the
overviewing articles in [317

.

], [318

.

], [319

.

], [320

.

], [321

.

] and [322

.

]. A comparison of different architectures by
means of accuracy and performance is given in [119

.

], [323

.

]. In the past years of research in this field, two
groups of convolutional object detectors have evolved. The first group are region based object detectors,
which utilize a region proposal algorithm, such as a sliding window, clustering or a region proposal network,
to generate regions of interests, which are then fed into the further detection pipeline. Detectors, such
as R-CNN, OverFeat, SPP-net, Fast R-CNN, Faster R-CNN and R-FCN are among this group. The
other group are one-shot detectors, such as all of the YOLO detectors, SSD and RetinaNet. Instead
of extracting and processing individual regions of interests, they operate on the entire input image at
once and apply an internal discretization of the image to perform object localization. Typically, one-shot
detectors are much faster than the region-based detectors, while having roughly the same accuracy.

R-CNN

NoC

Fast
R-CNN

Faster
R-CNN

YOLO

First CNN
Detector

Deep
Multibox

SPP-net

Multi
Region CNN

R-CNN
minus R

MSC-
Multibox

ION RetinaNet

YOLOv3

MS-CNN

FPN NASNet-A

DSSD

OverFeat

SSD

2013 2014 2015 2016 20182017

R-FCN

Hypernet YOLOv2

Fig. A.2: Timeline of the presented convolutional object detection algorithms. Reference is the submission date of
the first version of the propsing papers.

106

Appendix A Object Detection (Supplementary Material)

R-CNN (2013) One of the first algorithms, that made use of convolutional networks was R-CNN. R-CNN
uses the already mentioned selective search algorithm from [20

.

] to generate around 2000 class-independet
region proposals for bounding boxes of objects in each image. The image patches in these regions are
mean-subtracted and resized to a fixed dimension of 227× 227 pixels and then sequentially fed into an
AlexNet [286

.

] convolutional neural network for feature extraction. Features for all regions are then fed into
a set of class-specific SVMs, which classify the object in each region. Moreover, the CNN features are used
in an additional bounding box regression to reduce localization erros. This regression is not performed by a
neural network, but instead formulated directly as ridge regression. R-CNN also implements non-maximum
supression to prevent overlapping bounding boxes for the same object. Here, boxes with lower confidence
scores for the class prediction are removed. In 2013 R-CNN had a state-of-the-art accuracy with an
mAP of 58.5 % on Pascal VOC 2007 and 53.3 % on Pascal VOC 2012, however the algorithm is very slow.
[142

.

]

OverFeat (2013) Another early dependant of convolutional object detectors is OverFeat, which combines
the tasks of image classification, object localization and object detection in a single convolutional neural
network and shows the superior performance of this approach compared to earlier object detection
methods. The model is trained in three steps, beginning with the classification CNN, which consists of 5
convolutional layers and 3 fully connected layers. After training of this network on ImageNet 2012, the
convolutional layers are used to extract features of resized input images by means of a sliding window
approach on a generated image pyramid. These features are fed into a fully connected 2-layer regression
network, that realizes bounding box regression to localize objects. By utilizing negative training examples
(image background), the feature extraction layers are fine-tuned for the detection task. The bounding box
regression network is simply reused for detection. Instead of performing NMS on found bounding boxes,
boxes with the highest class confidences are merged. OverFeat showed a state-of-0the-art performance in
2013 and scored ranks 4, 1 and 1 for image classification, localization and detection in the 2013 ImageNet
Large Scale Visual Reecognition Competition. However, training of the three independent neural networks
is complicated and computational performance of the algorithm is also low. [314

.

, 324

.

]

SPP-net (2014) This detector is very similar to R-CNN, however tries to speed up the original algorithm
by extracting convolutional features in a parallel manner, rather than sequentially. Instead of feeding each
proposed region into the CNN separately, the entire image is fed into the CNN to generate a feature map.
Only then, regions are extracted from the feature map and transformed into a fixed sized representation
by a proposed spatial pooling layer. Classification of the objects is conducted by means of SVMs again,
which means, SPP-net still requires sequential training of multiple sub-modules as it was the case with
R-CNN, which makes the process complicated and leads to sub-optimal accuracy. However, due to the
parallel feature extraction approach, SPP-net is multiple times faster than R-CNN. [325

.

]

Fast R-CNN (2015) This detector is an improvement of R-CNN and SPP-net and provides a faster
execution time and higher accuracy. Region proposal is still conducted by means of the selective search
algorithm, however the network architecture utilized the same method as in SPP-net to speed up feature
extraction. Instead of passing each proposed region into the feature extractor, the entire image is fed
through and feature vectors are extracted from the resulting feature map according to the proposed
regions. Every feature vector is then pooled with a spatial pooling layer and fed into fully connected
layers, which do bounding box regression and, with the help of a softmax activation function, object
classification. A multi-task loss function is used to train this network. Since feature extraction, bounding
box regression and object classification are integrated in a single network, training can be done end-to-end,
simplyfing the procedure. Fast R-CNN achieved state-of-the-art accuracy in 2014, with an mAP of 70.0 %

107

Appendix A Object Detection (Supplementary Material)

and 68.4 % on Pascal VOC 2007 and 2012 respectively, and significantly sped up inference on images.
[317

.

, 319

.

, 326

.

]

Faster R-CNN (2015) This detector is a further improvement of Fast R-CNN. It reduces inference
time by replacing the computationally expensive selective search algorithm with a convolutional region
proposal network (RPN) for generating bounding box proposals. This is done by sliding a small 3× 3
CNN with a subsequent fully connected sibling-layer over the feature map, extracted from the input
image, and generating 9 region proposals for each spatial position in this feature map. Each region
proposal contains 4 box dimensions (width, height, horizontal position and vertical position), which are
generated by the first fully connected layer, and 2 objectness-scores, which are generated by the second
fully connected layer and encode probabilities for the box containing an object or not. The box coordinates
are defined relative to 9 different anchor-boxes with different sizes and aspect ratios. The so generated
region proposals are used similarly to the region proposals of the selective search algorithm in the Fast
R-CNN algorithm. Object classsification and bounding box regression are identical to the approach in
Fast R-CNN. A further improvement introduced in Faster R-CNN is weight-sharing between the RPN and
the feature extraction network, which enables usage of a single convolutional neural network for region
proposal, feature extraction, object classification and bounding box regression. Hence, faster R-CNN was
the first object detection approach based on a single unified neural network. This lead to a higher mAP
of 78.8 % and 75.9 % on Pascal VOC 2007 and 2012 respectively, and much faster inference compared to
earlier methods. Moreover, Faster R-CNN allows for true end-to-end training, simplifying the training
and testing procedure. [9

.

]

YOLO (2015) Aim of the authors of this very popular object detector was to drastically reduce inference
time to make their detector applicable to real-time tasks, such as video processing. They achieved this by
refining the detection pipeline introduced in fig. 3.2

.

. Instead of modelling the detection pipeline in form
of individual components as done in the R-CNN variants, YOLO models the detection process as a single
regression task, with the entire image as input and bounding box coordinates, box confidence and class
probabilites as outputs. YOLO is a 24-layer, GoogLeNet-inspired [289

.

], convolutional architecture with
two additional 4096-dimensional fully connected layers for prediction of outputs. The final output has
shape S × S × (B ∗ 5 + C), since the input image, which is resized to 448 × 448 pixels, is modelled as
an S × S grid of equally sized cells and for each grid cell B bounding boxes with five parameters each
(width, height, vertcial position, horizontal position, confidence score) as well as C class probabilities are
predicted. The convolutional layers are pretrained on ImageNet 2012 images of size 224× 224 pixels and
the entire network, including the fully connected layers, is fine-tuned for detection on Pascal VOC 2007
and 2012 afterwards. Here, the grid size is set to S = 7 and two bounding boxes are generated for each
cell (B = 2), which results in an output of size of 7 × 7 × 30, since there are C = 20 classes in Pascal
VOC. Hence, YOLO generates only 98 bounding boxes per image. For training a multi-part sum-squared
error loss function is used. It penalizes wrong box positions and dimensions as well as wrong class labels
in case the according box contains an object, which is indicated by a high box confidence score. As in the
earlier object detection algorithms, non-maximum-supression is used to remove duplicate detections of the
same object. Due to its one-shot approach for bounding box detection and object classsification, YOLO
achieved high processing frame rates and was the first object detector that allowed for real-time object
detection. Its mAP was 63.4 % on Pascal VOC 2007 and 57.9 % on Pascal VOC 2012. This is lower than
the accuracy of Fast R-CNN and Faster R-CNN, however YOLO is 90 times faster than R-CNN (45 FPS
versus 0.5 FPS) and 2.5 times faster than Faster R-CNN (45 FPS versus 18 FPS). Due to the fact, that
YOLO processes the entire image at once, it sees objects in context and thus produces less false positives
on the image background than the earlier detectors. One issue of YOLO are comparably high localization
errors. Hence, YOLO has problems to detect small objects, that lie close to each other. [297

.

, 319

.

, 321

.

]

108

Appendix A Object Detection (Supplementary Material)

Single Shot Detector (SSD) (2015) This is another real-time detector, that follows the approach of
YOLO utilizing a single convolutional neural network to implement the entire detection pipeline in
a unified model and hence allows for very fast predictions and an uncomplicated end-to-end training.
SSD uses a truncated and modified version of VGG-16 [288

.

] as a base network on which six additional
convolutional layers with decreasing size are stacked. One major difference of SSD compared to YOLO
is the simultaneous usage of feature maps of different scales, which are generated by the additional
convolutional layers. Similar to Faster R-CNN, SSD uses multiple anchor boxes of different sizes and
aspect ratios per feature map cell as a starting point for the bounding box regression. The anchor boxes,
which are called priors in the SSD paper, are manually defined to match the distribution of ground-truth
bounding box dimensions and positions in the training dataset. Output of SSD is a set of bounding
box parameters and a vector of class probabilities for each of the 8872 generated bounding boxes per
image. The base network is pretrained on ImageNet ILSVRC 2015. The entire detector network is then
fine-tuned on either Pascal VOC 2007, 2012 or the COCO 2015 dataset. Here, the training loss is defined
as weighted sum of a smooth L1-norm as localization loss, that penalizes misaligned boxes, and a softmax
confidence loss, that penalizes wrong class predictions. To compute the losses between the prediction
and the ground-truth boxes, all predicted boxes, which have an IoU higher or equal to 0.5 with the
ground-truth box are matched. Predictions, which do not match the ground-truth boxes are used as
negative training examples in a process called hard-negative-mining. Hereby, the ratio of positive to
negative training examples is kept constant at around 1/3. SSD also uses non-maximum-supression to
remove duplicate bounding boxes for the same object. The standard SSD network requires input images
to have a fixed size of 300× 300 pixels and achieves an mAP of 79.6 % on Pascal VOC 2012 and 77.5 %
on Pascal VOC 2012. Another SSD, that operates on larger, 512× 512 pixel sized, images was developed
by adding an additional convolutional layer to the network input. This SSD512 network achieved a higher
accuracy of 81.6 % on Pascal VOC 2012 and 80.0 % on Pascal VOC 2012, however at a lower processing
frame rate of 22 FPS compared to 59 FPS of SSD300. [11

.

, 319

.

, 322

.

]

R-FCN (2016) This detector follows the algorithmic approach of the R-CNN family using a region
proposal network (RPN) to generate possible bounding box locations. Similar to Faster R-CNN a
single convolutional neural network implements all steps of the object detection pipeline. To speed up
computation in comparison to Faster R-CNN, R-FCN follows a different approach to generate bounding
boxes and classify objects. Instead of sliding a small convolutional filter over the image and recomputing
the convolutions every time, R-FCN takes the entire image as input and generates a set of S × S location
sensitive score maps for each of the C object classes, yielding S2(C + 1) different score maps (+1 because
the background is counted as an additional class). Each score map corresponds to an object of a certain
class being located a certain discrete image position. Hence, if there is an object of class dog in the
upper-left corner of the input image, the score map responsible for the upper-left corner and the dog-class
will show a high activation, while all other score maps have a low activation. By averaging over all S2

score maps for a certain class, the detector can determine, whether the proposed region of interest overlaps
well with the object of that class. The resulting (C + 1)-dimensional vector can also be used to classify the
object by computing softmax activation. R-FCN performs the same bounding box regression as utilized
in Fast R-CNN to reduce localization errors. The convolutional network is a truncated ResNet-101 [177

.

]
which is pretrained on ImageNet 2015. Similar to Faster R-CNN, the RPN shares its weights with the
feature map extractor and hence requires no additional computations. R-FCN also proposes 300 regions
of interest per image. The entire algorithm is fine-tuned in an end-to-end fashion on Pascal VOC 2007,
Pascal VOC 2012 and MS COCO and achieves an mAP of 83.6 % on the test sets of Pascal VOC 2007
and 82.0 % on Pascal VOC 2012, while being 2.5 to 20 times faster than R-CNN. [178

.

, 319

.

]

109

Appendix A Object Detection (Supplementary Material)

YOLOv2 and YOLO9000 (2016) YOLOv2 is a drastic improval of the YOLO object detector, addressing
some of the issues of the original detector, such as high localization errors and low recall, while maintaining
its high processing speed. YOLOv2 uses a redesigned ResNet-like base network, called Darknet-19, which
contains 19 convolutional and 5 maxpooling layers and is pretrained on the ImageNet 2015 dataset. It
contains only 5.58 million parameters (YOLO: 8.52 million) and hence runs significantly faster, but still
provides a better classification accuracy on ImageNet. Apart from this, YOLOv2 uses batch normalization
layers instead of dropout for regularization and is trained on images of various sizes, ranging from 320×320
to 608 × 608 pixels in steps of 32 pixels. This allows to use input images of different dimensions and
hence enables an easy tradeoff between speed and accuracy as larger inputs images decrease processing
speed, but increase accuracy. Another improvement used by YOLOv2 are anchor-boxes, as introduced in
Faster R-CNN. Instead of directly regressing box coordinates from random intial values, 5 anchor boxes
are defined per grid cell of the discretized input image. Dimensions of these anchor boxes are found
by k-means clustering of the dimensions of all ground-truth boxes in the training dataset. Matching of
anchor-boxes to predicted boxes is done by thresholding the IoU at a value of 0.5, as done in the SSD
detector. The final layer of Darknet-19 outputs 4 box coordinates, 1 objectness score for the box and
a vector of class probabilities (with 20 values in case of Pascal VOC). In YOLOv2 box coordinates are
parameterized with respect to the dimensions of the matched anchor box and the position of the according
grid cell, which stabilizes the trainign procedure and improves convergence speed. YOLOv2 also makes
use of the finding of the SSD detector and uses feature maps of two different scalings as basis for the
bounding box regression and object classification. This is done by passing through the 26× 26 feature
map of an earlier layer and concatenating this with the 13× 13 feature map of the final layer. Training of
YOLOv2 is done on Pascal VOC 2007 and 2012. The achieved performance is with an mAP of 78.6 % on
Pascal VOC 2007 and 73.4 % on Pascal VOC 2012 very similar to this of Faster R-CNN and SSD512,
however YOLOv2 is 2 to 10 times faster. The YOLOv2 paper also introduces another object detector,
YOLO9000, which is based on the YOLOv2 architecture and can classify objects of 9000 different classes.
This algorithm was trained by merging the 80 object classes of the MS COCO object detection dataset
with the 1000 classes of the ImageNet image classification dataset. YOLO9000 is still real-time capable
and achievs an mAP of 19.7 % on the ImageNet detection set. [298

.

, 319

.

, 321

.

]

RetinaNet (2017) This is a one-shot object detector with relatively simple architecture, that utilizes a
novel focal loss function to address the problem of class imbalance between a light and hard misclassified
samples, and thus increase detection accuracy while maintaining the high processing speed of one-shot
detectors. Focal loss is a modification of the standard cross-entropy loss, that reduces the incurred loss of
well-classified samples, which otherwise overwhelms the influence of rare hard misclassified samples. The
authors prove focal loss to be useful by building a simple convolutional object detector called RetinaNet,
which utilizes a ResNet-101 base network that is augmented by a Feature Pyramid Network (FPN) [327

.

]
to generate a rich, multi-scale feature pyramid of a single input image. Each pyramid layer is connected to
a convolutional sub-network for classification and a convolutional sub-network for bounding-box-regression.
RetinaNet makes use of 9 anchor boxes with different sizes and aspect ratios as references for the bounding-
box-regression. Anchors and ground-truth boxes are matched, if their IoU is equal or larger than 0.5. The
classification sub-network predicts the objectness score and class probabilities for each bounding box.
The base network is pretrained on the ImageNet 2015 dataset and fine tuning of the entire detector is
performend on the MS COCO dataset. Here, the focal loss is used. The best RetinaNet model, in which
the ResNet-101 base network is replaced by a ResNeXt-101 network, surpasses region proposal detectors,
such as Faster R-CNN, by achieving an mAP of 40.8 % on the MS COCO dataset at a processing speed
of 5 FPS. [10

.

, 328

.

]

110

Appendix A Object Detection (Supplementary Material)

YOLOv3 (2018) To bring accuracy of the YOLOv2 detector on a par with state-of-the-art models in
2018, such as RetinaNet, while still maintining YOLOs unchallegend processing speed, many improvements
of the architecture were presented, yielding YOLOv3. The first improvement relates to the class prediction.
Instead of predicting mutually exclusive classes as in YOLOv2, YOLOv3 can assign multiple class labels
per bounding box, which increases accuracy in more complex datasets, such as Open Images Dataset, as
this contains mutually non-exclusive labels, for example can an object be labeled as human and child
simultaneously. Technically this was achieved by replacing the softmax classifier with multiple independent
logistic classifiers and changing the mean-squared errors loss function to a binary cross-entropy loss.
Another feature in YOLOv3 is the usage of pyramid features, which means, YOLOv3 predicts bounding
box coordinates, the box confidence level and all classs probabilities at three different scales. This is
achieved by concatenating the feature map of the final convolutional layer with two upsampled feature
maps of earlier layers. These earlier layers lie two and four layers previous to the final layer. If the image
is discretized to a grid of S × S cells, the final output tensor has a shape of S × S × [3 ∗ (4 + 1 + C)],
where 4 indicates the dimension and location of the bounding box, 1 is the box confidence score, and
C = 80 are the object classes in the MS COCO dataset. As in the earlier version, YOLOv3 still uses
predefined anchor boxes as starting point for the bounding box regression. Now, 9 different anchor boxes,
which were found by k-means clustering of the ground-truth boxes in the training dataset are used for
each image location. Another change introduced in YOLOv3 was the Darknet-53 feature extractor, a
53-layer CNN with ResNet-like architecture. This network provides the same classification accuracy as
ResNet-152, but halves the inference time. The skip-layers of Darknet-53 speed up and stabilize the
training process. Similar to YOLOv2, YOLOv3 can operate on images of different sizes. With input
images of size 608× 608 pixels YOLOv3 achieves an mAP of 33.0 % on the COCO dataset (official COCO
mAP metric). This is below the accuracy of RetinaNet, but one has to consider, that YOLOv3 is still
3.8 times faster than RetinaNet. [8

.

, 321

.

, 323

.

]

Others Apart from the above presented object detectors, there exist a large number of different detectors
and variants of the presented algorithms. However, these are cited and compared less often, hence they
are mentioned more briefly in the following paragraphs.

The first work, using deep neural networks for object detection was conducted by Szegedy et al. [329

.

].
Here, the idea of formulating localization of the bounding box as a regression problem was introduced. A
sliding window extracted subregions of the image, which were fed into a CNN producing the bounding
box. This process was iteratively repeated to refine the bounding box dimensions and location. As the
presented detector could only localize one class at a time, it had to be separately applied to every class in
the dataset.

Deep Multibox, developed by Erhan et al. [330

.

], built upon those ideas by presenting a class-unaware
detector based on a CNN. Rather than detecting bounding boxes for only a specific class, it generated
bounding boxes for all objects in an image regardless of their class. Classification of the object in each
box was then performed by means of a subsequent classification CNN. Deep Multibox also introduced the
box confidence score, measuring the probability of a box containing an object or not.

This work of Ren et al. [331

.

] built upon the SPP-net architecture and studied the importance of the
classsifier performing the object classification based on the feature maps extracted from a proposed region
of interest. They called the family of classifiers Networks on Convolutional feature maps (NoC) and
conducted a series of experiments, in which they replaced the SVM classifiers of the original SPP-net
architecture with different types of NoCs, such as different multi-layer perceptrons (MLPs), CNNs and
CNN-pairs, which are merged by means of a maxout-layer. Their findings could be seen as an improvement
of the SPP-net object detector and contributed to the general understanding of the classifier in the object
detection pipeline.

111

Appendix A Object Detection (Supplementary Material)

Gidaris et al. [332

.

] presented the Multi Region CNN algorithm, which was an object detector based on
the principle of R-CNN. The work aimed at improving detection accuracy by generating richer feature
maps. This was achieved by extracting not only one feature map for a proposed bounding box region, but
also focus on 9 overlapping subregions of each bounding box, such as left half, right half, top, bottom, etc.
and extract features for each of these subregions. For this, they built a unified CNN architecture with
several parallel branches for each of the subregions, and surpassed even Fast R-CNN with an mAP of
78.2 % and 73.9 % on Pascal VOC 2007 and 2012, respectively.

Lenc et al. [333

.

] presented R-CNN minus R, a streamlined version of R-CNN, that omitted the com-
putationally expensive and difficult to train region proposal step and instead extracted features from
3000 primitive, constant regions and fed them into a CNN architecture for detection. It followed the
SPP-net approach of generating feature maps of various different scales, while having been faster. However,
its mAP on Pascal VOC 2007 was below the mAP of SPP-net, having shown, that region proposal or
otherwise found bounding box priors are neccessary for a high detection accuracy.

A follow up work on the Deep Multibox detector was the Inception-based MSC-Multibox detector by
Szegedy et al. [334

.

]. It aimed at generating less region proposals with higher quality to reduce processing
time in the later stages of the detector. Similar to Deep Multibox these region proposals were class-agnostic,
which meant, boxes were generated for all objects in the image regardless of their class. Hence, their base
algorithm was a region proposal network, that had to be paired with a classifier to be applicable to object
detection tasks. MSC-Multibox allowed for a flexible number of region proposals per image and thus
provided an easy to tweak trade-off between accuracy and processing time.

Bell et. al [335

.

] developed the Inside-Outside Net (ION) for object detection. Aiming at higher detection
accuracy, their architecture utilized contextual information of the object both within the objects region
of interest as well as outside of it. They achieved this by having used two subsequent spatial recurrent
neural networks, that passed information both vertically and horizontally accross the image and thus
provided contextual information. Additionally, ION extracted feature maps of different scales to allow for
detection of differently scaled objects. In Pascal VOC 2007 and 2012 ION achieved a mAP of 79.2 % and
76.4 %, repsectively.

Kong et al. [336

.

] proposed HyperNet, a VGG-16-based CNN for joint region proposal and object detection.
Similar to MSC-Multibox it aimed at reducing the number of region proposals to speedup the object
detection process. Instead of proposing 2000 bounding boxes as R-CNN did, HyperNet proposed only 100
bounding boxes, which led to significantly faster processing speed, while having maintained a high mAP
of 76.3 % on Pascal VOC 2007 and 71.4 % on Pascal VOC 2012. HyperNet used a shared feature map for
both region proposal and object detection. This feature map was created by concatenating appropiately
sampled feature maps of different layers and thus contained information about objects of various sizes.

MS-CNN was another region proposal-based object detector, introduced by Cai et al. [337

.

]. It contained
two sub-networks, a fully convolutional proposal network and a detection network, which shared some
layers to reduce computations. The proposal network had a main-trunk from which several output layers
branched off. The outputs of these branches were proposed object regions at different scales, which
were then fed into the object detection network that performed bounding box regression and object
classification. Training of MS-CNN was done end-to-end by means of a multi-task loss, that computed
the proposal loss over all branches as well as the loss for bounding box regression and object classification.
MS-CNN generated around 100 proposals per image and outperformed Faster R-CNN by means of
detection accuracy, while having been 5 times faster on the KITTI Vision Benchmark.

Lin et al. [327

.

] presented the Feature Pyramid Network (FPN), which was not directly an object detector,
but a CNN feature extractor for compute- and memory-efficient generation of feature pyramids. Such
feature pyramids were sets of feature maps of various scales and were already utilized by several of

112

Appendix A Object Detection (Supplementary Material)

the previously introduced object detectors, such as SSD, SPP-net, ION and HyperNet. However, their
implementations were less efficient than the FPN. The authors demonstrated their approach by extending
Fast R-CNN and Faster R-CNN, which originally only utilized features of a single scale, with an FPN,
having yielded significant improvements in detection accuracy on the MS COCO dataset.

Fu et al. [338

.

] developed the Deconvolutional Single Shot Detector (DSSD), which was based on the SSD
detector, however introduced significant changes to the original architecture in order to introduce additional
context information into the object detection process. The core idea of the DSSD was to extend the original
fully convolutional SSD architecture with several deconvolutional layers and merge feature maps from
earlier convolutional layers with maps generated by the previos deconvolutional layer. This resulted in an
hourglass-shaped neural network that had links between corresponding convolutional and deconvolutional
layers. A set of identical convolutional prediction modules branched off each deconvolutional layer and
conducted bounding box regression as well as object classification. A further change introduced in DSSD
architecture was the usage of ResNet-101 instead of the original VGG-16 base network, because ResNet-101
achieved more accurate results. DSSD achieved an mAP of 81.5 % on Pascal VOC 2007 and 80.0 % on
Pascal VOC 2012, however at the cost of an increased inference time due to the additional deconvolutional
layers. As this detector took object context into account, it had a signifcant performance on small objects,
which could be detected only due to their context, such as a tie on a person behing a lectern.

NASNet-A was an object detection base network, that resulted from the work of Zoph et al. [175

.

]
on automatic neural architecture search for image classification and object detection tasks. Instead of
having manually engineered a base network, such as those presented in appendix A.1

.

, their search system
automatically found the NASNet-A architecture after a 4 day long search on a worker pool of 500 Nvidia
P100 GPUs. They used NASNet-A as a base network for Faster R-CNN and achieved an mAP of 43.1 %
on the MS COCO dataset.

Despite the large amount of presented object detection algorithms, there exist many more algorithms.
These can easily be found in the leaderboards of the object detection challenges, such as the MS COCO
detection challenge or the ImageNet ILSVRC.

113

Appendix B

Object Tracking (Supplementary Material)

The following section provides supplementary material for the object tracking fundamentals in section 3.2

.

.
First, challenges of object tracking are introduced. Afterwards, commonly used feature representation
of the tracking targets are presented. Finally, an overview of the recent literature is given. Here, three
main categories of object trackers are identified. Classical trackers, correlation filter based trackers and
deep learning based trackers. For each category the most popular and most recent tracking algorithms
are presented. Despite covering many tracking algorithms, this list is not exhaustive and for further
reference the results of annual object tracking challenges, such as VOT [146

.

] or MOT [7

.

, 339

.

], should be
examined.

B.1 Challenges of Tracking

Tracking is accompanied by a number of challenges. The most important one is drift of the tracker over
time. This drift has various reasons, such as occlusion of the tracked object, changes of object pose, scale
and illumination, fast object movement and motion blur as well as camera movement relative to the
tracked object [340

.

–343

.

]. Further challenges for the tracker are merging and splitting targets [34

.

, 344

.

,
345

.

], targets entering or exiting the frame [346

.

] and low resolution targets [347

.

–349

.

]. Especially in the
context of human tracking more problems arise. For example in crowded scenes there are many similar
looking objects close to each other, which can lead to jumping prediction results [350

.

, 351

.

]. Moreover, a
person could drastically change appearance by taking off his or her coat, confusing the tracker [352

.

]. And
finally, if there are multiple cameras involved, target handover between different camera frames has to be
handled [353

.

–356

.

].

B.2 Features for Tracking

The feature extraction module in the tracking pipeline (see section 3.2

.

) deserves a closer look, as the
ablation study in [37

.

] showed that this module has the largest impact on tracking performance. Classical
methods of feature extraction are covered exhaustively by Li et. al in a 2013 survey [340

.

]. Such methods
include templates, which are raw pixel-patches of the target region [357

.

, 358

.

], normalized color histograms
[359

.

–361

.

] and multi-part color histograms [362

.

], which combine color histograms of multiple overlapping
target regions. Additionally, image gradients can be used to model target appearance [363

.

–366

.

], whereby
sometimes a histogram of oriented gradients (HOG) is used to reduce the amount of data [367

.

]. Instead of
using histograms for representing color or gradient distributions, some methods utilize Gaussians models
[368

.

] or mixtures of Gaussians [369

.

]. Other classically used features are the optical flow representation
[370

.

], covariance representations [371

.

, 372

.

], superpixel representation [373

.

] and wavelet filters [374

.

] as well
as local features, such as SIFT- [375

.

], MSER- [376

.

], SURF- [377

.

] and Harris corner features [378

.

]. The

114

Appendix B Object Tracking (Supplementary Material)

purpose of all these methods is to reduce the tracking target to a representation, which is more robust
against appearance changes of the target.

B.3 Classical Tracking Algorithms

This section briefly covers classical object tracking algorithms, which embraces all trackers, which do not
utilize a correlation filter or any deep neural network, as these two categories will be covered later. For a
taxonomy of tracking algorithms see fig. B.1

.

.

Visual Object Trackers

Deep CFT

Deep Learning
Based Trackers

Classical Trackers

End-to-End
Models

Motion
Prediction

Target
Association

Feature
Extraction

Deep Patch
Learning

Correlation Filter
Trackers

Basic CFT

Regularized
CFT

Part Based
CFT

Multiple Inst-
ance Learning

Superpixel
Trackers

Graph Based
Trackers

Part Based
Trackers

Sparse
Trackers

Patch Learn-
ing Trackers

Siamese
Networks

Reinforcement
Learning

CNN Based

RNN Based

Fig. B.1: Categorization of object tracking algorithms. Classical object tracking approaches will be covered in this
section, correlation filter based trackers in appendix B.4

.

and deep learning based trackers in appendix B.5

.

.
[38

.

, 39

.

]

There exist several excellent surveys covering classical tracking algorithms. Yilmaz et al. [379

.

] provided
a comprehensive review of object tracking algorithms in 2006, categorizing the existing trackers into
point trackers, kernel trackers and silhoutte trackers. Point trackers receive a set of keypoints of the
tracked object in every frame and they assign corresponding points across frames based on the target
motion in previous frames, hence they comprise only a motion model, but no apearance model of the
target. Examples are particle filters [380

.

], the Kalman filter [381

.

], the Joint Probability Data Association
Filter (JPDAF) [382

.

] and the Multiple Hypothesis Tracker (MHT) [44

.

]. In addition to the motion

115

Appendix B Object Tracking (Supplementary Material)

estimation kernel trackers also take target appearance into account by extracting features from the target
region, such as a bounding box. Classical examples are the Mean-Shift tracker (MST) [383

.

] and the
Kanade-Lukas-Tomasi tracker (KLT) [384

.

]. Silhouette trackers also track an object by means of an
appearance and a motion model, however they do not only match a fixed-size kernel (bounding box),
but instead estimate the target shape, for example the target contours, in every new frame. Classical
examples are state space models [385

.

] and the Hough transform [386

.

].

Smeulders et al. [41

.

] published another survey covering tracking algorithms published until 2011. Besides
presenting and categorizing individual trackers, they also conducted an extensive performance comparison.
They categorize existing trackers based on wether they use template matching or a discriminative classifier
to locate the tracking target in a new frame. The first group comprises basic template matching with
trackers, such as NCC [387

.

], KAT [388

.

] and FRT [389

.

], template matching with an extended appearance
model and IVT [390

.

], TAG [391

.

] and TST [392

.

] trackers, and template matching of spare representations
with trackers like TMC [393

.

], ACT [394

.

] and L1T [395

.

]. The second group of trackers, which built a model
for distinction between target and image background, is subdivided into basic discriminative trackers like
FBT [396

.

] and TLD [397

.

], and discriminative trackers, which use a sparse representation of the target
and background instances, such as STRuck (STR) [398

.

].

Apart from these two surveys, the works of Cannons [40

.

] and Maggio et al. [399

.

] provide more fundamental
introductions to the topic of object detection. Instead of a detailed presentation and comparison, they
describe tracking applications, feature extraction methods, target appearance models, classification,
ensemble fusion, multi-target tracking, context-aware tracking and common performance parameters.

The most recent and comprehensive overview on object tracking algorithms is the survey by Fiaz et
al. [39

.

]. Besides summarizing correlation filter and deep learning trackers, they also present recent
algorithms, which built on the ideas of earlier classical trackers. They categorize those algorithms into
multiple instance learning trackers, superpixel-based trackers, graph-based trackers, part-based trackers,
sparse trackers and patch learning trackers. The last two categories are equal to the sparse discriminative
trackers and template matching trackers in the survey by Smeulders et al. [41

.

].

Multiple instance learning (MIL) [400

.

] trackers utilize a discriminative classifier to distinguish between
the target foreground and the image background, when classifying proposed future locations of the target
in a new frame. However, instead of training the classifier on individually labeled samples of foreground
and background patches, MIL trackers use bags of samples, which contain multiple background and target
samples and have a single label for the entire bag. A bag, which contains only background samples is
labeled as background, while a bag that contains at least one target sample is labeled as sample. Examples
of MIL trackers are the original MIL tracker by Babenko et al. [401

.

], an improved version called MILBoost
[402

.

], Patch Based MIL (PMIL) [403

.

], Robust MIL [404

.

], Yang’s Mil [405

.

], FMIL [406

.

], CMIL [407

.

] and
Sharma’s MIL [408

.

].

Superpixel-based trackers use superpixels [409

.

] as features to describe the target appearance and classify
the region in which the target is located in a new frame. Superpixels are clusters of adjacent image pixels
with similar colors and provide a robust solution for capturing the structure of objects in an image and
distinguish between background and target. Superpixels are robust against occlusion and appearance
changes of the target. Examples of superpixel trackers are the approach proposed by Jingjing et al.
[410

.

], an early algorithm by Wang et al. [411

.

] and a more recent tracker by the same authors [412

.

], the
Constrained Superpixel Tracker (CST) [413

.

], the Structural Superpixel Descriptor (SSD) [414

.

] and the
BacKGround tracker (BKG) [415

.

].

Graph-based trackers model the tracking problem by building a graph [416

.

], in which the nodes represent
image parts, such as superpixels, local features and the edges represent spatial or temporal dependencies
between these image parts. A broad range of graph based optimization strategies can then be utilized to

116

Appendix B Object Tracking (Supplementary Material)

either match image parts across subsequent images, to discriminate between tracking target and image
background, or to locate the target in a new image. Examples for classical graph-based trackers are the
Structure Aware Tracker (SAT) [417

.

], the Graph Tracker (Gracker) [418

.

], the Geometric hyperGraph
Tracker (GGT) [419

.

] and the Absorbing Markov Chain Tracker (AMCT) [420

.

].

Part-based trackers do not model the tracking target as a holistic entity, but instead segment the target
into several parts and model each of these parts separately. This improves tracking accuracy in case of
heavy target occlusion and deformation. Examples for classical part based trackers are the Part-Based
Multi-Graph Ranking tracker (PMGRT) [421

.

], the Part-based tracker (PT) by Yao et al. [422

.

], the
Adaptive Local Movement Modeling (ALMM) tracker [423

.

], the tracker by De Ath et al. [424

.

] and the
tracker by Li et al. [425

.

].

Sparse trackers use sparse encodings [426

.

] both as features that represent target and background image
patches, and to search for the optimal target location in a new frame. A sparse encoding of an image patch
is a linear combination of sparse coefficients and a set of dictionary items, which is learned in such a way,
that they minimize the reconstruction error. Examples of classical sparse trackers are the Sparsity-based
Collaborative Model tracker (SCM) [427

.

], the Consistent Low-Rank Sparse Tracker (CLRST) [428

.

], the
Structural Sparse Tracker (SST) [429

.

], the Context-Aware Exclusive Sparse Tracker (CEST) [430

.

], the
Hierarchical Sparse Tracker (HST) [431

.

], the tracker proposed by Guo et al. [432

.

] and the Structured
Multi-Task Multi-View Tracker (SMTMVT) [433

.

].

Patch learning trackers are simple tracking approaches utilizing a discriminative classifier to localize the
tracking target in a new frame by determining, whether a proposed region in a new frame is the target or
the image background. Most of the recent classifiers in this category make use of deep learning, however
there are also more classical approaches, such as the Edge Box Tracker (EBT) [434

.

], the Exemplar-based
Linear Discriminant Analysis tracker (ELDA) [435

.

] and the Oblique Random Forest tracker (Obli-Raf)
[436

.

].

B.4 Correlation Filter Based Tracking Algorithms

One large category of modern object tracking algorithms utilize correlation filters [12

.

, 179

.

, 437

.

] to
determine the target location of the tracking object in a new frame. The common pipeline of correlation
filter trackers (CFTs), which can be found in [42

.

] and [39

.

], is very similar to the tracking pipeline presented
above, however instead of utilizing a motion model to predict candidate locations of the target in a new
frame based on the previous motion path of the target, CFTs perform an exhaustive search in the local
neighborhood of the target location in the previous frame [42

.

]. The classifier module in the above tracking
pipeline is replaced by a correlation filter W , which is circularly convolved with the input features X,
yielding a two-dimensional gaussian probability density map Y of the target location in the new frame.
This can be written as

Y = W ~X. (B.1)

The target position in the new frame can now easily be found by computing the maximum of this
distribution. As described earlier, the input features X can be of various kinds, such as HOG features
or color histograms, and are extracted from the image region around the target position in the previous
frame. More recently, features are also extracted at various different scales by means of an image pyramid
to increase robustness of the tracker [438

.

–441

.

]. As circular convolution ~ in the spatial domain can be
expressed as element-wise multiplication � in the fourier domain [442

.

], the response map can be computed
as

Y = F−1
{
Ŵ � X̂

}
, (B.2)

117

Appendix B Object Tracking (Supplementary Material)

where Ŵ and X̂ denote the correlation filter and input image in fourier domain after application of the
discrete fourier transform (DFT) [443

.

] and F−1 is the inverse discrete fourier transform (iDFT) [444

.

].
Replacing the convolution with the element-wise product in the fourier domain leads to a significant
increase in processing speed [445

.

]. Since the parameters of the correlation filter W are initially unknown,
training is required [39

.

]. Given ground truth response maps YL, the optimal filter W ∗ can be found by
iteratively optimizing the following objective [446

.

]

W ∗ = arg min
W

||W ~X − YL||2. (B.3)

The correlation filter can be seen as a linear discriminative classifier, that determines, whether a location
in the input frame is the target or the image background. To increase accuracy of the filter and make use
of high-dimensional input features, the linear filter has to be replaced with a non-linear filter, yielding
a kernelized correlation filter. This is usually done by applying the kernel trick [447

.

], which yields a
non-linear filter in input variables Z while still being linear, and thus easy to train, in input variables X.
In a kernelized correlation filter, the filter matrix is replaced by the kernel matrix. [179

.

]

The literature on CFTs is vast [39

.

, 42

.

] as the filter approach to tracking has proven to be very accurate
and fast. Literature [39

.

] categorizes CFTs into basic, regularized and part-based CFT (see fig. B.1

.

), thus
the following overview is structured accordingly. Here, only CFTs, which do not utilize any deep features,
are presented, as these will be covered in a later section.

B.4.1 Basic Correlation Filter Trackers

One of the first basic CFTs to follow the above described mathematical framework was the Average
Synthetic Exact Filter (ASEF) [448

.

]. A year later Minimum Output of Sum of Squared Error (MOSSE)
[12

.

] was proposed, which provided a solution for online-training of the correlation filter. An improvement
of MOSSE was the Circulant Structure with Kernel tracker (CSK) [437

.

], which exploitet the circulant
structure of the kernel matrix in case of dense sampling of the input space to overcame the problem of a
high computational cost of training a kernelized correlation filter with many input samples. Danelljan
et al. [449

.

] improved CSK by utilizing color attributes as additional input features and implementing
an adaptive dimensionality reduction technique to increase processing speed. Henriques et al. [179

.

]
proposed the Kernelized Correlation Filter tracker (KCF), that builds on the idea of utilizing the kernel
trick and circulant kernel matrices to reduce storage and computation footprint of the correlation filter.
This paper also introduces the Dual Correlation Filter (DCF), which is a fast multi-channel version
of linear correlation filters. The Spatio-Temporal Context tracker (STC) [450

.

] is an early approach
to track targets at different scales. Another scale-adaptive tracker, the Scale Adaptive with Multiple
Features tracker (SAMF) [451

.

] builts on KCF, but uses HOG and color features at various different
scales to generate richer input features and increase overall tracking performance. An improved version of
SAMF, which uses global context to achieve a gain tracking accuracy is presented in [452

.

]. The Joint
scale-spatial correlation tracking with adaptive rotation estimation (RAJSSC) tracker [453

.

] improves the
single-template appearance models of the early CFTs by modelling the tracking target simultaneously
at different spatial displacements, scale variations and rotations. The same authors presented a further
improvement of the RAJSSC tracker, called JSSC [454

.

], which exploits the block-circulant structure of
the kernel matrix in their proposed joint scale-space to speed up template matching. Discriminative
Scale Space Tracker (DSST) [438

.

] is another tracking algorithm, which aims at tracking targets through
scale-changes by utilizing one correlation filter for location estimation and a second one for scale estimation.
Another correlation filter based tracker is the MUlti-Store Tracker (MUSTer) [455

.

], which is inspired
by the Atkinson-Shiffrin Memory Model of memory in the human brain and models appearance of the
tracking target with short- and long-term memories. Ma et al. [456

.

] proposed the Long-term Correlation

118

Appendix B Object Tracking (Supplementary Material)

Tracker (LCT), which is based on a correlation filter and aims at tracking targets, that undergo significant
appearance changes, such as deformation, abrupt motion, heavy occlusion and out-of-view scenarios. The
Sum of Template And Pixel-wise LEarners tracker (STAPLE) [457

.

] uses illumination-invariant HOG
features and deformation-invariant color features with two separate correlation filters and merges both
filter responses to obtain the estimated target location. A recent correlation filter, which relies on HOG
features is the Background-Aware Correlation Filter (BACF) [458

.

], that learns apperance models for both
the target as well as the image background to increase tracking performance.

B.4.2 Regularized Correlation Filter Trackers

Regularized CFTs are the second category of CFTs [39

.

]. The presented basic CFTs share the common
boundary condition of equally sized filter matrices W and input features X of image patches in the local
neighborhood of the last known target position. Since these are rectangular shapes, it is not always
guaranteed that the learned filter matrix and the tracking target align well. Instead, the filter might
also take parts of the image background around the target into account, degrading tracking performance.
Regularized CFTs solve this problem by assigning learnable regularization parameters to the correlation
filter, which penalize their spatial location and thus allow the filter to better fit to the target shape and
ignore the background around the target. Danelljan et al. [459

.

] laid the foundations for regularized CFTs
and introduced the Spatially Regularized Discriminative Correlation Filter (SRDCF) for tracking. A
more recent regularized CFT is the Discriminative Correlation Filter Tracker with Channel and Spatial
Reliability (CSRT) [13

.

], that uses HOG and color features and utilizes binary parameters to classify,
which parts of the filter belongs to the tracking target and which ones to the image background.

B.4.3 Part-Based Correlation Filter Trackers

The third big group of CFTs are part-based CFTs [39

.

], which break down tracking of a bounding box
around the target into tracking of individual target parts. This makes the tracker more robust to occlusion
and deformation of the target. Instead of learning one filter matrix for the entire object, part-based trackers
learn multiple filter matrices, for the individual parts of the target. Examples are Real-time Part-based
tracking with Adaptive Correlation Filters (RPAC) [460

.

] and the Real-time Part-based tracking with
Discriminative Correlation Filters (RPAC+) [461

.

] algorithms, which add additional spatial constraints
to the individual part filters and are robust against various appearance changes of the target. Other
part-based trackers are the Reliable Patch Tracker (RPT) [462

.

], Patch-based KCF [463

.

], the Enhanced
Structural Correlation tracker (ESC) [464

.

] and the Structural Correlation Filter tracker (SCF) [465

.

].

B.5 Deep Learning Based Tracking Algorithms

More recent approaches to object tracking are mostly based on deep learning and are covered in the
surveys [38

.

, 466

.

, 467

.

] and [39

.

]. As shown in fig. B.1

.

and according to [38

.

], deep learning trackers can be
categorized by their level of integration of the tracking pipeline steps (see section 3.2

.

). A large group of
deep learning trackers utilize a deep architecture to extract robust and meaningful deep features of the
image patches and feed those into correlation filter based trackers [15

.

, 468

.

–471

.

]. Hence, this category of
deep learning trackers can be sub-divided similar to appendix B.4

.

into basic deep CFTs, regularized deep
CFTs and part-based deep CFTs. Instead of using a correlation filter, some deep learning trackers feed the
extracted deep features into a more classical tracking pipeline and perform deep patch learning [472

.

–476

.

].
Another large group of tracker model the entire tracking pipeline in a single deep architecture, which can
be trained in an end-to-end fashion. This category can be further subdivided into Siamese trackers [14

.

,

119

Appendix B Object Tracking (Supplementary Material)

46

.

, 477

.

–482

.

], CNN-based trackers [483

.

–487

.

], RNN-based trackers [488

.

–490

.

] and trackers making use of
reinforcement learning [491

.

–495

.

]. In case of multi-tracking, some trackers utilize a deep architecture as
target associator, that matches multiple targets across frames [46

.

–48

.

], and another family of deep trackers
makes use of deep models for the motion prediction step of the pipeline [496

.

, 497

.

]. The following section
presents a variety of deep learning based tracking algorithms of the mentioned categories in more detail.

B.5.1 Deep Learning for Feature Extraction

Deep learning provides several types of models, which are used to extract meaningful and robust features
from images and image sequences and thus can be used to represent the tracking target in the object
tracker. The majority of deep feature extractors are based on convolutional neural networks (CNN) [498

.

,
499

.

], which take an image as input and convolve a weight kernel with the image pixels in a sliding window
fashion to retrieve a reduced representation of the input image [288

.

]. Some examples for trackers using
CNNs for feature extraction are SO-DLT [500

.

], the work by Hong et al. [476

.

], the work by Jin et al. [501

.

],
MDNet [502

.

] and the hedged deep tracker by Qi et al. [445

.

]. Ma et al. [503

.

] provide an in-depth analysis
of deep convolutional features for object tracking and analyse the importance of individual feature maps
of a multi-layer CNN for the tracking result. A slight variation of the standard CNN are deep residual
features [177

.

], which are used by the CREST tracker presented in [446

.

]. Apart from convolutional models,
recurrent neural networks (RNN) [504

.

] are used for feature extraction in object trackers. RNNs are used
to encode temporal or spatial sequences, such as the varying location of the tracking target over time
[505

.

] or spatial positions of image pixels [506

.

, 507

.

]. For object tracking it is also common to combine both
CNN and RNN, yielding a Recurrent-CNN, which first extracts spatial features of every individual frame
with a CNN and then encodes the spatial features of multiple subsequent frames with an RNN. Examples
for this approach are Track-RNN [508

.

] or the RFL network [509

.

]. A similar approach is presented in
[510

.

]. Here no RNN is used, but instead a CNN encodes both spatial and temporal information about the
tracking target. Yet another deep learning model, used for feature extraction in object tracking, is the
stacked denoising autoencoder (SDAE) [511

.

], which is a combination of a multi-layer encoder and decoder,
which first compresses the input image into a reduced feature set and then decompresses these features
back to an image similar to the input image. The encoder network can be used as a feature extractor for
object tracking. Example trackers utilizing an SDAE for feature extraction are the DLT algorithm [472

.

],
the tracker by Hua et al. [512

.

] and the algorithm by Zhou et al. [513

.

].

Ma et al. [468

.

] proposed CF2, a basic deep CFT, that uses three differently scaled CNN feature maps
from VGG-19 [288

.

], trained offline on ImageNet [295

.

], as input features for three independent adaptive
correlation filters. The peak probabilities in all filters are then jointly used as an estimate for the new
target location. Model update is performed online on the correlations filters, while the CNN serves only
as a pre-trained feature extractor with fixed weights. The authors show the superiority of deep features
compared to hand-crafted features in terms of robustness to appearance changes of the target. The same
authors also proposed the Hierarchical Correlation Feature-based Tracker (HCFT*) [503

.

], which uses an
additional correlation filter for scale-estimation and re-detection of targets. Similar to CF2, the Hedged
Deep Tracker (HDT) [445

.

] follows a similar approach and utilizes an individual correlation filter for each
of six feature maps of a pre-trained VGG-19 to create a weak tracker. An adaptive hedging algorithm
[514

.

] is then used to combine all weak trackers into a strong tracker. The Multi-task Correlation Particle
Filter tracker (MCPF) [471

.

] has a similar architecture like CF2 and HDT, but proposes a method to
jointly learn correlation filters and thus exploit inter-dependencies between the extracted feature maps.
Additionally, a particle filter is used as motion model to generate proposals for the search regions in a
new frame. Deep Large Margin Object Tracking with Circulant Feature Maps (DeepLMCF) [470

.

] uses
three feature maps extracted by VGG-19 in combination with a structured output SVM as classifier,
which directly estimates the relative movement of the target between adjacent frames. Correlation filter

120

Appendix B Object Tracking (Supplementary Material)

theory is applied to speed up computations of the SVM. The Convolutional RESidual Tracker (CREST)
[446

.

] follows the standard framework of a discriminative correlation filter tracker, but reformulates the
correlation filter via a combination of a single-layer base CNN and additional residual layers. All layers
are trained fully online to adopt to the tracking target, thus no pretraining is needed. The Multi-Cue
Correlation Filter tracker (MCCT) [515

.

] maintains an ensemble of seven basic CFTs, which operate
on different subsets of a feature pool, containing HOG-features, color-features and three different deep
convolutional features extracted by a VGG-19 network.

An early example of a deep regularized CFT is the Deep Spatially Regularized Discriminative Correlation
Filter tracker (deepSRDCF) [516

.

], which is an extension of the previously presented SRDCF tracker,
making use of five deep feature maps extracted by an ImageNet VGG-2048 CNN [517

.

]. Their work finds,
that deep features improve performance of the standard SRDCF tracker and that features of early layers
provide superior tracking performance compared to deeper layers. Another deep regularized CFT, that
uses SRDCF as a base tracker, is Deep Motion SRDCF [518

.

]. In their framework, the authors fuse a set of
hand-crafted and deep convolutional appearance features with convolutional feature maps extracted from
an optical flow image [519

.

] to capture both appearance as well as motion information of the target. The
Continuous Convolutional Operators for Tracking algorithm (CCOT) [520

.

] takes the image patch along
with the feature maps of the first and last layer of a CNN as input and applies a set of correlation filters
in a continuous range of resolutions. Outputs of the continuous correlation filters are combined into the
final prediction of the new target location. The Efficient Convolution Operators tracker (ECO) [15

.

] is an
improvement of CCOT in terms of tracking accuracy and computational complexity. Compared to CCOT,
ECO reduces the number of correlation filters, that need to be trained to estimate the target location,
and furthermore uses a Gaussian Mixture Model to represent target appearance making ECO less prone
to overfitting. Another deep regularized CF is the Attentional Correlation Filter Network tracker (ACFN)
[521

.

], which uses an attention network to adaptively select a subset of correlation filters out of a pool of
KCFs, based on the motion properties of the target.

The last subcategory of deep correlation filter trackers are deep part-based CFTs, which follow the
approach of tracking the target not as a whole, but instead as individual parts of the target. An example
is the Recurrently Target-Attending Tracking algorithm (RTT) [522

.

], which first partitions the target into
a grid of parts, extracts HOG- and CNN-features of the parts and feeds them into a quad-directional RNN
to generate a confidence map for the importance of every single part for the tracking task based on the
learned spatial relationships between parts. The confidence map is then used to regularize a discriminative
correlation filter, that estimates the final target location.

Instead of using correlation filters for location estimation of the target based on extracted deep features,
some deep learning trackers feed deep features into more classical frameworks to estimate the target
location. An early example is the Deep Learning Tracker (DLT) [472

.

], which uses the encoder part of an
offline trained autoencoder to extract appearance features from candidate regions, which are predicted
via a particle filter motion model. During tracking, the encoder is extended with a sigmoid layer, which
classifies each candidate patch as image background or target. Hong et al. [476

.

] propose a tracker
based on a pretrained CNN for deep feature extraction of sampled candidate regions. A SVM is used
for discrimination between target and background patches. Additionally, target patches are used to
compute a saliency map [523

.

] via a backward pass through the CNN. The saliency map is convolved
with a generative appearance model, that is built from saliency maps of previous frames, and outputs
a dense likelihood map for the target location. Both SVM weights as well as the generative apperance
model are updated after every frame. The Convolutional Networks without Training tracker (CNT) [473

.

]
uses one convolutional layer to extract features from densely sampled and normalized patches around the
target in two subsequent frames and convolves them in a second convolutional layer to produce the final
feature tensor. Both convolutional layers are trained online to adopt to appearance changes of the target.
Tracking in CNT is performed by a classical particle filter framework. The Deep Relative Tracker (DRT)

121

Appendix B Object Tracking (Supplementary Material)

[474

.

] also utilizes a particle filter framework to propose candidate locations of the target in a new frame.
Instead of directly extracting features and determining whether a patch is the image background or the
target, DRT utilizes a deep CNN and a newly proposed relative loss layer to generate an overlap score for
pairs of image patches, and thus model relative instead of absolute appearance information of candidate
regions. The network consists of two parallel branches of five convolutional and five fully-connected layers
with shared weights, and is trained on multiple pairs of image patches and the corresponding overlap
score. During tracking a single candidate patch is fed into one of the network branches and an overlap
score with the target template is returned. The candidate region with maximum score represents the new
target location. The deep relative network is updated online based on the overlap scores of the candidate
regions. A tracker, which makes use of deep appearance models in combination with a classical tree-based
tracking approach is the Tree structure CNN tracker (TCCN) [475

.

]. Here, candidate regions are randomly
sampled from the region around the last known target location, and features are extracted with multiple
different CNNs. Each CNN represents a node in a graph and has a scalar weight, that determines the
importance of the corresponding CNN features for the final classification. Graph edges model relations
between the CNNs and are needed for onloine updating of the individual CNNs.

B.5.2 End-to-End Deep Learning Models

Another category of deep learning trackers integrate all steps of the tracking pipeline in a single deep
neural network, making them end-to-end trainable. A sub-group of these end-to-end trainable deep
trackers are Siamese neural networks [524

.

–526

.

], which take two images as input and output a similarity
score for those two images. This score can be used to classify, in which of several proposed image patches
in the next frame the target is located by simply computing the similarity between an image of the target
and image patches of the proposed future locations. Siamese Instance Search for Tracking (SINT) [46

.

] was
the first tracker to follow this approach. It was trained completely offline, but delivered state-of-the-art
performance in 2016. Another offline trained Siamese neural network tracker is the Generic Object
Tracking Using Regression Network (GOTURN) [479

.

], which uses the first five layers of the CaffeNet
architecture [527

.

] to extract features from the target template and the query frame and compares them
by means of four fully connected layers, which finally output bounding box coordinates of the target
in the query frame. Another relatively simple tracker based on a Siamese neural network is the Fully
Convolutional Siamese Network tracker (SiameseFC) [477

.

], which embeds images of both the tracking
target as well as a much larger region in the query frame into a lower-dimensional feature space. Both
features are then combined with a cross-correlation-layer, yielding a spatially supported similarity map
for the target location in the query frame. The cross-correlation-layer is nothing else than a correlation
filter with features of one image as input and features of the other images as filter matrix. The search
is repeated with differently scaled query frames to enable tracking through different scales. Despite not
incorporate any appearance model, additional features or bounding box regression for refinement of the
estimated bounding box, SiameseFC achieved state-of-the-art performance in 2016. The same authors
proposed the Correlation Filter Network (CFNet) [481

.

], which is an enhancement of SiameseFC with a
similar architecture. The only change, introduced in CFNet is an additional correlation filter layer in the
network branch of the target image, which serves as an online trainable appearance model of the tracking
target. Another improvement of CFNet is the Dynamic Siamese Network tracker (DSiam) [478

.

], which
extends CFNet by an additional online trainable correlation filter in the network branch of the query
frame. This correlation filter is used as regularizer and adaptively learns background suppression from
previous frames. In combination with the correlation filter in the target branch, which models target
appearance from previous frames, DSiam effectively tracks targets even under difficult conditions, such
as fast appearance changes, occlusion and background clutter. The Discriminative Correlation Filters
Network tracker (DCFNet) [14

.

] works similarly to CFNet, however here the trainable correlation filter
layer is not located in the target template branch, but instead combines features from both branches.

122

Appendix B Object Tracking (Supplementary Material)

Hyperparameters of the correlation filter layer are trained jointly with the parameters of the convolutional
Siamese feature extractors by backpropagation in an offline training step prior to tracking. During tracking
only parameters of the correlation filter are updated to preserve a model of target appearance in previous
frames. Vondrick et al. [482

.

] train a Siamese CNN to copy colors from the first colorized frame of a video
(reference frame) onto subsequent gray-scale frames (target frames). This model implicitly yields a soft
pointer from pixels in a frame to the corresponding pixels in the next frame and thus can be exploited
for object tracking. The Quadruplet-CNN tracker (Quad-CNN) [480

.

] is not a classical Siamese neural
network, because it takes four instead of only two input patches and ranks them based on their similarity
in both the extracted appearance features as well as their temporal distance. Additionally, the network,
which is trained offline and end-to-end, performs bounding box regression.

Apart from Siamese trackers, there are further deep trackers, which comprise the entire tracking pipeline in
a single deep neural network. An example is DeepTrack [483

.

, 484

.

], which uses two convolutional and two
fully-connected layers to extract robust appearance features from 1500 randomly sampled patches around
the previous location of the target and classify them as background or target. The CNN is trained online
on the found target via lazy update, which means training occurs only in case the training loss exceeds
a defined threshold. The Multi-Domain Network tracker (MDNet) [502

.

] utilizes a unique architecture
of three convolutional and two fully-connected layers, which branch out into multiple domain-specific
fully-connected layers. During offline training each domain-specific layer is trained separately on videos
containing only a certain object category of tracking targets. This way, the previous shared layers learn a
generic appearance model of all targets. During tracking the domain-specific layers are replaced with
an uninitialized fully-connected layer, which is trained online on the current tracking target and thus
stores target-specific information across subsequent frames. Two other deep end-to-end trackers, which are
trained in a similar way as MDNet, are the the BranchOut tracker [528

.

] and the Structure Aware Network
tracker (SANet) [506

.

]. BranchOut uses the MDNet base architecture followed by multiple branches with
either one or two fully-connected layers. Different from MDNet, BranchOut maintains the pool of parallel
branches even during tracking and updates a randomly sampled subset of branches after every tracking
step. This serves as a regularization technique to maintain a robust appearance model of the target.
SANet extends the MDNet architecture by three additional RNN-layers behind each convolutional layer,
which capture spatial structure of the entire image, and concatenation units, which skip the RNN-layers
and concatenate the CNN features with the RNN features. The Sequentially Training Convolutional
Tracker (STCT) [487

.

] uses the first ten convolutional layers of a VGG-16 network, that was pretrained
offline, and interprets every channel of the CNN output as an individual weak tracker generating an
individual confidence map of the target location in a new frame. Combining confidence maps of all weak
learners in the ensemble yields robust tracking results. After determination of the new target location as
maximum of the combined confidence maps, a scale prediction network estimates the new target scale
and parameters of the feature extraction CNN are updated online. The Temporal Spatial Network tracker
(TSN) [486

.

] uses three deep networks, a convolutional feature network, a fully connected temporal network
and a convolutional spatial network, to locate the target in each video frame. The feature CNN provides
general deep features of the target, which are used in the fully-connected temporal network to encode the
target trajectory. In the temporal network an additional tuple learning module is used to store and utilize
important historic samples. The spatial CNN uses the output of the temporal network to further refine
the target location. Sun et al. [485

.

] introduce the Spatial-Aware Regressions Tracker (LSART), which
uses a novel spatial-aware kernelized ridge regression network to capture holistic features of the target,
and a spatial-aware CNN, which focuses on smaller localized regions. LSART provided the most accurate
tracking results of all trackers in the Visual Object Tracking Challenge (VOT) in 2017 [529

.

].

Other deep end-to-end trackers are mainly based on RNNs to model temporal characterstics of the target.
For example, the multi-target tracker by Milan et al. [489

.

] uses an individual RNN to model the motion
and predict the location of each target, and a single LSTM for target association. The entire model is

123

Appendix B Object Tracking (Supplementary Material)

trained offline in an end-to-end fashion. Similarly, the tracker by Gan et al. [488

.

] is trained offline as
an end-to-end model. It uses a RNN, which directly outputs bounding box coordinates based on the
previous hidden state and CNN-features extracted from the current video frame. The Recurrent YOLO
tracker (ROLO) [490

.

] is another tracker, which directly regresses bounding box coordinates for every
frame in a sequence. It applies the YOLO object detector to every frame of the video and feeds the found
bounding boxes into a LSTM, which maintains a memory of the detections in previous frames. This yields
bounding box coordinates, which are not only based on the detections in the current frame, but also on
the detections in previous frames. Thus, ROLO is capable to model both spatial as well as temporal
dependencies of targets across frames.

Deep reinforcement learning (RL) [530

.

] provides another class of end-to-end trainable object trackers and
models the tracking problem as a decision-making process with the goal to maximize a reward function.
RL systems comprise an environment with a state s ∈ S, and an agent, which observes the state and
chooses an action a ∈ A based on a policy function π(s) : S→ A. Depending on the state and the chosen
action, the agent receives a reward R(s, a) ∈ R, which is used to find the optimal policy during agent
training. When the optimal policy is found, it is guaranteed, that the agent always decides for that
action, that maximizes the accumulated reward. A tracker following this approach is the Action-Decision
Network tracker (ADNet) [494

.

], which uses a three convolutional and three fully-connected layers as an
agent network. Given a new frame, in which the target has to be located, ADNet iteratively outputs an
action to shift or rescale the target’s bounding box from its current to a new location until the target
has been found. The reward used for offline training of ADNet is based on the IoU (see appendix A.3

.

)
between the predicted and the ground-truth bounding boxes in the training dataset. The fully connected
layers are retrained in an online manner during tracking to better capture appearance changes of the
target. ADNet significantly speeds up the tracking process compared to non-RL trackers as only a low
number of iterations is needed to find the new target location. The Actor-Critic Tracker (ActNet) [493

.

] is
based on a very similar architecture, but instead of learning the optimal policy function offline, it makes
use of the actor-critic framework [530

.

, 531

.

] to find the optimal policy online during the tracking process.
The Reinforced Decision Making tracker (RDM) [491

.

] comprises of a Siamese CNN matching network
and a convolutional policy network. The Siamese matching network takes a query image and a target
template as inputs and generates a probability map for the spatial location of the template in the query
image. This prediction map is fed into the policy network, which computes a normalized score for each
probability map of a template drawn from a pool of templates, and then selects the template, which leads
to the highest normalized score, for localizing the target. The EArly Stopping Tracker (EAST) [492

.

] is
also based on the typical Siamese CNN framework for computing target location in a new frame. Here,
an RL agent decides, how many CNN layers are used to compute feature maps for location estimation.
In case of easily distinctive and slow moving targets, the agent uses only a few layers, while in more
challenging tracking situations, deeper features are needed, and thus more CNN layers are utilized. This
early-stopping approach leads to a significant speedup of the feedforward computation and hence the
entire tracking process. The Deep Reinforcement Learning Tracker (DRLT) [495

.

] estimates the target
location in every frame from the according hidden state of a RNN. The hidden state for a given time step
is computed from the previous hidden state and a feature vector extracted from the current video frame.
During offline training the RL agent receives a reward based upon the accuracy of the predicted target
location. Aim of the training is to iteratively update the parameters of the policy function to maximize
the accumulated reward. Parameters of the policy function are equal to the parameters of the RNN and
the feature extraction CNN, which means that finding the optimal policy function is equal to finding
optimal parameters for the CNN and RNN.

124

Appendix B Object Tracking (Supplementary Material)

B.5.3 Deep Learning for Target Association

In case of multi-target tracking deep learning can be explicitly utilized for the task of target association,
that means matching different tracking targets in adjacent frames. Siamese neural networks provide a
reasonable solution for this task [46

.

–48

.

]. Leal-Taixe et al. [47

.

] proposed a Siamese CNN architecture to
match detections of multiple pedestrians across frames. Local spatio-temporal features of each target
region are extracted via a pre-trained Siamese CNN and fed into a gradient boosting classifier together
with additional contextual features to generate output matches between targets in adjacent frames. Linear
programming in then used for offline generation of trajectories. A second example for target association
via deep learning is the Siamese LSTM tracker proposed by Varior et al. [48

.

]. In both branches of the
Siamese network, hand-crafted features are extracted from several horizontal patches of the target and
the query image and fed into interconnected LSTM cells. A contrastive loss function is used to merge
both branches of the LSTM and generate the final prediction of the target location in the query frame.
The LSTM allows the network to propagate spatial context between multiple target and thus helps to
match them across frames.

B.5.4 Deep Learning for Motion Prediction

The last category of deep tracking algorithms relies on deep learning solely for motion prediction. An
example is the Behavior-CNN proposed by Li et al. [496

.

], which is based on the KLT tracker [384

.

],
however replaces its motion prediction by a CNN that generates trajectories of humans in crowded scenes
and thus can be applied to predict an estimate of the location of a human in the next frame. Similarly,
the Social-LSTM [497

.

] by Alahi et al. utilizes an individual LSTM for every single person in the frame to
predict the future location in the next frame.

125

Appendix C

Appendix

This appendix contains additional material. First, the hard- and software specification of the workstation,
on which the Shopfloor Monitor is executed, is presented. Afterwards, the full results of experiments,
conducted in chapter chapter 6

.

, are listed. Finally, the datasheet of the Shopfloor Monitor’s two cameras
is shown.

C.1 Server Hardware and Software

The Shopfloor Monitor is developed and executed on a single desktop workstation with the hardware
specs as listed in table C.1

.

and Ubuntu 18.04.1 LTS (64 bit) as operating system. Python 3.6.5 as part of
Anaconda 5.2.0 is used to implement most parts of the monitoring system. Additional Python packages,
which are not part of Anaconda, such as Flask 1.0.2 or Flask-SocketIO 3.0.1, are installed as needed and
managed in a virtual environment created with the venv module of the Python standard library. MySQL
Server 5.7.23 and Redis 4.0 are installed directly in the operating system and configured as services. For
GPU inference of the object detector, Tensorflow-GPU 1.8.0 is installed via Python pip, after setup of
CUDA 9.0 and cuDNN 7.1.

Tab. C.1: Hardware specification of the analysis server.

Component Type Description

CPU Intel Core i7-8700K 3.70 GHz (4.70 GHz Boost), 6 Cores, 12 Threads, 12 MB Cache,
95 W TDP

GPU 0 / 1 Zotac GeForce GTX 1080 TI Mini 11 GB GDDR5X VRAM, 1506 MHz (1620 MHz Boost), 3584 Cuda
cores

RAM Corsair Vengeance LPX 4× 16 GB DDR4, 3200 MHz (PC4 25600)
Mainboard MSI Z370 Gaming Pro Carbon Socket 1151, Intel Z370 chipset, 3× PCI-E 3.0 x16
SSD Samsung 970 EVO M.2 NVMe 1.3 1000 GB, Seq. read: 3500 MB/s, Seq. write 2500 MB/s, 1 GB Cache
PSU Corsair RM1000x Gold 1000 W, 80 PLUS Gold
Case Phantek Eclipse P400S –

C.2 Full Results of Experimental Analysis

This section contains the full results of the experiments, conducted in chapter 6

.

. Every subsection shows
a table for each analyzed parameter value. For example, appendix C.2.1

.

contains a table for each of the
seven tested object detection algorithms. Each table contains the MOT evaluation metrics as measured on
the five evaluation sequences. The last rows, which were shown earlier in table 6.5

.

, aggregate the metrics
over all sequences.

126

Appendix C Appendix

C.2.1 Full Results for Detection Algorithms

Tab. C.2: Results for the Faster R-CNN/NASNet detector. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 77.2 78.9 75.5 86.4 90.4 18 14 2 2 330 485 9 13 77.0 18.6 38.51
Seq-1 61.3 66.7 56.7 70.0 82.5 13 5 8 0 222 447 9 15 54.5 19.7 60.10
Seq-2 66.6 78.8 57.7 65.2 89.0 19 7 10 2 234 1014 14 17 56.7 20.4 58.83
Seq-3 71.5 78.7 65.6 71.7 86.0 17 7 10 0 328 798 10 18 59.7 20.3 43.75
Seq-4 63.0 69.5 57.6 73.4 88.4 10 3 5 2 134 371 8 15 63.2 15.0 64.77
Total 70.0 76.3 64.6 74.5 87.9 77 36 35 6 1248 3115 50 78 63.8 19.0 53.19

Tab. C.3: Results for the Faster R-CNN/Inception-ResNet v2 detector. Units of the metrics are according to
table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.4 91.0 78.7 82.5 95.4 18 13 4 1 143 624 3 24 78.5 20.6 42.54
Seq-1 70.3 78.9 63.3 71.8 89.5 13 5 7 1 125 420 8 13 62.9 19.7 60.60
Seq-2 66.0 78.2 57.0 66.8 91.6 19 7 9 3 179 968 11 17 60.2 20.7 65.37
Seq-3 75.2 87.4 66.0 70.2 93.1 17 8 9 0 147 839 6 18 64.8 21.0 44.07
Seq-4 61.8 67.5 56.9 73.7 87.5 10 4 4 2 147 366 8 14 62.6 15.2 68.34
Total 73.7 83.1 66.2 73.6 92.4 77 37 33 7 741 3217 36 86 67.2 20.0 56.18

Tab. C.4: Results for the Faster R-CNN/ResNet-101 detector. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 44.71
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 63.49
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 64.28
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 45.86
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 72.03
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 58.08

Tab. C.5: Results for the Faster R-CNN/ResNet-101 (low proposals) detector. Units of the metrics are according
to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 76.3 86.0 68.6 75.6 94.9 18 9 5 4 146 871 6 20 71.4 20.9 45.13
Seq-1 65.6 77.7 56.8 60.9 83.3 13 4 7 2 182 583 4 20 48.4 22.9 66.57
Seq-2 60.0 76.4 49.4 59.8 92.6 19 3 12 4 140 1172 13 21 54.5 23.2 71.66
Seq-3 65.8 81.4 55.2 62.2 91.6 17 5 11 1 160 1066 7 31 56.3 23.9 51.52
Seq-4 63.7 69.0 59.1 76.4 89.3 10 5 3 2 128 329 7 14 66.7 18.5 73.07
Total 67.4 79.7 58.4 67.0 91.5 77 26 38 13 756 4021 37 106 60.5 21.9 61.59

Tab. C.6: Results for the Faster R-CNN/ResNet-50 detector. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 77.5 84.7 71.4 77.4 91.8 18 12 3 3 246 809 7 25 70.3 24.1 44.16
Seq-1 59.9 71.9 51.2 61.1 85.8 13 3 9 1 151 580 6 15 50.6 24.5 60.74
Seq-2 57.2 72.7 47.1 56.2 86.7 19 4 10 5 252 1277 12 16 47.1 25.0 67.76
Seq-3 68.5 81.6 59.0 64.9 89.7 17 6 9 2 210 990 11 32 57.1 24.5 46.24
Seq-4 58.5 63.5 54.3 76.2 89.2 10 5 3 2 128 331 11 18 66.3 18.1 73.09
Total 66.5 77.3 58.3 67.3 89.3 77 30 34 13 987 3987 47 106 58.8 23.6 58.40

127

Appendix C Appendix

Tab. C.7: Results for the R-FCN/ResNet-101 detector. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 71.7 71.0 72.3 78.3 76.8 18 12 4 2 844 777 7 27 54.5 23.4 35.05
Seq-1 65.1 74.1 58.1 68.3 87.2 13 5 7 1 149 472 7 21 57.9 23.7 55.56
Seq-2 61.9 72.6 54.0 60.5 81.3 19 7 6 6 405 1152 10 23 46.2 26.0 59.71
Seq-3 64.7 72.2 58.6 63.8 78.6 17 6 10 1 490 1022 11 40 46.0 24.3 40.35
Seq-4 66.1 72.6 60.7 77.5 92.5 10 6 2 2 87 314 4 17 70.9 18.8 72.76
Total 66.5 72.1 61.7 69.3 81.1 77 36 29 12 1975 3737 39 128 52.8 23.6 52.68

Tab. C.8: Results for the SSD/ResNet-50 detector. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 66.7 73.8 60.8 72.9 88.6 18 9 6 3 337 968 10 16 63.2 21.5 44.53
Seq-1 54.3 69.6 44.5 53.5 83.8 13 3 7 3 154 693 7 7 42.7 22.7 65.28
Seq-2 44.7 73.4 32.2 38.9 88.6 19 4 7 8 145 1781 8 19 33.6 21.7 77.02
Seq-3 55.3 66.5 47.3 56.2 78.9 17 5 8 4 423 1235 14 22 40.7 24.0 43.17
Seq-4 52.7 64.7 44.5 61.5 89.5 10 1 7 2 101 536 6 15 53.8 20.9 76.20
Total 56.4 70.4 47.0 57.2 85.7 77 22 35 20 1160 5213 45 79 47.4 22.2 61.24

C.2.2 Full Results for Tracking Algorithms

Tab. C.9: Results for the MOSSE tracker. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 45.01
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 61.38
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 67.28
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 45.46
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 71.79
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 58.18

Tab. C.10: Results for the KCF tracker. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.7 90.7 79.5 82.2 93.9 18 13 4 1 192 635 2 15 76.8 20.1 9.21
Seq-1 70.7 76.3 65.8 73.5 85.2 13 7 5 1 190 395 8 16 60.2 22.0 9.98
Seq-2 65.0 74.8 57.5 67.2 87.4 19 7 10 2 282 956 11 21 57.1 23.6 9.81
Seq-3 70.0 81.4 61.5 66.3 87.9 17 7 8 2 258 950 6 27 57.0 20.6 8.31
Seq-4 67.6 72.4 63.3 78.1 89.3 10 6 2 2 130 305 6 12 68.3 15.5 14.71
Total 73.1 81.1 66.5 73.4 89.5 77 40 29 8 1052 3241 33 91 64.5 20.6 10.40

Tab. C.11: Results for the CSRT tracker. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 83.0 88.3 78.3 83.0 93.6 18 14 3 1 202 607 4 21 77.3 20.1 2.68
Seq-1 71.1 77.1 66.1 72.9 85.1 13 6 6 1 191 404 7 19 59.6 21.6 3.32
Seq-2 66.6 75.6 59.5 68.6 87.2 19 8 9 2 294 916 13 20 58.0 23.8 2.92
Seq-3 72.9 84.0 64.4 69.4 90.5 17 7 9 1 206 864 6 29 61.8 20.4 2.88
Seq-4 67.3 72.0 63.1 79.5 90.8 10 6 2 2 112 285 6 11 71.1 15.1 4.89
Total 73.6 81.1 67.3 74.8 90.1 77 41 29 7 1005 3076 36 100 66.2 20.6 3.34

128

Appendix C Appendix

C.2.3 Full Results for Detector Cycle Frequencies

Tab. C.12: Results for the detector cycle frequency fd = 1. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 83.4 87.6 79.5 85.0 93.7 18 14 2 2 205 536 7 20 79.1 20.9 7.81
Seq-1 69.3 73.2 65.8 77.7 86.5 13 7 6 0 181 332 10 28 64.9 23.7 9.03
Seq-2 65.1 73.6 58.4 70.0 88.2 19 8 9 2 272 875 21 27 59.9 23.4 9.27
Seq-3 70.4 78.4 63.9 74.3 91.2 17 8 8 1 202 724 18 50 66.5 22.9 8.21
Seq-4 73.9 78.1 70.2 84.5 93.9 10 7 1 2 76 216 8 20 78.5 17.5 9.84
Total 73.4 79.5 68.1 78.0 91.0 77 44 26 7 936 2683 64 145 69.8 21.8 8.83

Tab. C.13: Results for the detector cycle frequency fd = 2. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 44.51
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 63.17
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 65.59
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 46.12
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 68.35
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 57.55

Tab. C.14: Results for the detector cycle frequency fd = 5. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 77.7 87.0 70.2 72.2 89.5 18 9 6 3 304 994 5 14 63.6 21.4 64.73
Seq-1 54.1 71.1 43.7 48.0 78.3 13 0 12 1 199 775 4 6 34.4 23.4 88.48
Seq-2 63.8 86.3 50.5 51.4 87.9 19 4 9 6 207 1415 3 6 44.2 24.1 97.84
Seq-3 51.0 65.6 41.7 47.5 74.7 17 3 10 4 454 1481 11 21 31.0 24.9 61.17
Seq-4 58.0 66.0 51.7 58.9 75.3 10 1 7 2 270 572 4 13 39.3 18.4 96.77
Total 63.4 77.8 53.6 57.0 82.9 77 17 44 16 1434 5237 27 60 45.1 22.5 81.80

Tab. C.15: Results for the detector cycle frequency fd = 10. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 70.0 87.3 58.4 59.3 88.7 18 0 15 3 271 1456 4 10 51.6 21.9 70.27
Seq-1 37.7 84.2 24.3 24.5 85.1 13 0 5 8 64 1125 1 2 20.2 27.4 97.79
Seq-2 48.4 85.8 33.7 34.1 86.8 19 0 9 10 151 1920 1 3 28.9 24.6 105.63
Seq-3 38.1 68.3 26.4 28.2 72.8 17 0 8 9 296 2026 3 6 17.6 22.5 64.53
Seq-4 37.2 57.7 27.4 28.8 60.6 10 0 4 6 261 992 2 6 9.9 18.7 100.87
Total 50.9 79.7 37.4 38.3 81.8 77 0 41 36 1043 7519 11 27 29.7 22.8 87.82

C.2.4 Full Results for Frame Scaling Factors

Tab. C.16: Results for the scaling factor s = 0.4. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 43.76
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 61.95
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 67.26
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 46.68
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 74.55
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 58.84

129

Appendix C Appendix

Tab. C.17: Results for the scaling factor s = 0.6. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 74.8 79.7 70.4 78.2 88.4 18 12 5 1 366 781 4 26 67.8 20.4 25.96
Seq-1 73.6 81.6 67.1 72.6 88.3 13 6 6 1 143 408 3 22 62.8 23.8 40.07
Seq-2 67.4 79.5 58.5 65.7 89.4 19 6 10 3 226 998 10 17 57.6 24.5 45.06
Seq-3 68.0 80.7 58.8 63.7 87.4 17 5 11 1 259 1025 5 30 54.3 23.6 27.64
Seq-4 56.6 62.9 51.5 71.2 86.9 10 3 5 2 150 401 9 13 59.8 17.4 47.78
Total 69.3 78.1 62.3 70.4 88.2 77 32 37 8 1144 3613 31 108 60.7 22.1 37.30

Tab. C.18: Results for the scaling factor s = 1.0. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 79.9 85.3 75.1 81.6 92.7 18 13 4 1 229 658 3 23 75.1 22.3 10.36
Seq-1 65.1 72.1 59.4 67.9 82.5 13 3 9 1 215 478 6 21 53.1 24.0 17.23
Seq-2 62.3 72.6 54.6 65.3 86.9 19 7 10 2 288 1010 12 24 55.0 24.4 21.81
Seq-3 66.5 80.5 56.6 62.7 89.2 17 5 11 1 215 1053 8 34 54.8 23.8 11.78
Seq-4 70.6 77.1 65.1 77.3 91.6 10 4 4 2 99 316 4 11 69.9 17.1 23.10
Total 69.9 78.8 62.9 71.2 89.2 77 32 38 7 1046 3515 33 113 62.3 22.6 16.85

C.2.5 Full Results for Match IoU Threshold

Tab. C.19: Results for the match IoU threshold θIoU = 0.1. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 87.0 92.9 81.9 82.0 93.1 18 13 4 1 217 642 0 17 76.0 21.1 45.67
Seq-1 70.2 75.0 65.9 73.8 84.0 13 5 7 1 209 390 9 19 59.2 23.4 62.88
Seq-2 67.8 77.2 60.4 68.2 87.2 19 7 8 4 292 926 12 21 57.8 23.1 68.00
Seq-3 77.3 88.6 68.6 69.7 90.1 17 6 10 1 216 854 6 29 61.8 23.5 47.81
Seq-4 68.0 71.8 64.5 77.2 86.0 10 6 2 2 175 318 7 21 64.1 18.0 73.02
Total 76.0 83.6 69.7 74.3 89.1 77 37 31 9 1109 3130 34 107 65.0 22.0 59.48

Tab. C.20: Results for the match IoU threshold θIoU = 0.3. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 44.56
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 62.05
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 66.52
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 47.25
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 69.23
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 57.92

Tab. C.21: Results for the match IoU threshold θIoU = 0.5. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 76.4 82.1 71.4 79.8 91.7 18 11 6 1 258 723 8 14 72.3 21.1 44.82
Seq-1 60.7 67.1 55.5 68.5 82.9 13 4 9 0 211 470 11 18 53.6 23.3 61.57
Seq-2 64.3 76.7 55.4 63.7 88.2 19 6 11 2 249 1058 12 10 54.7 23.3 63.43
Seq-3 66.3 79.8 56.6 64.4 90.8 17 6 10 1 183 1003 9 22 57.6 23.4 46.03
Seq-4 50.4 56.4 45.6 68.7 85.0 10 2 6 2 169 436 13 17 55.6 18.7 67.31
Total 66.4 75.5 59.3 69.7 88.8 77 29 42 6 1070 3690 53 81 60.5 22.1 56.63

130

Appendix C Appendix

Tab. C.22: Results for the match IoU threshold θIoU = 0.7. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 63.5 71.8 57.0 73.4 92.5 18 9 6 3 214 951 17 20 66.9 21.7 41.23
Seq-1 52.1 67.3 42.5 55.1 87.2 13 3 9 1 121 670 15 17 45.9 23.5 59.03
Seq-2 55.7 78.1 43.3 50.3 90.8 19 6 7 6 149 1449 19 17 44.5 23.5 60.52
Seq-3 51.8 71.9 40.5 53.0 94.0 17 4 9 4 95 1325 15 16 49.1 23.9 40.99
Seq-4 51.7 64.0 43.4 61.2 90.1 10 2 6 2 94 541 16 15 53.3 19.3 64.29
Total 56.4 71.6 46.6 59.5 91.5 77 24 37 16 673 4936 82 85 53.3 22.4 53.21

Tab. C.23: Results for the match IoU threshold θIoU = 0.9. Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 17.8 41.2 11.4 25.6 92.5 18 1 6 11 74 2661 27 28 22.7 20.8 31.31
Seq-1 3.4 72.2 1.7 2.4 100.0 13 0 0 13 0 1455 1 1 2.3 14.0 46.60
Seq-2 12.8 56.0 7.2 12.8 99.5 19 0 4 15 2 2540 8 8 12.5 18.6 50.63
Seq-3 11.0 70.6 6.0 8.1 95.8 17 0 2 15 10 2592 5 4 7.6 19.9 33.12
Seq-4 18.7 62.7 11.0 17.5 100.0 10 0 3 7 0 1149 6 5 17.1 14.1 52.18
Total 13.7 51.2 7.9 14.7 95.4 77 1 15 61 86 10397 47 46 13.6 19.2 42.77

C.2.6 Full Results for Hypothesis Thresholds

Tab. C.24: Results for the hypothesis thresholds (0, 0). Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.2 87.7 81.0 86.1 93.2 18 14 2 2 223 496 5 19 79.7 21.1 46.01
Seq-1 66.6 68.9 64.5 79.4 84.9 13 7 6 0 210 307 14 30 64.4 23.7 65.16
Seq-2 59.4 66.4 53.8 70.9 87.5 19 8 9 2 295 848 28 32 59.8 23.8 70.40
Seq-3 68.5 75.6 62.6 74.2 89.6 17 8 8 1 244 728 32 56 64.4 23.7 50.35
Seq-4 58.8 60.8 56.9 86.8 92.9 10 8 0 2 93 184 12 21 79.3 18.7 73.59
Total 69.7 74.6 65.5 79.0 90.0 77 45 25 7 1065 2563 91 158 69.5 22.3 61.10

Tab. C.25: Results for the hypothesis thresholds (2, 2). Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 86.0 90.2 82.1 84.8 93.1 18 14 2 2 224 543 4 18 78.4 21.1 45.25
Seq-1 68.3 71.2 65.6 78.9 85.6 13 7 6 0 198 315 12 25 64.8 24.1 62.73
Seq-2 64.3 72.2 58.0 70.6 87.9 19 10 7 2 284 855 19 24 60.2 23.7 69.41
Seq-3 73.3 81.6 66.5 73.9 90.8 17 8 8 1 211 735 15 45 65.9 23.8 46.25
Seq-4 57.4 59.6 55.3 83.7 90.2 10 7 1 2 126 227 13 21 73.7 18.4 73.12
Total 72.5 78.1 67.7 78.1 90.1 77 46 24 7 1043 2675 63 133 69.0 22.3 59.35

Tab. C.26: Results for the hypothesis thresholds (5, 5). Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 84.3 90.0 79.2 81.3 92.4 18 13 4 1 238 669 2 17 74.6 21.1 44.37
Seq-1 70.7 77.5 65.1 70.2 83.5 13 5 7 1 206 445 5 17 56.0 23.5 63.27
Seq-2 69.4 80.6 60.9 66.4 87.8 19 7 10 2 268 980 10 13 56.8 23.1 67.81
Seq-3 72.0 83.4 63.3 68.2 89.8 17 6 10 1 219 897 7 27 60.2 23.7 47.62
Seq-4 58.6 62.8 54.8 75.5 86.5 10 5 3 2 164 341 9 19 63.1 18.0 72.44
Total 73.4 81.6 66.7 72.7 89.0 77 36 34 7 1095 3332 33 93 63.4 22.0 59.10

131

Appendix C Appendix

Tab. C.27: Results for the hypothesis thresholds (5, 0). Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 83.6 91.0 77.3 79.9 94.1 18 13 3 2 179 718 3 19 74.8 21.1 45.76
Seq-1 69.0 83.6 58.8 63.0 89.6 13 4 9 0 109 552 10 25 55.0 22.8 65.64
Seq-2 56.2 75.1 44.9 56.6 94.6 19 5 12 2 95 1264 17 23 52.8 22.7 69.52
Seq-3 67.6 86.6 55.5 60.5 94.5 17 5 10 2 99 1113 14 33 56.5 23.6 50.49
Seq-4 58.5 67.9 51.4 72.4 95.6 10 4 4 2 46 385 11 21 68.3 18.2 74.51
Total 69.2 83.2 59.3 66.9 93.9 77 31 38 8 528 4032 55 121 62.1 21.8 61.19

Tab. C.28: Results for the hypothesis thresholds (0, 5). Units of the metrics are according to table 6.3

.

.

Sequence IDF1 IDP IDR RCLL PRCN GT MT PT ML FP FN IDSW FM MOTA MOTP FPS

Seq-0 83.5 85.5 81.7 86.5 90.4 18 14 3 1 327 484 5 19 77.2 21.2 44.61
Seq-1 67.4 65.3 69.7 81.8 76.7 13 8 5 0 371 272 15 25 55.9 24.3 59.05
Seq-2 69.0 70.2 67.9 75.1 77.7 19 10 7 2 629 725 16 22 53.0 24.0 65.73
Seq-3 71.1 71.3 70.9 80.7 81.2 17 11 6 0 527 543 19 40 61.4 24.0 46.37
Seq-4 58.5 56.4 60.7 87.7 81.6 10 8 0 2 276 171 12 20 67.0 18.9 70.96
Total 72.2 72.4 72.0 82.0 82.4 77 51 21 5 2130 2195 67 126 64.0 22.5 57.35

C.3 Camera Datasheets

This section contains the datasheet of the camera model used in the Shopfloor Monitor.

132

DH-SD22204T-GN

2Mp Full HD Network Mini PTZ Dome Camera

Features

 4x optical zoom

 H.264 & MJPEG Triple-streams encoding

 Max. 25/30fps@1080P(19201080) & 50/60fps@720P resolution

 WDR, Day/Night(ICR), Ultra DNR, Auto iris, Auto focus

 Multiple network monitoring: Web viewer, CMS(DSS/PSS) & DMSS

 Max 100°/s pan speed

 Up to 300 presets, 5 auto scan, 8 tour, 5 pattern

 Support intelligent 3D positioning with DH-SD protocol

 Micro SD memory, POE

133

DH-SD22204T-GN

Technical Specifications

Model DH-SD22204T-GN

Camera

Image Sensor 1/2.7” CMOS

Effective Pixels 1920(H) x 1080(V), 2Megapixels

Scanning System Progressive

Electronic Shutter Speed 1/1 ~ 1/30,000s

Min. Illumination Color: 0.05Lux@F1.6; B/W: 0.005Lux@F1.6

S/N Ratio More than 50dB

Camera Features

Day/Night Auto(ICR) / Color / B/W

Backlight Compensation BLC / HLC / WDR

White Balance Auto, ATW, Indoor, Outdoor, Manual

Gain Control Auto / Manual

Noise Reduction Ultra DNR (2D/3D)

Privacy Masking Up to 24 areas

Digital Zoom 16x

Lens

Focal Length 2.7mm~11mm(4x Optical zoom)

Max Aperture F1.6~ F2.8

Focus Control Auto / Manual

Angle of View H: 93.5° ~ 30.24°

Close Focus Distance 100mm~ 1000mm

PTZ

Pan/Tilt Range Pan: 0° ~ 355°; Tilt: 0° ~ 90°, auto flip 180°

Manual Control Speed Pan: 0.1° ~100° /s; Tilt: 0.1° ~60° /s

Preset Speed Pan: 100° /s; Tilt: 60° /s

Preset 300

PTZ Mode 5 Pattern, 8 Tour, Auto Pan, Auto Scan

Speed Setup Human-oriented focal length/ speed adaptation

Power up Action Auto restore to previous PTZ and lens status after power failure

Idle Motion Activate Preset/ Pan/ Scan/ Tour/ Pattern if there is no command in

the specified period

Video

Compression H.264 / MJPEG

Resolution 1080P(1920× 1080)/ 720P(1280× 720) / D1(704× 576/ 704× 480) /CIF

(352× 288/352× 240)

Frame Rate Main Stream 1080P/ D1 (1 ~ 25/30fps), 720P(1~50/60fps)

Sub Stream 1 D1/CIF(1 ~ 25/30fps)

Sub Stream 2 720P/ D1/ CIF (1 ~ 25/30fps)

Bit Rate H.264: 448K ~ 8192Kbps, MJPEG: 5120K ~ 10240Kbps

134

DH-SD22204T-GN
Intelligent Function

IVS (optional) Tripwire, Intrusion, Abandoned Object Detection, Missing Object

Detection,

Face Detection Support

Network

Ethernet RJ-45 (10/100Base-T)

Protocol IPv4/ IPv6, HTTP, HTTPS, SSL, TCP/IP, UDP, UPnP, ICMP, IGMP, SNMP,

RTSP, RTP, SMTP, NTP, DHCP, DNS, PPPOE, DDNS, FTP, IP Filter, QoS,

Bonjour, 802.1x

ONVIF ONVIF Profile S

Max. User Access 20 users

Smart Phone iPhone, iPad, Android, Windows Phone

Auxiliary Interface

Memory Slot Micro SD, Max 128GB

General

Power Supply DC12V, POE

Power Consumption 10W

Working Environment -30ºC ~ 60ºC / Less than 90% RH

Ingress Protection IP66 & IK10

Dimensions Φ122 (mm) x 89 (mm)

Weight 0.6kg

135

DH-SD22204T-GN

Dimensions

Dahua Technology Co., Ltd.

1199 BinAn Road, Binjiang District, Hangzhou, China

Tel: +86-571-87688883

Fax: +86-571-87688815

Email: overseas@dahuatech.com

www.dahuasecurity.com

*Design and specifications are subject to change without notice.

© 2014 Dahua Technology

136

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	2 Use Case
	2.1 Environment Analysis
	2.2 System Requirements
	2.3 System Specification
	2.4 Conclusion

	3 Fundamentals
	3.1 Object Detection
	3.2 Object Tracking
	3.3 Differences between Tracker and Detector
	3.4 Combining Tracker and Detector
	3.5 Conclusion

	4 Related Work
	4.1 Multi-Target Tracking Solutions
	4.1.1 General Framework
	4.1.2 Camera Types
	4.1.3 Detection and Tracking
	4.1.4 Coordinate Mapping and Camera Calibration
	4.1.5 Creation of the Virtual Scene Model
	4.1.6 Target Representation in the Virtual Model
	4.1.7 User Interaction with the Virtual Model

	4.2 Limitations of the Existing Solutions
	4.3 Conclusion

	5 System Implementation
	5.1 Full System Architecture
	5.2 Main Process
	5.3 Detection and Tracking Framework
	5.3.1 Detection
	5.3.2 Tracking
	5.3.2.1 Tracker Initialization
	5.3.2.2 Tracker Prediction Step
	5.3.2.3 Tracker Update with Detections
	5.3.2.4 Retrieval of Tracking Results

	5.4 Database Layout
	5.5 Web Applications
	5.5.1 App Framework
	5.5.2 Visualization App

	5.6 Camera Setup
	5.7 Camera Calibration
	5.7.1 Camera Model
	5.7.2 Ground Plane Homography
	5.7.3 Estimating Intrinsic Parameters
	5.7.4 Estimating Ground Plane Homographies
	5.7.5 Mapping of Image to World Coordinates
	5.7.6 Validation of Calibration Results
	5.7.6.1 Validation of Intrinsic Calibration
	5.7.6.2 Validation of the Ground Plane Homography
	5.7.6.3 Validation via Independent Point Set

	5.7.7 Calibration Interval

	5.8 Future Improvements
	5.9 Conclusion

	6 Experiments
	6.1 Evaluation Dataset
	6.2 Evaluation Metrics
	6.3 Design of Experiments
	6.4 Analysis Results
	6.4.1 Detection Algorithm
	6.4.2 Tracking Algorithm
	6.4.3 Detector Cycle Frequency
	6.4.4 Frame Scaling Factor
	6.4.5 Match IoU Threshold
	6.4.6 Hypothesis Thresholds

	6.5 Qualitative Results
	6.6 Conclusion

	7 Discussion
	7.1 Interpretation of the Results
	7.1.1 Detection Algorithm
	7.1.2 Tracking Algorithm
	7.1.3 Detector Cycle Frequency
	7.1.4 Frame Scaling Factor
	7.1.5 Match IoU Threshold
	7.1.6 Hypothesis Thresholds
	7.1.7 Qualitative Results

	7.2 Parameter Importance
	7.3 Invalid Parameters
	7.4 Useful Parameter Configurations
	7.5 Critical Review of the Experiments
	7.6 Conclusion

	8 Applications
	8.1 Occupancy Detection
	8.2 Machine Waiting Queue
	8.3 Staff Activity Recognition
	8.4 Emergency Assistance
	8.5 Automatic Risk Assessment
	8.6 Smart Access Control
	8.7 Control of Autonomous Ground Vehicles
	8.8 Safety System for Industrial Robots
	8.9 Indoor Positioning System
	8.10 Product and Resource Tracing
	8.11 Automatic Quality Control
	8.12 Automatic Reporting
	8.13 Process and Factory Analysis
	8.14 Virtual Factory Model
	8.15 Virtual Product Model
	8.16 Conclusion

	9 Privacy Concerns
	10 Conclusion
	Bibliography
	A Object Detection (Supplementary Material)
	A.1 CNN Base-Architectures
	A.2 Detection Datasets
	A.3 Performance Metrics
	A.4 Convolutional Object Detectors

	B Object Tracking (Supplementary Material)
	B.1 Challenges of Tracking
	B.2 Features for Tracking
	B.3 Classical Tracking Algorithms
	B.4 Correlation Filter Based Tracking Algorithms
	B.4.1 Basic Correlation Filter Trackers
	B.4.2 Regularized Correlation Filter Trackers
	B.4.3 Part-Based Correlation Filter Trackers

	B.5 Deep Learning Based Tracking Algorithms
	B.5.1 Deep Learning for Feature Extraction
	B.5.2 End-to-End Deep Learning Models
	B.5.3 Deep Learning for Target Association
	B.5.4 Deep Learning for Motion Prediction

	C Appendix
	C.1 Server Hardware and Software
	C.2 Full Results of Experimental Analysis
	C.2.1 Full Results for Detection Algorithms
	C.2.2 Full Results for Tracking Algorithms
	C.2.3 Full Results for Detector Cycle Frequencies
	C.2.4 Full Results for Frame Scaling Factors
	C.2.5 Full Results for Match IoU Threshold
	C.2.6 Full Results for Hypothesis Thresholds

	C.3 Camera Datasheets

